Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for Its Use in Constructed Wetlands in Areas Polluted with Heavy Metals
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Sites
2.2. Chemical Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix
References
- Whigham, D.F. Ecological issues related to wetland preservation, restoration, creation and assessment. Sci. Total Environ. 1999, 240, 1–3. [Google Scholar] [CrossRef]
- Vyrmazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 51, 165–171. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Biosour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Nesler, A.; Furini, A. Phytoremediation: The utilization of plants to reclaim polluted sites. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 75–86. [Google Scholar]
- Yapiyev, V.; Sagintayev, Z.; Inglezakis, V.J.; Samarkhanov, K.; Verhoef, A. Essesntials of endorheic basins and lakes: A review in the context of current and future water resource management and mitigation activities in Central Asia. Water 2017, 9, 798. [Google Scholar] [CrossRef]
- García, M.E.; Bundschuh, J.; Ramos, O.; Quintanilla, J.; Persson, K.M.; Bengtsson, L.; Berndtsson, R. Heavy metals in aquatic plans and their relationship to concentrations in surface water, groundwater and sediments—A case study of Poopó basin, Bolivia. Revista Boliviana de Química 2005, 22, 11–18. [Google Scholar]
- Clark, A.H.; Farrar, E.; Kontak, D.J.; Langridge, R.J.; Arenas, M.J.; France, L.J.; McBride, S.L.; Woodman, P.L.; Wasteneys, H.A.; Sandeman, H.A.; et al. Geologic and geochronological constrains on the metallogenic evolution of the Andes of southeastern Peru. Econ. Geol. 1990, 85, 1520–1583. [Google Scholar] [CrossRef]
- Forturbel, F.E.; Barbieri, E.; Herbas, C.; Barbieri, F.L.; Gardon, J. Indoor metallic pollution related to mining activity in the Bolivian Altiplano. Environ. Pollut. 2011, 159, 280–2875. [Google Scholar] [CrossRef]
- Díaz-Barriga, F.; Hamel, J.; Paz, E.; Carrizales, L.; Batres, L.; Calderón, J.; Galvao, L.; Caldas, L.Q.; McConnell, R. Evaluación de Riesgos Para la Salud en la Población Expuesta a Metales en Bolivia; Centro Panamericano de Ecología Humana y Salud: México DF, México, 1997. [Google Scholar]
- Mason, H.L. A Flora of the Marshes of California; University of California Press: Berkeley, CA, USA, 1957. [Google Scholar]
- Wagner, W.L.; Herbst, D.R.; Sohmer, S.H. Manual of the Flowering Plants of Hawai’i. Vol. 2.; Bishop Museum Special Publication 83; University of Hawai’i; Bishop Museum Press: Honolulu, HI, USA, 1990. [Google Scholar]
- Montoya Choque, J.C.; Lovera, P.; Robert, M. Lago Uru Uru: Evaluación de la Calidad del Agua, Sedimentos y Totora; Centro de Ecología y Pueblos Andinos: Oruro, Bolivia, 2009. [Google Scholar]
- Hidalgo-Cordero, J.F.; García-Navarro, J. Totora (Schoenoplectus californicus (C.A. Mey.) Soják) and its potential as a construction material. Ind. Crop. Prod. 2018, 112, 467–480. [Google Scholar] [CrossRef]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Murray-Gulde, C.L.; Huddleston, G.M.; Garber, K.V.; Rodgers, J.H. Contributions of Schoenoplectus californicus in a constructed wetland system receiving copper contaminated waste water. Water Air Soil Pollut. 2005, 163, 355–378. [Google Scholar] [CrossRef]
- Nelson, E.A.; Specht, W.L.; Knox, A.S. Metal removal from water discharges by a constructed treatment wetland. Eng. Life Sci. 2006, 6, 26–30. [Google Scholar] [CrossRef]
- Alanoca, L.; Amourous, D.; Momperrus, M.; Tessier, E.; Goni, M.; Guyoneaud, R.; Acha, D.; Gassie, C.; Audry, S.; Garcia, M.E.; et al. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano. Environ. Sci. Pollut. Res. 2016, 23, 6919–6933. [Google Scholar] [CrossRef] [PubMed]
- García, M.E.; Bundschuh, J.; Ramos, O.; Quintanilla, J.; Persson, K.M.; Bengtsson, L.; Berndtsson, R. Heavy Metal Distribution in a Mining Region. A case Study of Lake Poopó, Bolivia. In Proceedings of the 8th Workshop on Physical Processes in Natural Waters, Department of Water Resources Engineering, Lund, Sweden, August 2004; Lund University: Lund, Sweden, 2004; Available online: www.academia.edu/download/45937267/maria1.doc (accessed on 17 December 2018).
