Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality
Abstract
1. Introduction
Literature Review
2. Materials and Methods
2.1. The Experimental Area
2.2. Sample Collection
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Grădinaru, A.C.; Petrescu-Mag, I.V.; Oroian, C.F.; Balint, C.; Oltean, I. Milk Protein Polymorphism Characterization: A Modern Tool for Sustainable Conservation of Endangered Romanian Cattle Breeds in the Context of Traditional Breeding. Sustainability 2018, 10, 534. [Google Scholar] [CrossRef]
- Idamokoro, E.M.; Muchenje, V.; Masika, P.J. Yield and Milk Composition at Different Stages of Lactation from a Small Herd of Nguni, Boer, and Non-Descript Goats Raised in an Extensive Production System. Sustainability 2017, 9, 1000. [Google Scholar] [CrossRef]
- Salimei, E. Animals that Produce Dairy Food|Donkey. In Encyclopedia of Diary Sciences, 2nd ed.; Fukuay, W.J., Ed.; Academic Press: New York, USA, 2007; pp. 365–373. ISBN 978-0-12-374407-4. [Google Scholar]
- Wszolek, M.; Filipczak-Fiutak, M.; Domagała, J. Composition and properties of donkey’s milk. Zywnosc Nauka Technologia Jakosc 2014, 1, 29–40. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and Nutraceutical Quality of Donkey Milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Cosentino, C.; Paolino, R.; Musto, M.; Freschi, P. Innovative Use of Jenny Milk from Sustainable Rearing. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Vastola, A., Ed.; Springer: Berlin, Germany, 2015; pp. 113–132. [Google Scholar]
- Bender, D.A. Dictionary of Food and Nutrition, 3rd ed.; Oxford University Press: Oxford, UK, 2014; pp. 184–186. ISBN 9780191726682. [Google Scholar]
- Godhia, M.L.; Patel, N. Colostrum—Its Composition, Benefits as a Nutraceutical: A Review. Curr. Res. Nutr. Food Sci. 2013, 1, 37–47. [Google Scholar] [CrossRef]
- Kaducu, A.F.O.; Okia, S.A.; Upenytho, G.; Elfstrand, L.; Florén, C.H. Effect of bovine colostrum-based food supplement in the treatment of HIV-associated diarrhea in Northern Uganda: A randomized controlled trial. Indian J. Gastroenterol. 2011, 30, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000, 72, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Langer, P. Differences in the composition of colostrum and milk in eutherians reflect differences in Immunoglobulin transfer. J. Mammal. 2009, 90, 332–339. [Google Scholar] [CrossRef]
- Baintner, K. Transmission of antibodies from mother to young: Evolutionary strategies in a proteolytic environment. Vet. Immunol. Immunop. 2007, 117, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Høstmark, A.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; D’Alessandro, A.G. Fat content, energy value and fatty acid profile of donkey milk during lactation and implications for human nutrition. Lipids Health Dis. 2007, 11, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Aspri, M.; Economou, N.; Papademas, P. An overview on functionality, technology, and future prospects. Food Rev. Int. 2017, 33, 316–333. [Google Scholar] [CrossRef]
- Bidasolo, I.B.; Ramos, M.; Gomez-Ruiz, J.A. In vitro simulated gastrointestinal digestion of donkeys’ milk. Peptide characterization by high performance liquid chromatography—Tandem mass spectrometry. Int. Dairy J. 2012, 24, 146–152. [Google Scholar] [CrossRef]
- Fantuz, F.; Ferraro, S.; Todini, L.; Piloni, R.; Mariani, P.; Salimei, E. Donkey milk concentration of calcium, phosphorus, potassium, sodium and magnesium. Int. Dairy J. 2012, 24, 143–145. [Google Scholar] [CrossRef]
- Guo, H.Y.; Pang, K.; Zhang, X.Y.; Zhao, L.; Chen, S.W.; Dong, M.L.; Ren, F.Z. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J. Dairy Sci. 2007, 90, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Samperi, R.; Chiozzi, R.Z.; Laganà, A. Peptidome characterization and bioactivity analysis of donkey milk. J. Proteomics 2015, 119, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Ragona, G.; Benedetti, M.; Salari, F.; Martini, M. Amiata donkey milk chain: Animal health evaluation and milk quality. Ital. J. Food Safety 2016, 5, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Trinchesea, G.; Cavalierea, G.; Cananib, R.B.; Matamorosc, S.; Bergamod, P.; De Filippoa, C.; Acetoa, S.; Gaitaa, M.; Cerinoa, P.; Negrib, R.; et al. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J. Nutr. Biochem. 2015, 26, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- FAOSTAT Data. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 15 December 2017).
