Evaluating Greenhouse Tomato and Pepper Input Efficiency Use in Kosovo
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Envelopment Analysis (DEA)
2.3. Regression Analysis
3. Results
3.1. Greenhous Tomato Input Use at a Farm Level
3.2. Greenhouse Tomato Input Use Comparison at a Regional Level
3.3. Greenhouse Pepper Input Use at a Farm Level
3.4. Greenhouse Pepper Input Use Comparison at a Regional Level
3.5. Linear Regression Implications
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Judah, T. Kosovo: What Everyone Needs to Know; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Sauer, J.; Davidova, S.; Latruffe, L. Determinants of smallholders’ decisions to leave land fallow: The case of Kosovo. J. Agric. Econ. 2012, 63, 119–141. [Google Scholar] [CrossRef]
- Zuzaku, A. Marketing research is path towards the development of agriculture in Kosovo. In Economic and Social Development: Book of Proceedings; Varazdin Development and Entrepreneurship Agency: Varazdin, Croatia, 2014; pp. 488–496. [Google Scholar]
- Alboghdady, M.A. nonparametric model for measuring impact of inputs density on Egyptian tomato production efficiency. Int. J. Food Agric. Econ. 2014, 2, 81–90. [Google Scholar]
- Nikolla, M.; Meco, M.; Bou Dib, J.; Belegu, M.; Qinami, I.; Dulja, X.; Kadiu, E. Increasing the efficiency of the Albanian agricultural farms using the DEA model. J. Food Agric. Environ. 2013, 11, 1286–1290. [Google Scholar]
- Kaciu, S.; Babaj, I.; Aliu, S.; Demaj, I. Potential of protected vegetable production in Kosovo and future perspectives. Acta Hortic. 2016, 1142, 461–466. [Google Scholar] [CrossRef]
- Toloo, M.; Salahi, M. A powerful discriminative approach for selecting the most efficient unit in DEA. Comput. Ind. Eng. 2018, 115, 269–277. [Google Scholar] [CrossRef]
- Banker, R.D.; Cooper, W.W.; Charnes, A. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Banker, R.D.; Cooper, W.W.; Seiford, L.M.; Thrall, R.M.; Zhu, J. Returns to scale in different DEA models. Eur. J. Oper. Res. 2004, 154, 345–362. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Korhonen, P.; Joro, T. Extension of Data Envelopment Analysis with Preference Information: Value Efficiency; Springer: Berlin, Germany, 2015. [Google Scholar]
- Tomek, W.G.; Kaiser, H.M. Agricultural Product Prices; Cornell University Press: Ithaca, NY, USA, 2014. [Google Scholar]
- Khan, S.A.M.N.; Ramli, R.; Baten, M.D. A slack based enhanced DEA model with undesirable outputs for rice growing farmers efficiency measurement. Int. J. Supply Chain Manag. 2018, 7, 194–200. [Google Scholar]
- Kaciu, S.; Horticultural Promotion in Kosovo (HPK). Project Funded by the Governments of Switzerland and Denmark. Available online: http://helvetas-ks.org/documentation/technical_reports/Study_of_the_current_situation_of_pepper_production_in_Kosovo_HPK_Prishtina_35.pdf (accessed on 2 August 2018).
- Zalkuw, J.; Singh, R.; Pardhi, R.; Gangwar, A. Analysis of technical efficiency of tomato production in Adamawa State, Nigeria. Int. J. Agric. Environ. Biotechnol. 2014, 7, 645–650. [Google Scholar] [CrossRef]
- Thimmareddy, K.; Desai, B.; Vinoda Kumar, S. Uptake of NPK, availability of NPK and quality parameters of Bt cotton (‘Gossypium hirsutum’ L.) as influenced by different bio-fertilizers and ‘In-situ’ green manuring under Irrigation. Int. J. Agric. Environ. Biotechnol. 2013, 6, 623–628. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Mader, P.; FlieBbach, A.; Dubois, D.; Gunst, L.; Padrout, F.; Urs, N. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Sohail, L. Effect of Organic Fertilizer on Plant Performance in Greenhouse Vegetable Production. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2008. [Google Scholar]
- Heeb, A.; Lundegårdh, B.; Savage, G.; Ericsson, T. Impact of organic and inorganic fertilizers on yield, taste, and nutritional quality of tomatoes. J. Plant Nutr. Soil Sci. 2006, 169, 535–541. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2002. [Google Scholar]
- Li, N.; Jiang, Y.; Yu, Z.; Shang, L. Analysis of agriculture total-factor energy efficiency in China based on DEA and malmquist indices. Energy Procedia 2017, 142, 2397–2402. [Google Scholar] [CrossRef]
- Bowen, B.H.; Myers, J.A.; Myderrizi, A.; Hasaj, B.; Halili, B. Kosovo Household Energy Consumption Facts and Figures. Available online: https://www.rit.edu/research/cenr/kosovo-household-energy-consumption-facts-and-figures-0 (accessed on 2 August 2018).