- Alanoca, L. Cycle Biogéochemique du Hg dans l’Hydrosystème Tropical d`Altitude lac Uru-Uru, Altiplano Bolivien. Ph.D. Thesis, Université Toulouse III Paul Sabatier, Toulouse, France, 2016. [Google Scholar]
- Molina, C.I.; Ibañez, C.; Gibon, F.-M. Proceso de biomagnificación de metales pesados en un lago hiperhialino (Poopó, Oruro, Bolivia): Posible riesgo en la salud de consumidores. Ecología en Bolivia 2012, 47, 99–118. [Google Scholar]
- Ramos Ramos, O.W.; Cáceres, L.F.; Ormaechea Muñoz, M.R.; Bhattacharya, P.; Quino, I.; Quintanilla, J.; Sracek, O.; Thunvik, R.; Bundschuh, J.; García, M.E. Sources and behavior of arsenic and trace elements in groundwater and surface water in the Poopó Lake Basin, Bolivian Altiplano. Environ. Earth Sci. 2012, 66, 793–807. [Google Scholar] [CrossRef]
- Autoridad Binacional de Lago Titcaca. Estudio de Hidroquímica y Contaminación. Plan Director Global Binacional de Protección—Prevención de Inundaciones y Aprovechamiento de los Recursos del Lago Titicaca, Río Desaguadero, Lago Poopó y Lago Salar de Coipasa (Sistema, T.D.P.S.); Autoridad Binacional de Lago Titcaca: La Paz, Bolivia, 1993.
- Matejovic, I. Determination of carbon, hydrogen, and nitrogen in soils by automated elemental analysis (dry combustion method). Commun. Soil Sci. Plant Anal. 1993, 24, 2213–2222. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Van Heerden, E.; Fischer, J.L.; Baker, C. Trace metals in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa. Atmos. Environ. 2010, 44, 1826–1830. [Google Scholar] [CrossRef]
- Zar, J.H. Bioestatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Juárez, A.; Arribére, M.A.; Arcagni, M.; Williams, N.; Rizzo, A.; Ribeiro Gueara, S. Heavy metals and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range. Environ. Sci. Pollut. Res. 2016, 23, 17995–18009. [Google Scholar] [CrossRef]
- Rodríguez Ayala, S.; Flores, R.; Rodríguez, M.; Andocilla, M. Quantitative determination of heavy metal hyperaccumulation in a macrophyte simple of Schoenoplectus californius from Lago San Pablo, Imbabura-Ecuador. Revista Ciencia 2017, 4, 431–446. [Google Scholar]
- Sundberg-Jones, S.E.; Hassan, S.M. Macrophyte sorption and bioconcentration of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Water Air Soil Pollut. 2007, 183, 187–200. [Google Scholar] [CrossRef]
- Marschner, H. Mineral. Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995. [Google Scholar]
- Bringezu, K.; Lichtenberger, O.; Leopold, I.; Neumann, D. Heavy metal tolerance of Silene vulgaris. J. Plant Physiol. 1999, 154, 536–546. [Google Scholar] [CrossRef]
- DalCorso, G. Heavy metal toxicity in plants. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–25. [Google Scholar]
- Christophersen, H.M.; Smith, S.E.; Pope, S.; Smith, F.A. No evidence for competition between arsenate and phosphate for uptake from soil by medic or barley. Environ. Int. 2009, 35, 485–490. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.Z.; Duan, G.L.; Huang, Y.C. Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ. Exp. Bot. 2011, 72, 34–40. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Sierra-Aragón, M.; Ortiz-Bernad, I.; Martín-Peinado, J. Toxicity of arsenic in relation to soil properties: Implications to regulatory purposes. J. Soils Sediments 2014, 14, 968–979. [Google Scholar] [CrossRef]
