Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of the Seaweeds
2.2. Preparation of Extracts
2.3. Antibacterial Activity Assay
2.3.1. Bacterial Strains
2.3.2. Antibacterial Activity by Disc Diffusion Assay
2.4. Crabs Stock and Pathogen Challenge
2.5. Immunological Analysis of the Crab Hemolymph
2.5.1. Total Hemocyte Count (THC) Assay
2.5.2. Prophenoloxidase (proPO) Assay
2.5.3. Superoxide Dismutase (SOD) Assay
2.6. Statistical Analysis
3. Results
3.1. Extraction of the Seaweeds
3.2. Antibacterial Activities of Seaweed Extracts
3.3. Effect of the Seaweed Extract on the Crabs Infected by WSSV
3.4. Immunological Parameters
3.4.1. Total Hemocyte Count (THC)
3.4.2. Prophenoloxidase (proPO) Activity
3.4.3. SOD Activity
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture in 2016: Contributing to the Full Realization of Food and Nutrition Security; FAO: Rome, Italy, 2016; p. 50. [Google Scholar]
- Ireland, C.M.; Copp, B.R.; Foster, M.P.; McDonald, L.A.; Radisky, D.C.; Swersey, J.C. Biomedical Potential of Marine Natural Products. In Pharmaceutical and Bioactive Natural Products; Springer: Boston, MA, USA, 1993; pp. 1–43. [Google Scholar]
- Mayer, A.M.; Hamann, M.T. Marine pharmacology in 1999: Compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 132, 315–339. [Google Scholar] [PubMed]
- Balboa, E.M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 2013, 138, 1764–1785. [Google Scholar] [CrossRef] [PubMed]
- Dias, P.F.; Siqueira, J.M., Jr.; Vendruscolo, L.F.; de Jesus Neiva, T.; Gagliardi, A.R.; Maraschin, M.; Ribeiro-do-Valle, R.M. Antiangiogenic and antitumoral properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum. Cancer Chemother. Pharmacol. 2005, 56, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, K.; Zhou, C.; Liu, J.; Zeng, X. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem. 2008, 111, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.W.; Cardellina, J.H.; Kato, Y.; Brinen, L.S.; Clardy, J.; Snader, K.M.; Boyd, M.R. A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J. Med. Chem. 1992, 35, 3007–3011. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Pujol, C.A.; Damonte, E.B.; Sinha, S.; Ray, B. Sulfated xylomannans from the red seaweed Sebdenia polydactyla: Structural features, chemical modification and antiviral activity. Antivir. Chem. Chemother. 2009, 19, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Plouguerné, E.; de Souza, L.M.; Sassaki, G.L.; Cavalcanti, J.F.; Villela Romanos, M.T.; da Gama, B.A.; Pereira, R.C.; Barreto-Bergter, E. Antiviral Sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Mar. Drugs 2013, 11, 4628–4640. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wang, A.; Lu, Z.; Qin, C.; Hu, J.; Yin, J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr. Res. 2017, 453–454, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.R.; Robaina, M.C.S.; Mendes, G.S.; Silva, T.S.L.; Gestinari, L.M.S.; Pamplona, O.S.; Yoneshigue-Valentin, Y.; Kaiser, C.R.; Romanos, M.T.V. Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Rev. Bras. Farmacogn. 2012, 22. [Google Scholar] [CrossRef]
- Pinto, A.M.V.; Leite, J.P.G.; Ferreira, W.J.; Cavalcanti, D.N.; Villaça, R.C.; Giongo, V.; Teixeira, V.L.; Paixão, I.C.N.D. Marine natural seaweed products as potential antiviral drugs against Bovine viral diarrhea virus. Rev. Bras. Farmacogn. 2012, 22. [Google Scholar] [CrossRef]
- Rosell, K.G.; Srivastava, L.M. Fatty acids as antimicrobial substances in brown algae. Hydrobiologia 1987, 151, 471–475. [Google Scholar] [CrossRef]