- Ministry of Economic Development. Energy Strategy of the Republic of Kosovo 2017–2026. Ministry of Economic Development, 2017. Available online: https://mzhe-ks.net/repository/docs/Kosovo_Energy_Strategy_2017_-_26.pdf (accessed on 2 August 2018).
- Rodriguez, J.C.; Shaw, N.L.; Cantliffe, D.J. Influence of plant density on yield and fruit quality of greenhouse-grown Galia muskmelons. HortTechnology 2007, 17, 580–585. [Google Scholar]
- Haile, M.G.; Kalkuhl, M.; Usman, M.A. Market information and smallholder farmer price expectations. Afr. J. Agric. Resour. Econ. 2015, 10, 297–311. [Google Scholar]
- Jaleta, M.; Gardebroek, C. Farm-gate tomato price negotiations under asymmetric information. Agric. Econ. 2007, 36, 245–251. [Google Scholar] [CrossRef]
- Barry, P.J.; Hopkin, J.A.; Baker, C.B. Financial Management in Agriculture; Interstate Printers and Publishers: Danville, IL, USA, 1988. [Google Scholar]
- El Benni, N.; Finger, R.; Mann, S. The effect of agricultural policy change on income risk. In Proceedings of the 123rd EAAE Seminar, Dublin, Ireland, 23–24 February 2012. [Google Scholar]
- Blank, S.C.; Erickson, K.W. Agricultural household hedging with off-farm income. West. Econ. Forum 2007, 6, 1–13. [Google Scholar]
- Li, L.; Wu, W.; Giller, P.; O’Halloran, J.; Liang, L.; Peng, P.; Zhao, G. Open accesslife cycle assessment of a highly diverse vegetable multi-cropping system in Fengqiu county, China. Sustainability 2018, 10, 983. [Google Scholar] [CrossRef]
- Błażejczyk-Majka, L.; Kala, R.; Maciejewski, K. Productivity and efficiency of large and small field crop farms and mixed farms of the old and new EU regions. Agric. Econ. 2012, 58, 61–71. [Google Scholar] [CrossRef]
- Ahearn, M.; Sterns, J. Direct-to-consumer sales of farm products: Producers and supply chains in the Southeast. J. Agric. Appl. Econ. 2013, 45, 497–508. [Google Scholar] [CrossRef]
- Sephton, P.S. Spatial arbitrage in Sarawak pepper prices. Can. J. Agric. Econ. 2010, 59, 405–416. [Google Scholar] [CrossRef]
- Huang, C.L.; Lin, B.H. A hedonic analysis of fresh tomato prices among regional markets. Rev. Agric. Econ. 2007, 29, 783–800. [Google Scholar] [CrossRef]
- Provenzano, G.; Cots, L.; Monserrat, J.; Autovino, D.; Barragán, J. Determining optimal seasonal irrigation depth based on field irrigation uniformity and economic evaluations: Application for onion crop. J. Irrig. Drain. Eng. 2016, 142, 1943–4774. [Google Scholar]
- Barragan, J.; Cots, L.; Monserrat, J.; Lopez, R.; Wu, I.P. Water distribution uniformity and scheduling in micro-irrigation systems for water saving and environmental protection. Biosyst. Eng. 2010, 107, 202–211. [Google Scholar] [CrossRef]
- Caswell, M.F.; Zilberman, D. The effects of well depth and land quality on the choice of irrigation technology. Am. J. Agric. Econ. 1986, 68, 798–811. [Google Scholar] [CrossRef]
- Balliu, A.; Kaçiu, S. Potential of the Greenhouse Industry in Kosovo. 2008. Available online: https://www.researchgate.net/profile/Astrit_Balliu2/publication/312095699_Potential_of_the_greenhouse_industry_in_Kosovo/links/586f7d2508ae6eb871bf5620/Potential-of-the-greenhouse-industry-in-Kosovo.pdf (accessed on 2 August 2018).
- Balcombe, K.; Fraser, I.; Rahman, M.; Smith, L. Examining the technical efficiency of rice producers in Bangladesh. J. Int. Dev. 2006, 19, 1–16. [Google Scholar] [CrossRef]
- Theodoridis, A.M.; Anwar, M.M. A comparison of DEA and SFA methods: A case study of farm households in Bangladesh. J. Dev. Areas 2011, 45, 95–110. [Google Scholar] [CrossRef]
- Coelli, T.; Rahman, S.; Thirtle, C. Technical, allocative, cost and scale efficiencies in Bangladesh rice cultivation: A non-parametric approach. J. Agric. Econ. 2002, 53, 607–626. [Google Scholar] [CrossRef]
- United Nations, Food and Agriculture Organization. Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries: Principles for Sustainable Intensification of Smallholder Farms; United Nations, Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Kosovo Report 2006. Available online: https://ec.europa.eu/agriculture/sites/agriculture/files/external-studies/2006/applicant/kosovo_en.pdf (accessed on 2 August 2018).