- Duquesnoy, I.; Champeau, G.M.; Evray, G.; Ledoigt, G.; Piquet-Pissaloux, A. Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays. C. R. Biol. 2010, 333, 814–824. [Google Scholar] [CrossRef]
- Eun, S.O.; Yon, H.S.; Lee, Y. Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol. Plant. 2000, 110, 357–365. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef]
- DalCorso, G.; Farinati, S.; Maistri, S.; Furini, A. How plants cope with cadmium: Staking all on metabolism and gene expression. J. Integr. Plant Biol. 2008, 50, 1268–1280. [Google Scholar] [CrossRef] [PubMed]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavaddeur, A.; Forestier, C. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Athar, R.; Ahmad, M. Heavy metal toxicity in legume-microsymbiont system. J. Plant Nutr. 2002, 25, 369–386. [Google Scholar] [CrossRef]
- Pillay, S.V.; Rao, V.S.; Rao, K.V.N. Effect of nickel toxicity in Hyptis suareeolens (L.) Poit. and Helianthus annuus L. Indian J. Plant Physiol. 1996, 1, 153–156. [Google Scholar]
- Chen, C.; Huang, D.; Liu, J. Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean 2009, 37, 304–313. [Google Scholar] [CrossRef]
- Ahmad, M.S.A.; Hussain, M.; Saddiq, R.; Alvi, A.K. Mungbean: A nickel indicator, accumulator or excluder? Bull. Environ. Contam. Toxicol. 2007, 78, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Hayat, S.; Ali, B.; Ahmad, A. Effect of 28- homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 2007, 45, 139–142. [Google Scholar] [CrossRef]
- Maksymiec, W.; Baszynski, T. The role of Ca2+ ions in modulating changes induced in bean plants by an excess of Cu2+ ions. Chlorophyll fluorescence measurements. Physiol. Plant. 1999, 105, 562–568. [Google Scholar] [CrossRef]
- Pätsikkä, E.; Kairavuo, M.; Sersen, F.; Aro, E.-M.; Tyystjärvi, E. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol. 2002, 129, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Batty, L.C.; Younger, P.L. Effects of external iron concentration upon seedling growth and uptake of Fe and phosphate by the common reed, Phragmites australis (Cav.) trin ex steudel. Ann. Bot. 2003, 92, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Dučic, T.; Polle, A. Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 2005, 17, 103–112. [Google Scholar] [CrossRef]
- Madejczyk, M.S.; Ballatori, N. The iron transporter ferroportin can also function as a manganese exporter. Biochim. Biophys. Acta Biomembr. 2012, 1818, 651–657. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 2011, 339, 83–95. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Van Assche, F.; Clijsters, H. Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentrations of zinc: Effects on electron transport and photo-phosphorylation. Physiol. Plant. 1986, 66, 717–721. [Google Scholar] [CrossRef]