- Kurihara, H.; Goto, Y.; Aida, M.; Hosokawa, M.; Takahashi, K. Antibacterial activity against cariogenic bacteria and inhibition of insoluble glucan production by free fatty acids obtained from dried Gloiopeltis furcata. Fish. Sci. 1999, 65, 129–132. [Google Scholar] [CrossRef]
- Xu, N.; Fan, X.; Yan, X.; Li, X.; Niu, R.; Tseng, C.K. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 2003, 62, 1221–1224. [Google Scholar] [CrossRef]
- Sandsdalen, E.; Haug, T.; Stensvåg, K.; Styrvold, O.B. The antibacterial effect of a polyhydroxylated fucophlorethol from the marine brown alga, Fucus vesiculosus. World J. Microbiol. Biotechnol. 2003, 19, 777–782. [Google Scholar] [CrossRef]
- Elshouny, W.; Gaafar, R.; Ismail, G.; Elzanaty, M. Seasonal variation of the antibacterial activity of some seaweeds against multi drug resistant pathogenic bacterial strains. Egypt. J. Exp. Biol. (Bot.) 2017, 13, 341–351. [Google Scholar] [CrossRef]
- Smyrniotopoulos, V.; Vagias, C.; Rahman, M.M.; Gibbons, S.; Roussis, V. Brominated diterpenes with antibacterial activity from the red alga Sphaerococcus coronopifolius. J. Nat. Prod. 2008, 71, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Vairappan, C.S.; Suzuki, M.; Ishii, T.; Okino, T.; Abe, T.; Masuda, M. Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 2008, 69, 2490–2494. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Lipton, A.P.; Paulraj, R.; Chakraborty, R.D. Guaiane sesquiterpenes from seaweed Ulva fasciata Delile and their antibacterial properties. Eur. J. Med. Chem. 2010, 45, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Wang, R.; Paul, V.J.; Luesch, H. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2-ARE pathway. Free Radic. Biol. Med. 2013, 57, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Pinteus, S.; Silva, J.; Alves, C.; Horta, A.; Fino, N.; Rodrigues, A.I.; Mendes, S.; Pedrosa, R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 2017, 218, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Cortés, Y.; Hormazábal, E.; Leal, H.; Urzúa, A.; Mutis, A.; Parra, L.; Quiroz, A. Novel antimicrobial activity of a dichloromethane extract obtained from red seaweed Ceramium rubrum (Hudson) (Rhodophyta: Florideophyceae) against Yersinia ruckeri and Saprolegnia parasitica, agents that cause diseases in salmonids. Electron. J. Biotechnol. 2014, 17, 126–131. [Google Scholar] [CrossRef]
- Bansemir, A.; Blume, M.; Schröder, S.; Lindequist, U. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 2006, 252, 79–84. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Vijayakumar, S.; Mukherjee, A.; Chandrasekaran, N.; Thomas, J. Antioxidant and antibacterial activity of Chaetomorpha antennina against shrimp pathogen Vibrio parahaemolyticus. Aquaculture 2014, 433, 467–475. [Google Scholar] [CrossRef]
- Lo, C.F.; Ho, C.H.; Peng, S.E.; Chen, C.H.; Hsu, H.C.; Chiu, Y.L.; Chang, C.F.; Liu, K.F.; Su, M.S.; Wang, C.H.; et al. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis. Aquat. Org. 1996, 27, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Chakraborty, A.; Joseph, B.; Otta, S.K.; Karunasagar, I.; Karunasagar, I. Detection of new hosts for white spot syndrome virus of shrimp using nested polymerase chain reaction. Aquaculture 2001, 198, 1–11. [Google Scholar] [CrossRef]