| Choice of Variables | Description |
|---|---|
| Tomato/pepper variables (X) | |
| 1 = for a crop nutrition training need, 0 = otherwise | |
| 1 = electricity as the power source, 0 = for fuel | |
| Number of tomato/pepper rows per greenhouse | |
| Wholesale price per kilogram of tomatoes/peppers | |
| 1 = for having external revenue, 0 = otherwise | |
| 1 = for other greenhouse crops grown, 0 = otherwise | |
| Farmer market price per kilogram of tomatoes/peppers | |
| Well depth in meters | |
| Irrigation equipment value in euros | |
| Education in years | |
| Number of family members | |
| Tomato/pepper dependent variable (y) | |
| T/PDEP | Tomato/pepper technical efficiency scores |
| BCC Input-Oriented Efficiency | CCR Input-Oriented Efficiency | ||||
|---|---|---|---|---|---|
| E Range | # of farms | % | E Range | # of farms | % |
| 0.2 ≤ E < 0.3 | 1 | 1.1 | 0.1 ≤ E < 0.2 | 7 | 7.4 |
| 0.3 ≤ E < 0.4 | 1 | 1.1 | 0.2 ≤ E < 0.3 | 29 | 30.9 |
| 0.4 ≤ E < 0.5 | 9 | 9.6 | 0.3 ≤ E < 0.4 | 14 | 14.9 |
| 0.5 ≤ E < 0.6 | 15 | 16.0 | 0.4 ≤ E < 0.5 | 12 | 12.8 |
| 0.6 ≤ E < 0.7 | 15 | 16.0 | 0.5 ≤ E < 0.6 | 7 | 7.4 |
| 0.7 ≤ E < 0.8 | 11 | 11.7 | 0.6 ≤ E < 0.7 | 5 | 5.3 |
| 0.8 ≤ E < 0.9 | 7 | 7.4 | 0.7 ≤ E < 0.8 | 2 | 2.1 |
| 0.9 ≤ E < 1 | 4 | 4.3 | 0.8 ≤ E < 0.9 | 1 | 1.1 |
| E = 1 | 31 | 33.0 | 0.9 ≤ E < 1 | 2 | 2.1 |
| E = 1 | 15 | 16.1 | |||
| Total | 94 | 100.2 | 94 | 100.1 | |
| SE (N = 15) | DRS (N = 79) | ||||
|---|---|---|---|---|---|
| Materials | Unit | Mean | CV | Mean | CV |
| Inputs | |||||
| Insecticide | liter | 107 | 1.51 | 157 | 1.25 |
| Labor | days | 70 | 0.40 | 96 | 0.27 |
| Greenhouse area | m2 | 955 | 1.16 | 644 | 0.96 |
| Greenhouse value | euro | 16,733 | 1.66 | 14,191 | 1.20 |
| Planting phase fertilizer: | |||||
| Organic | kg | 5433 | 1.24 | 7058 | 1.05 |
| Artificial | kg | 23 | 1.61 | 47 | 2.91 |
| Flowering phase fertilizer: | |||||
| Crystalline | kg | 12 | 6.5 | 36 | 1.22 |
| Artificial | kg | 0 | 0 | 21 | 2.10 |
| Output | |||||
| Yield | kg | 20,673 | 0.78 | 7756 | 0.98 |
| BCC Input-Oriented Efficiency | CCR Input-Oriented Efficiency | ||||
|---|---|---|---|---|---|
| E Range | # of farms | % | E Range | # of farms | % |
| 0.3 ≤ E < 0.4 | 1 | 2.4 | 0.1 ≤ E < 0.2 | 1 | 2.4 |
| 0.4 ≤ E < 0.5 | 0 | 0.0 | 0.2 ≤ E < 0.3 | 4 | 9.5 |
| 0.5 ≤ E < 0.6 | 1 | 2.4 | 0.3 ≤ E < 0.4 | 4 | 9.5 |
| 0.6 ≤ E < 0.7 | 1 | 2.4 | 0.4 ≤ E < 0.5 | 6 | 14.3 |
| 0.7 ≤ E < 0.8 | 7 | 16.7 | 0.5 ≤ E < 0.6 | 1 | 2.4 |
| 0.8 ≤ E < 0.9 | 6 | 14.3 | 0.6 ≤ E < 0.7 | 6 | 14.3 |
| 0.9 ≤ E < 1 | 4 | 9.5 | 0.7 ≤ E < 0.8 | 5 | 11.9 |
| E = 1 | 22 | 52.4 | 0.8 ≤ E < 0.9 | 2 | 4.8 |
| 0.9 ≤ E < 1 | 2 | 4.8 | |||
| E = 1 | 11 | 26.2 | |||
| Total | 42 | 100.1 | 42 | 100 | |
| SE (N = 11) | IRS (N = 3) | DRS (N = 28) | |||||
|---|---|---|---|---|---|---|---|