- Kaplan, D.I.; Adriano, D.C.; Sajwan, K.S. Thallium toxicity in bean. J. Environ. Qual. 1990, 19, 359–365. [Google Scholar] [CrossRef]
- Durrant, P.J.; Durrant, B. Introduction to Advanced Inorganic Chemistry; Longman: London, UK, 1970. [Google Scholar]
- Babula, P.; Adam, V.; Opatrilova, R.; Zehnalek, J.; Havel, L.; Kizek, R. Uncommon heavy metals, metalloids and their plant toxicity: A review. Environ. Chem. Lett. 2008, 6, 189–213. [Google Scholar] [CrossRef]
- Dumon, J.C.; Erns, W.H.O. Titanium in plants. J. Plant. Physiol. 1988, 133, 203–209. [Google Scholar] [CrossRef]
- Kaplan, D.I.; Adriano, D.C.; Carlson, C.L.; Sajwan, S. Vanadium toxicity an accumulation by beans. Water Air Soil Pollut. 1990, 49, 81–91. [Google Scholar] [CrossRef]
- McGrath, S.P.; Micó, C.; Curdy, R.; Zhao, F.J. Predicting molybdenum toxicity to higher plants: Influence of soil properties. Environ. Pollut. 2010, 158, 3095–3102. [Google Scholar] [CrossRef]
- Isermann, K. Uptake of Stable Strontium by Plants and Effects on Plant Growth. In Handbook of Stable Strontium; Skoryna, S.C., Ed.; Springer: Boston, MA, USA, 1981; pp. 65–86. [Google Scholar]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef]
- Manara, A. Plant responses to heavy metal toxicity. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Dordrecth, The Netherlands, 2012. [Google Scholar]
- Jan, S.; Parray, J.A. Approaches to Heavy Metal Tolerance in Plants; Springer: Singapore, 2016. [Google Scholar]
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Dorman, L.; Castle, J.W.; Rodgers, J.H. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water. Chemosphere 2009, 75, 939–947. [Google Scholar] [CrossRef]
- Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ. Pollut. 2010, 158, 3447–3461. [Google Scholar] [CrossRef]
- García, M.E.; Bengtsson, L.; Persson, K.M. On the distribution of saline groundwater in the Poopó Basic, central Bolivian highland. Vatten 2005, 66, 199–203. [Google Scholar]
- Miller, J.R.; Hudson-Edwards, K.A.; Lechler, P.J.; Preston, D.; Macklin, M.G. Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin, Bolivia. Sci. Total Environ. 2004, 320, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Smolders, A.J.; Lock, R.A.; Van der Velde, G.; Medina-Hoyos, R.I.; Roelofs, J.G. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Arch. Environ. Contam. Toxicol. 2003, 44, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Reif, J.S.; Ameghino, E.; Aaronson, M.J. Chronic exposure of sheep to a zinc smelter in Peru. Environ. Res. 1989, 49, 40–49. [Google Scholar] [CrossRef]
- Fasani, E. Plants that hyperaccumulate heavy metals. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 55–74. [Google Scholar]
- Baker, A.J.M.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Chapter 5. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soil and Water; Terry, N., Bañuelos, G., Eds.; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Pillco Zolá, R.; Bengtsson, L. Long-term and extreme water level variations of the shallow Lake Poopó, Bolivia. Hydrol. Sci. J. 2006, 31, 98–114. [Google Scholar] [CrossRef]