- Lin, Y.; Yeh, S.; Li, C.; Chen, L.; Cheng, A.; Chen, J. An immersion of Gracilaria tenuistipitata extract improves the immunity and survival of white shrimp Litopenaeus vannamei challenged with white spot syndrome virus. Fish Shellfish Immunol. 2011, 31, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Sirirustananun, N.; Chen, J.; Lin, Y.; Yeh, S.; Liou, C.; Chen, L.; Sim, S.S.; Chiew, S.L. Dietary administration of a Gracilaria tenuistipitata extract enhances the immune response and resistance against Vibrio alginolyticus and white spot syndrome virus in the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2011, 31, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, S.; Manasi, K.; Vinodhini, S.; Vidhya, G.; Hemalatha, K.; Sudhakaran, R. Confirmation of Anti-WSSV activity from Red Algae Hypnae spinella in freshwater crab Paratelphusa hydrodomous. Int. J. ChemTech Res. 2014, 8, 4022–4026. [Google Scholar]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Sousa-Pinto, A.H.B.A. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Neori, A.; Guttman, L. The sea urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture 2018, 260–269. [Google Scholar] [CrossRef]
- Kang, Y.H.; Shin, J.A.; Kim, M.S.; Chung, I.K. A preliminary study of the bioremediation potential of Codium fragile applied to seaweed integrated multi-trophic aquaculture (IMTA) during the summer. J. Appl. Phycol. 2008, 20, 183–190. [Google Scholar] [CrossRef]
- Sun, J.; Yu, H.; Chen, W. Records of benthic seaweeds in Zhejiang. J. Zhejiang Ocean Univ. (Nat. Sci.) 2006, 3, 312–321. [Google Scholar]
- Zhang, W.; Duan, X.; Huang, H.; Zhang, Y.; Wang, B. Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae). J. Appl. Phycol. 2007, 19, 97–108. [Google Scholar] [CrossRef]
- Alghazeer, R.; Whida, F.; Abduelrhman, E.; Gammoudi, F.; Azwai, S. Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya. Nat. Sci. 2013, 5, 7–14. [Google Scholar] [CrossRef]
- Zaid, S.A.A.L.; Abdel-Wahab, K.S.E.D.; Nermine, A. Screening for Antiviral activities of aqueous extracts of some egyptian seaweeds. Egypt. J. Hosp. Med. 2016, 430–435. [Google Scholar] [CrossRef]
- Bouhlal, R.; Riadi, H.; Lopez, J.M.; Bourgougnon, N. The antibacterial potential of the Seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean Coast of Morocco. Afr. J. Biotechnol. 2010, 9, 6365–6372. [Google Scholar]
- Sun, B.; Quan, H.; Zhu, F. Dietary chitosan nanoparticles protect crayfish Procambarus clarkii against white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol. 2016, 54, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wang, Z.; Wang, Z.; Ma, X.; Zhu, F. A proteomic study of hemocyte proteins from mud crab (Scylla paramamosain) infected with white spot syndrome virus (WSSV) or Vibrio alginolyticus. Front. Immunol. 2017, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, B.; Zhu, F. Epigallocatechin-3-gallate inhibit replication of white spot syndrome virus in Scylla paramamosain. Fish Shellfish Immunol. 2017, 67, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Levesque, R. SPSS Programming and Data Management: A Guide for SPSS and SAS Users; SPSS: Chicago, IL, USA, 2006. [Google Scholar]
- González Del Val, A.; Platas, G.; Basilio, A.; Cabello, A.; Gorrochategui, J.; Suay, I.; Vicente, F.; Portillo, E.; Jiménez Del Río, M.; Reina, G.G.; et al. Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int. Microbiol. 2001, 4, 35. [Google Scholar] [PubMed]
- Etahiri, S.; Bultel-Poncé, V.; Elkouri, A.E.; Assobhei, O.; Zaoui, D.; Guyot, M. Antibacterial activities of marine algae from the atlantic coast of morocco. Mar. Life 2003, 13, 3–9. [Google Scholar]
- Morales, J.L.; Cantillo-Ciau, Z.O.; Sánchez-Molina, I.; Mena-Rejón, G.J. Screening of antibacterial and antifungal activities of six marine macroalgae from coasts of Yucatán Peninsula. Pharm. Biol. 2008, 44, 632–635. [Google Scholar] [CrossRef]
- Stirk, W.A.; Reinecke, D.L.; van Staden, J. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J. Appl. Phycol. 2007, 19, 271–276. [Google Scholar] [CrossRef]