| Materials | Unit | Mean | CV | Mean | CV | Mean | CV |
| Inputs | |||||||
| Insecticide | l | 100 | 1.26 | 67 | 1.72 | 119 | 1.13 |
| Labor | days | 80 | 0.19 | 82 | 0.22 | 90 | 0.24 |
| Greenhouse area | m2 | 745 | 0.57 | 383 | 0.08 | 624 | 0.58 |
| Planting phase fertilizer: | |||||||
| Organic | kg | 7227 | 0.28 | 8867 | 0.12 | 7100 | 0.78 |
| Flowering phase fertilizer: | |||||||
| Crystalline | kg | 12 | 1.83 | 39 | 0.92 | 24 | 0.96 |
| Artificial | kg | 55 | 1.85 | 0 | 0 | 41 | 1.56 |
| Output | |||||||
| Yield | kg | 7241 | 0.57 | 2967 | 0.66 | 3810 | 0.81 |
| Greenhouse Tomato Model | Greenhouse Pepper Model | |||||||
|---|---|---|---|---|---|---|---|---|
| 95% CI | 95% CI | |||||||
| Variable | β | SE | Lower | Upper | β | SE | Lower | Upper |
| Crop nutrition training | −0.144 * | (0.074) | −0.288 | 0.001 | ||||
| Power source (electricity or fuel) | −0.188 *** | (0.053) | −0.292 | −0.084 | ||||
| Rows per greenhouse | 0.012 *** | (0.004) | 0.005 | 0.019 | ||||
| Wholesale price per kg | −0.364 ** | (0.169) | −0.694 | −0.033 | ||||
| External revenue | −0.015 | (0.083) | −0.177 | 0.148 | ||||
| Farmer market price per kg | 0.044 | (0.062) | −0.077 | 0.166 | ||||
| Other crops grown | −0.145 *** | (0.050) | −0.244 | −0.047 | ||||
| Well depth in meters | 0.023 | (0.014) | −0.004 | 0.050 | ||||
| Irrigation in euro value | −0.0001 | (0.0001) | −0.0003 | 0.00003 | 0.0005 ** | (0.0002) | 0.0001 | 0.0009 |
| Education in years | −0.017 * | (0.009) | −0.034 | −0.0001 | 0.007 | (0.014) | −0.021 | 0.034 |
| Family members | 0.005 | (0.007) | −0.007 | 0.018 | −0.054 *** | (0.017) | −0.087 | −0.020 |
| (Constant) | 0.802 *** | (0.145) | 0.905 *** | (0.290) | ||||
| Observations | 94 | 42 | ||||||
| R2 | 0.309 | 0.462 | ||||||
| Adjusted R2 | 0.252 | 0.351 | ||||||
| Residual Std. Error | 0.248 (df = 86) | 0.224 (df = 34) | ||||||
| F Statistic | 5.484 *** (df = 7; 86) | 4.173 *** (df = 7; 34) | ||||||
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frangu, B.; Popp, J.S.; Thomsen, M.; Musliu, A. Evaluating Greenhouse Tomato and Pepper Input Efficiency Use in Kosovo. Sustainability 2018, 10, 2768. https://doi.org/10.3390/su10082768
Frangu B, Popp JS, Thomsen M, Musliu A. Evaluating Greenhouse Tomato and Pepper Input Efficiency Use in Kosovo. Sustainability. 2018; 10(8):2768. https://doi.org/10.3390/su10082768
Chicago/Turabian StyleFrangu, Blend, Jennie Sheerin Popp, Michael Thomsen, and Arben Musliu. 2018. "Evaluating Greenhouse Tomato and Pepper Input Efficiency Use in Kosovo" Sustainability 10, no. 8: 2768. https://doi.org/10.3390/su10082768
APA StyleFrangu, B., Popp, J. S., Thomsen, M., & Musliu, A. (2018). Evaluating Greenhouse Tomato and Pepper Input Efficiency Use in Kosovo. Sustainability, 10(8), 2768. https://doi.org/10.3390/su10082768