- Abarca-Del-Río, R.; Crétaux, J.F.; Berge-Nguyen, M.; Maisongrande, P. Does Lake Titicaca still control the Lake Poopó system water levels? An investigation using satellite altimetry and MODIS data (2000–2009). Remote Sens. Lett. 2012, 3, 707–714. [Google Scholar] [CrossRef]
- Villamar, C.A.; Neubauer, M.E.; Vidal, G. Distribution and availability of copper and zinc in a constructed wetland fed with treated swine slurry from an anaerobic lagoon. Wetlands 2014, 34, 583–591. [Google Scholar] [CrossRef]
- Constantini, M.L.; Sabetta, L.; Mancinelli, G.; Rossi, L. Spatial variability of the decomposition rate of Schoenoplectus tatora in a polluted area of Lake Titicaca. J. Trop. Ecol. 2004, 20, 325–335. [Google Scholar] [CrossRef]
- Vyrmazal, J. The use of constructed wetlands for treatment of industrial waste water: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, H.; Bañuelos, G.; Yan, B.; Zhou, Q.; Yu, X.; Cheng, X. Constructed wetlands for saline wastewater treatment: A reivew. Ecol. Eng. 2017, 98, 275–285. [Google Scholar] [CrossRef]
Variable | Water (elements in mg L−1) | Surface sediments (elements in ppm) | ||
---|---|---|---|---|
Puente Español | Central Lake | Puente Español | Central Lake | |
pH | 8.47 | 8.96 | - | - |
Conductivity (µs cm−1) | 23.18 | 145.00 | - | - |
Total suspended solids | 1635.50 | 13530.00 | - | - |
Total alkali | 133.85 | 146.50 | - | - |
CO32–/CO2 | 26.90/0.71 | 64.97/0.69 | - | - |
HCO3– | 116.72 | 129.98 | - | - |
Al | 0.03 | 0.01 | - | 63727.47 |
As | 0.11 | 0.11 | 435.03 | 292.96 |
B | 3.08 | 9.82 | - | 115.86 |
Be | - | 0.00 | - | 2.06 |
Ca | 113.20 | 502.34 | - | 44191.53 |
Cl | 679.44 | 8747.17 | - | - |
Cd | 0.04 | 0.04 | 0.78 | 1.86 |
Co | 0.05 | 0.17 | 6.10 | 8.94 |
Cr | 0.00 | 0.01 | 8.15 | 22.34 |
Cu | 0.01 | 0.00 | 50.50 | 43.88 |
Fe | 0.02 | 0.02 | 15179.40 | 27056.84 |
K | 20.00 | 101.44 | - | 21266.63 |
Li | - | 1.55 | - | - |
Mg | 38.16 | 302.86 | - | 9815.80 |
Mn | 0.04 | 0.15 | 422.00 | 546.22 |
Mo | - | 0.01 | - | 2.04 |
Na | 408.30 | 2991.42 | - | 12721.53 |
Ni | 0.05 | 0.27 | 10.30 | 17.23 |
NO3–/NO2– | 0.32/0.03 | 0.22/0.03 | - | - |
P | 0.06 | 0.04 | - | 796.83 |
Pb | 0.02 | 0.04 | 56.20 | 58.43 |
S | 71.74 | 896.70 | - | - |
Sb | 0.05 | 0.08 | 2.00 | 7.81 |
Se | - | 0.01 | - | - |
Sr | - | 3.32 | - | 0.33 |
Ti | - | 0.02 | - | 2367.43 |
Tl | - | 0.00 | - | 0.82 |
V | - | 0.00 | - | 80.35 |
Zn | 0.01 | 0.04 | 82.40 | 166.82 |
Element | Leaves | Roots | Rhizomes | |||
---|---|---|---|---|---|---|
Central Lake | Puente Español | Central Lake | Puente Español | Central Lake | Puente Español | |
Metaloids | ||||||
B | 0.85 ± 0.03 | - | 0.82 ± 0.03 | - | 0.22 ± 0.01 | - |
As | 0.09 ± 0.01 * | 0.01 ± 0.01 | 2.95 ± 0.18 * | 0.18 ± 0.01 | 0.11 ± 0.01 * | 0.02 ± 0.01 |
Sb | 1.14 ± 0.04 | - | 5.94 ± 0.56 | - | 1.22 ± 0.07 | 0.31 ± 0.01 |
Alkali | ||||||
Na | <0.01 ± 0.01 | - | <0.01 ± 0.01 | - | <0.01 ± 0.01 | - |
K | 0.62 ± 0.02 | - | 0.40 ± 0.01 | - | 0.52 ± 0.03 | - |
Alkaline earth | ||||||