- Lee, J.; Eom, S.; Lee, E.; Jung, Y.; Kim, H.; Jo, M.; Son, K.; Lee, H.; Kim, J.H.; Lee, M.; et al. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 2014, 29, 47–55. [Google Scholar] [CrossRef]
- Ogasawara, K.; Yamada, K.; Hatsugai, N.; Imada, C.; Nishimura, M. Hexose oxidase-mediated hydrogen peroxide as a mechanism for the antibacterial activity in the red seaweed Ptilophora subcostata. PLoS ONE 2016, 11, e0149084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, F.M.E.; Deyab, M.A. Evaluation of antibacterial activity of the brown Seaweed Turbinaria ornata (Turner) J. Agardh from Egypt. J. Coast. Life Med. 2016, 4, 603–607. [Google Scholar] [CrossRef]
- Salvador, N.; Gómez Garreta, A.; Lavelli, L.; Ribera, M.A. Antimicrobial activity of Iberian macroalgae. Sci. Mar. 2007, 71, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Nakano, T.; Hashimoto, M.; Kanekiyo, K.; Hayashi, T. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int. Immunopharmacol. 2008, 8, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lim, J.; Sohn, E.; Choi, Y.; Han, E. Growth-inhibitory effect of a fucoidan from brown seaweed Undaria pinnatifida on Plasmodium parasites. Parasitol. Res. 2009, 104, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Cen, Y.; Wang, L.; Ma, X.; Xu, S.; Zhang, M.; Wang, Y. Antivirus effects of polysaccharides from Sargassum fusiforme in vitro. Chin. J. Pathophysiol. 2004, 20, 765–768. [Google Scholar]
- Arts, J.A.J.; Taverne-Thiele, A.J.; Savelkoul, H.F.J.; Rombout, J.H.W.M. Haemocyte reactions in WSSV immersion infected Penaeus monodon. Fish Shellfish Immunol. 2007, 23, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Chen, J. The immunostimulatory effect of hot-water extract of Gracilaria tenuistipitata on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol. 2005, 19, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Wongprasert, K.; Rudtanatip, T.; Praiboon, J. Immunostimulatory activity of sulfated galactans isolated from the red seaweed Gracilaria fisheri and development of resistance against white spot syndrome virus (WSSV) in shrimp. Fish Shellfish Immunol. 2014, 36, 52–60. [Google Scholar] [CrossRef] [PubMed]
Seaweeds/Antibiotic | Zone of Inhibition (mm) | ||||
---|---|---|---|---|---|
E. coli | P. aeruginosa | V. alginolyticus | A. hydrophila | S. aureus | |
U. pertusa | 7.00 ± 0.00 | n.a. | n.a. | 9.50 ± 0.71 | 10.00 ± 0.00 |
U. prolifera | n.a. | n.a. | 9.00 ± 1.00 | 12.25 ± 1.77 | 7.67 ± 0.29 |
G. furcata | 7.00 ± 0.00 | n.a. | n.a. | 8.50 ± 0.00 | 10.83 ± 0.58 |
G. lemaneiformis | n.a. | n.a. | 10.33 ± 1.15 | 8.50 ± 0.71 | 12.50 ± 0.87 |
I. okamurae | 9.00 ± 1.41 | n.a. | n.a. | 9.75 ± 1.77 | 7.33 ± 0.58 |
S. fusiforme | 10.00 ± 1.00 | 7.75 ± 0.5 | n.a. | 7.50 ± 0.71 | 10.83 ± 0.29 |
Chloramphenicol | 22.67 ± 1.53 | 9.17 ± 0.29 | n.a | 20.00 ± 1.41 | 32.33 ± 1.53 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Sun, S.; Pu, X.; Yang, Y.; Zhu, F.; Zhang, S.; Xu, N. Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China. Sustainability 2018, 10, 2158. https://doi.org/10.3390/su10072158
Li Y, Sun S, Pu X, Yang Y, Zhu F, Zhang S, Xu N. Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China. Sustainability. 2018; 10(7):2158. https://doi.org/10.3390/su10072158
Chicago/Turabian StyleLi, Yong, Siqi Sun, Xiaowei Pu, Yuzhe Yang, Fei Zhu, Shouyu Zhang, and Nianjun Xu. 2018. "Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China" Sustainability 10, no. 7: 2158. https://doi.org/10.3390/su10072158
APA StyleLi, Y., Sun, S., Pu, X., Yang, Y., Zhu, F., Zhang, S., & Xu, N. (2018). Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China. Sustainability, 10(7), 2158. https://doi.org/10.3390/su10072158