- Bernabucci, U.; Basiricò, R.; Morera, P. Impact of hot environment on colostrum and milk composition. J. Cell. Mol. Biol. 2013, 59, 67–83. [Google Scholar]
- Lagat, P.; Nyangena, J. The effects of climate variability on livestock production in Kenya. J. Agric. Policy 2016, 1, 58–79. [Google Scholar]
- Smith, D.G.; Pearson, R.A. A review of factors affecting the survival of donkeys in semiarid regions of sub-Saharan Africa. Trop. Anim. Health Prod. 2005, 37, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Dwivedi, S.K.; Malik, P.; Panisup, A.S.; Tandon, S.N.; Singh, B.K. Mortality associated with heat stress in donkeys in India. Vet. Rec. 2010, 166, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Zakari, F.O.; Ayo, J.O.; Rekwot, P.I.; Kawu, M.U. Influence of season on daytime behavioral activities of donkeys in the Northern Guinea Savanna zone of Nigeria. J. Equine Sci. 2015, 26, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Zakari, F.O.; Ayo, J.O.; Kawu, M.U.; Rekwot, P.I. The effect of season and meteorological stress factors on behavioral responses and activities of donkeys (Equus asinus)—A review. Ann. Anim. Sci. 2015, 15, 307–321. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar Ajeet, B.V.; Meena, K. Effects of heat stress in tropical livestock and different strategies for its amelioration. J. Stress Physiol. Biochem. 2011, 7, 45–54. [Google Scholar]
- Pandey, N.; Kataria, N.; Kataria, A.K.; Joshi, A. Ambient stress associated variations in metabolic responses of Marwari Goat of arid tracts in India. J. Stress Physiol. Biochem. 2012, 8, 120–127. [Google Scholar]
- Algers, B.; Jensen, P. Teat stimulation and milk production during early lactation in sows: effects of continuous noise. Can. J. Anim. Sci. 1991, 71, 51–60. [Google Scholar] [CrossRef]
- Farmer, C.; Quesnel, H. Nutritional, hormonal, and environmental effects on colostrum in sows. J. Anim. Sci. 2008, 87, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Bate, L.A.; Hacker, R.R. The influence of the sow’s adrenal activity on the ability of the piglet to absorb IgG from colostrum. Can. J. Anim. Sci. 1985, 65, 77–85. [Google Scholar] [CrossRef]
- Inoue, T. Possible factors influencing immunoglobulin A concentration in swine colostrum. Am. J. Vet. Res. 1981, 42, 533–536. [Google Scholar] [PubMed]
- Coroian, A.; Miresan, V.; Odagiu, A.; Andronie, L.; Raducu, C.; Marchis, Z.; Coroian, C.O. Influence of Season on Physico-Chemical Composition of Donkey Milk from Primiparous and Multiparous. ProEnvironment 2016, 9, 400–403. [Google Scholar]
- Marchis, Z.; Negrea, O.; Stan, A.; Coroian, A.; Coroian, C.O. The influence of lactation on SCC and TNG of the donkey milk. ABAH Bioflux 2015, 72, 208–212. [Google Scholar]
- Marchis, Z.; Muresan, G.; Stan, A.; Coroian, A.; Coroian, C.O. Donkey milk chemical composition and the influence of lactation. ABAH Bioflux 2015, 7, 196–201. [Google Scholar]
- McLean, A.K. Gonzalez, F.J.N. Can Scientists Influence Donkey Welfare? Historical Perspective and a Contemporary View. J. Equine Vet. Sci. 2018, 65, 25–32. [Google Scholar] [CrossRef]
- De Paolo, P.; Maggiolino, A.; Albenzio, M.; Casalino, E.; Neglia, G.; Centoducati, G.; Tateo, A. Survey of biochemical and oxidative profile in donkey foals suckled with one natural and one semi-natural technique. PLoS ONE 2018, 13, e0198774. [Google Scholar] [CrossRef] [PubMed]
- Gastaldi, D.; Bertino, E.; Monti, G.; Baro, C.; Fabris, C.; Lezo, A.; Medana, C.; Baiocchi, C.; Mussap, M.; Galvano, F.; et al. Donkey’s milk detailed lipid composition. Front. Biosci. 2010, 2, 537–546. [Google Scholar]
- Paksoy, N.; Dinç, H.; Altun, K. Evaluation of levels of essential elements and heavy metals in milks of dairy donkeys, goats, and sheep in Turkey, Pakistan. J. Zool. 2018, 50. [Google Scholar] [CrossRef]
- Potortì, A.G.; Di Bella, G.; Turco, V.L.; Rando, R.; Dugo, G. Non-toxic and potentially toxic elements in Italian donkey milk by ICP-MS and multivariate analysis. J. Food Compost. Anal. 2013, 31, 161–172. [Google Scholar] [CrossRef]
- Brumini, D.; Furlund, C.B.; Comi, I.; Devold, T.G.; Marletta, D.; Vegarud, G.E.; Jonassen, C.M. Antiviral activity of donkey milk protein fractions on echovirus type 5. Int. Dairy J. 2013, 28, 109–111. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, L.; Jiang, L.; Dong, M.L.; Ren, F.Z. The antimicrobial activity of donkey milk and microflora changes during storage. Food Control 2008, 19, 1191–1195. [Google Scholar] [CrossRef]