Be | - | - | 0.54 ± 0.03 | - | - | - |
Mg | 0.04 ± 0.01 | - | 0.07 ± 0.01 | - | 0.03 ± 0.01 | - |
Ca | 0.04 ± 0.01 | - | 0.05 ± 0.01 | - | 0.02 ± 0.01 | - |
Sr | 85.61 ± 2.20 | - | 153.43 ± 2.53 | - | 52.27 ± 1.65 | - |
Semimetals | ||||||
Al | 0.01 ± 0.01 | - | 0.08 ± 0.01 | - | 0.01 ± 0.01 | - |
Tl | 4.52 ± 0.25 | - | 37.04 ± 3.23 | - | 6.65 ± 0.41 | - |
Pb | 0.63 ± 0.03 * | 0.02 ± 0.01 | 6.80 ± 0.35 * | 0.35 ± 0.02 | 0.83 ± 0.06 * | 0.07 ± 0.01 |
Transition metals | ||||||
Ti | 0.01 ± 0.01 | - | 0.01 ± 0.01 | - | 0.01 ± 0.01 | - |
V | 0.01 ± 0.01 | - | 0.09 ± 0.01 | - | 0.01 ± 0.01 | - |
Cr | 0.14 ± 0.01 | 0.77 ± 0.11 * | 1.12 ± 0.06 | 1.48 ± 0.19 | 0.75 ± 0.22 | 1.15 ± 0.17 |
Mn | 0.23 ± 0.01 | 3.39 ± 0.20 * | 0.22 ± 0.01 | 1.68 ± 0.01 * | 0.10 ± 0.01 | 0.89 ± 0.04 * |
Fe | 0.05 ± 0.01 * | 0.02 ± 0.01 | 2.40 ± 0.15 * | 0.47 ± 0.05 | 0.19 ± 0.02 * | 0.12 ± 0.02 |
Co | 0.06 ± 0.01 | - | 0.26 ± 0.03 | 0.19 ± 0.02 | 0.08 ± 0.01 | - |
Ni | 0.18 ± 0.01 | 0.28 ± 0.01 * | 0.45 ± 0.02 | 0.65 ± 0.07 * | 0.71 ± 0.14 | 0.50 ± 0.09 |
Cu | 0.28 ± 0.01 * | 0.11 ± 0.02 | 3.44 ± 0.12 * | 0.68 ± 0.03 | 0.66 ± 0.03 * | 0.30 ± 0.02 |
Zn | 10.88 ± 0.39 * | 0.16 ± 0.01 | 52.33 ± 1.73 * | 2.73 ± 0.10 | 17.56 ± 0.71 * | 0.85 ± 0.06 |
Mo | 0.21 ± 0.03 | - | 0.27 ± 0.03 | - | 1.02 ± 0.27 | - |
Cd | 2.43 ± 0.10 | - | 73.53 ± 2.89 * | 7.71 ± 0.78 | 13.60 ± 1.68 * | 0.37 ± 0.02 |
Concentration pattern | Strategy | Element group | Element |
---|---|---|---|
Root > Rhizome > Leaf | Excluding micronutrient | Transition metals | Cu, Zn, Cd, Ti, V, Cr, Fe, Co |
Semi-metals | Al, Pb, Bi | ||
Alkali-earth metals | Mg | ||
Metaloids | As, Sb | ||
Root > Leaf > Rhizome | Mobilizing non-labile98 | Semi-metals | Tl |
macronutrient | Alkali-earth metals | Ca, Sr, Be 1 | |
Non-metals | S | ||
Rhizome > Root > Leaf | Storing micronutrient | Transition metals | Ni, Mo |
Rhizome > Leaf > Root | Storing macronutrient | Non-metals | C, N, P |
Leaf > Root > Rhizome | Mobilizing micronutrient | Transition metals | Mn |
Alkali metals | Li, Na | ||
Metaloids | B | ||
Leaf > Rhizome > Root | Mobilizing labile macronutrient | Alkali metals | K |
Non-metals | Se |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, J.A. Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for Its Use in Constructed Wetlands in Areas Polluted with Heavy Metals. Sustainability 2019, 11, 19. https://doi.org/10.3390/su11010019
Blanco JA. Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for Its Use in Constructed Wetlands in Areas Polluted with Heavy Metals. Sustainability. 2019; 11(1):19. https://doi.org/10.3390/su11010019
Chicago/Turabian StyleBlanco, Juan A. 2019. "Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for Its Use in Constructed Wetlands in Areas Polluted with Heavy Metals" Sustainability 11, no. 1: 19. https://doi.org/10.3390/su11010019
APA StyleBlanco, J. A. (2019). Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for Its Use in Constructed Wetlands in Areas Polluted with Heavy Metals. Sustainability, 11(1), 19. https://doi.org/10.3390/su11010019