- Jirillo, F.; Magrone, T. Anti-inflammatory, and anti-allergic properties of donkey’s and goats’ milk. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Daprà, V.; Zecconi, A.; Piccinini, R. Hygienic and health characteristics of donkey milk during a follow-up study. J. Dairy Res. 2010, 77, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Yvon, S.; Olier, M.; Leveque, M.; Jard, G.; Tomo, H.; Haimoud-Lekhal, D.A.; Peter, M.; Eutamène, H. Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice. Eur. J. Nutr. 2018, 57, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Gu, J.; Sun, Y.; Xu, S.; Zhang, X.; Yang, H.; Ren, F. Antiproliferative and anti-tumor effect of active components in donkey milk on A549 human lung cancer cells. Int. Dairy J. 2009, 19, 703–708. [Google Scholar] [CrossRef]
- Ozturkoglu-Budak, S. Effect of different treatments on the stability of lysozyme, lactoferrin, and β-lactoglobulinin donkey’s milk. Int. J. Dairy Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Coscia, A.; Bertino, E.; Tonetto, P.; Peila, C.; Cresi, F.; Arslanoglu, S.; Moro, G.E.; Spada, E.; Milani, S.; Giribaldi, M.; et al. Nutritional adequacy of a novel human milk fortifier from donkey milk in feeding preterm infants: Study protocol of a randomized controlled clinical trial. Nutr. J. 2018, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Souroullas, K.; Aspri, M.; Papademas, P. Donkey milk as a supplement in infant formula: Benefits and technological challenges. Food Res. Int. 2018, 109, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Monti, G.; Bertini, E.; Muratore, M.C.; Coscia, A.; Cresi, F.; Silvestrol, L.; Fabris, C.; Fortunato, D.; Giuffrida, G.M.; Conti, A. Efficacy of donkey’s milk in treating highly problematic cow’s milk allergic children: An in vivo and in vitro study. Pediatr. Allergy Immunol. 2007, 18, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Tafaro, A.; Magrone, T.; Jirillo, F.; Martemucci, G.; D’Alessandro, A.G.; Amati, L.; Jirillo, E. Immunological properties of donkey’s milk: Its potential use in the prevention of the atherosclerosis. Curr. Pharm. Des. 2007, 13, 3711–3717. [Google Scholar] [CrossRef] [PubMed]
- Criscione, A.; Cunsolo, V.; Tumino, S.; Di Francesco, A.; Bordonaro, F.; Muccilli, V.; Saletti, R.; Marletta, D. Polymorphism at donkey β-lactoglobulin II locus: Identification and characterization of a new genetic variant with a very low expression. J. Amino Acids 2018, 50, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, C.; Paolino, R.; Freschi, P.; Calluso, A. Short communication: Jenny milk production and qualitative characteristics. J. Dairy Sci. 2012, 95, 2910–2915. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Faye, B.; Konuspayeva, G. The sustainability challenge to the dairy sector—The growing importance of non-cattle milk production worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Meteoblue. Huedin. Available online: https://www.meteoblue.com/ro/vreme/prognoza/modelclimate/huedin_rom%C3%A2nia_675937 (accessed on 2 August 2018).
- Meteoblue. Zalău. Available online: https://www.meteoblue.com/ro/vreme/prognoza/modelclimate/zalau_romania_675937 (accessed on 2 August 2018).
- Exploratory Factor Analysis 2004. Available online: https://www.let.rug.nl/nerbonne/teach/rema-stats-meth-seminar/Factor-Analysis-Kootstra-04.PDF (accessed on 2 August 2018).
- Treiblmaier, H.; Filzmoser, P. Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research. Inf. Manag. 2010, 47, 197–207. [Google Scholar] [CrossRef]
- Meyer, H.; Kamphues, J. Grundlagen der Ernahrung von Neugeborenen, In Neugeborenen- und Sauglingskunde der Tiere, 2nd ed.; Walser, K., Bostedt, H., Eds.; Ferdinand Enke Verlag: Stuttgart, Germany, 1990; pp. 55–71. [Google Scholar]
- Guthrie, A.H. Introductory Nutrition, 6th ed.; Times Mirror/Mosby College Publishing: St. Louis, MI, USA, 1989; pp. 87–95. [Google Scholar]
- Park, Y.W. Minor species milk. In Handbook of Milk of Non-Bovine Mammals, 1st ed.; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 393–406. [Google Scholar]
- Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Changes in physical properties of bovine milk from the colostrum period to early lactation. J. Dairy Sci. 2007, 90, 5012–5017. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Data. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 5 August 2018).
Parameter | N | Temperature (°C) | Humidity (%) | Wind Velocity (m/s) |
---|---|---|---|---|
Mean | 7 | 12.30 | 64.43 | 8.43 |
Standard deviation | 7 | 1.19 | 8.22 | 1.70 |
Minimum | 7 | 10.00 | 56.00 | 5.00 |
Maximum | 7 | 14.00 | 74.00 | 11.00 |
Coefficient of variation | 7 | 9.67 | 12.75 | 20.16 |
Parameter | N | Fat (g/100 mL) | Protein (g/100 mL) | Lactose (g/100 mL) | Water (%) | pH |
---|---|---|---|---|---|---|
Mean | 175 | 3.77 | 2.36 | 2.35 | 86.37 | 6.96 |
Standard deviation | 175 | 0.76 | 0.28 | 0.26 | 2.12 | 0.15 |
Minimum | 175 | 1.89 | 1.47 | 1.43 | 82.50 | 6.70 |
Maximum | 175 | 4.88 | 2.75 | 2.71 | 89.10 | 7.20 |
Coefficient of variation | 175 | 20.21 | 11.95 | 11.86 | 2.46 | 2.19 |
Issue | Fat | Protein | Lactose | Unit | References |
---|---|---|---|---|---|
Human | 2.9–2.95 | 2.29–3.7 | 5.3–5.7 | g/100 mL | [39,40] |
Cow | 3.6 | 13 | 3.1 | % | [38] |
Pig | 5.8 | 10.6 | 3.4 | % | [41] |
Sheep | 12.4 | 13 | 3.4 | % | [38] |
Goat | 9 | 8 | 2.5 | % | [38] |
Issue | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 1.000 | 0.653 | 0.799 | −0.274 | 0.202 | −0.219 | 0.644 | −0.235 |
2 | 1.000 | 0.638 | −0.209 | 0.017 | −0.510 | 0.655 | −0.207 | |
3 | 1.000 | −0.331 | 0.142 | −0.140 | 0.518 | −0.149 | ||
4 | 1.000 | 0.043 | −0.090 | 0.009 | 0.033 | |||
5 | 1.000 | 0.126 | −0.163 | 0.140 | ||||
6 | 1.000 | −0.619 | 0.095 | |||||
7 | 1.000 | −0.506 | ||||||
8 | 1.000 |
Eigenvalue | Variance % | Factor | Item | Factor Loading | Communalities | Mean | SD |
---|---|---|---|---|---|---|---|
3.12 | 39.12 | Colostrum nutritional traits α = 0.74 Mean = 2.82 SD = 0.321 | Fat | 0.916 | 0.840 | 3.77 | 0.762 |
Protein | 0.818 | 0.662 | 2.36 | 0.281 | |||
Lactose | 0.801 | 0.659 | 2.35 | 0.280 | |||
1.43 | 17.99 | Environmental air traits and some colostrum nutritional traits α = 0.69 Mean = 20.89 SD = 0.915 | Air temperature | 0.751 | 0.730 | 12.85 | 1.556 |
Air relative humidity | 0.722 | 0.561 | 64.62 | 6.231 | |||
Fat | 0.689 | 0.496 | 3.77 | 0.281 | |||
Lactose | 0.614 | 0.452 | 2.35 | 0.280 | |||
1.07 | 13.45 | Climatic traits and some colostrum nutritional traits α = 0.62 Mean = 4.71 SD = 0.432 | Wind velocity | 0.722 | 0.618 | 8.02 | 2.064 |
Fat | 0.602 | 0.551 | 3.77 | 0.762 | |||
Protein | 0.582 | 0.433 | 2.36 | 0.281 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchis, Z.; Odagiu, A.; Coroian, A.; Oroian, I.; Mirza, M.; Burduhos, P. Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability 2018, 10, 2958. https://doi.org/10.3390/su10092958
Marchis Z, Odagiu A, Coroian A, Oroian I, Mirza M, Burduhos P. Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability. 2018; 10(9):2958. https://doi.org/10.3390/su10092958
Chicago/Turabian StyleMarchis, Zamfir, Antonia Odagiu, Aurelia Coroian, Ioan Oroian, Manuela Mirza, and Petru Burduhos. 2018. "Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality" Sustainability 10, no. 9: 2958. https://doi.org/10.3390/su10092958
APA StyleMarchis, Z., Odagiu, A., Coroian, A., Oroian, I., Mirza, M., & Burduhos, P. (2018). Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability, 10(9), 2958. https://doi.org/10.3390/su10092958