Spatio-Temporal Features of Urban Heat Island and Its Relationship with Land Use/Cover in Mountainous City: A Case Study in Chongqing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Image Pro-Processing
2.3. Derivation of LST and Improvement of the Parameters
2.3.1. Determination of the Land Surface Emissivity (ε)
2.3.2. Determination of Atmospheric Transmittance (τ)
2.3.3. Determination of Effective Mean Atmospheric Temperature (Ta)
3. Results
3.1. Retrieval Accuracy Validation of LST Based on Satellite-Ground Synchronous Experiment
3.2. Spatio-Temporal Features of UHI
3.3. Relationship between LST and NDVI
3.4. Relationship between UHI and Urban Expansion
3.5. Relationship between UHI and Land Use/Cover
3.6. Mitigating Effects of Different Urban Green Spaces on UHI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhao, L.H.; Mochida, A. Urban heat island simulations in Guangzhou, China, using the coupled WRF/UCM model with a Land use map extracted from remote sensing data. Sustainability 2016, 8, 628. [Google Scholar] [CrossRef]
- Liu, K.; Su, H.B.; Zhang, L.F.; Yang, H.; Zhang, R.H.; Li, X.K. Analysis of the urban heat island effect in Shijiazhuang, China using satellite and airborne data. Remote Sens. 2015, 7, 4804–4833. [Google Scholar] [CrossRef]
- Wang, W.C.; Zeng, Z.M.; Thomas, R.K. Urban heat islands in China. Geophys. Res. Lett. 1990, 17, 2377–2380. [Google Scholar] [CrossRef]
- Weng, Q.H.; Yang, S.H. Managing the adverse thermal effects of urban development in a densely populated Chinese city. J. Environ. Manag. 2004, 70, 145–156. [Google Scholar] [CrossRef]
- Gedzelman, S.D.; Austin, S.; Cermak, R. Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol. 2003, 75, 29–42. [Google Scholar]
- Weng, Q. A Remote Sensing-GIS evaluation of urban expansion and its impact on surface temperature in Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar]
- Ogashawara, I.; Bastos, V. A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sens. 2012, 4, 3596–3618. [Google Scholar] [CrossRef]
- Xu, M.; Qin, Z.H.; Zhu, Y. Spatial and temporal analysis of urban heat island in Suzhou City by remote sensing. Sci. Geogr. Sin. 2009, 29, 529–534. (In Chinese) [Google Scholar]
- Priyadarsini, R.; Hien, W.K.; Wai David, C.K. Microclimatic modeling of the urban thermal environment of Singapore to mitgate urban heat island. Sol. Energy 2008, 82, 727–745. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Qian, L.X.; Ding, S.Y. Influence of land cover change on land surface temperature in Zhujiang Delta. Acta Geogr. Sin. 2005, 60, 761–770. (In Chinese) [Google Scholar]
- Zhao, S.Y.; Du, J.; Song, K.S.; Hu, X.L. A study on urban thermal field of Changchun city in summer based on satellite remote sensing. Sci. Geogr. Sin. 2006, 26, 70–74. (In Chinese) [Google Scholar]
- Li, H.; Liu, Q.H.; Zou, J. Relationship of LST to NDBI and NDVI in Changsha-Zhuzhou-Xiangtan area based on MODIS data. Sci. Geogr. Sin. 2009, 29, 262–267. (In Chinese) [Google Scholar]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounou, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Gallo, K.P.; McNab, A.L.; Karl, T.R.; Brown, J.F.; Hood, J.J.; Tarpley, J.D. The use of NOAA AVHRR data for assessment of the Urban Heat Island effect. J. Appl. Meteorol. 1993, 32, 899–908. [Google Scholar] [CrossRef]
- Qin, Z.H.; Li, W.J.; Xu, B.; Chen, Z.X.; Liu, J. The estimation of land surface emissivity for Landsat TM6. Remote Sens. Land Resour. 2004, 61, 28–32. (In Chinese) [Google Scholar]
- Weng, Q.; Dengsheng, L.; Jacquelyn, S. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Gong, A.D.; Xu, J.; Zhao, J.; Li, J. A survey of study method for urban heat island. J. Nat. Disaster Sci. 2008, 17, 96–99. (In Chinese) [Google Scholar]
- Zhang, J.M.; Wang, P.L.; Ma, N.; Zhang, C. Spatial-temporal evolution of urban heat island effect in basin valley-a case study of Lanzhou city. Sci. Geogr. Sin. 2012, 32, 1530–1537. (In Chinese) [Google Scholar]
- Rao, P.K. Remote sensing of urban “heat islands” from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647–648. [Google Scholar]
- Qin, Z.H.; Zhang, M.H.; Aron, K.; Pedro, B. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. Acta Geogr. Sin. 2001, 56, 456–466. (In Chinese) [Google Scholar]
- Qiao, Z.; Tian, G.J. Spatiotemporal diversity and regionalization of the urban thermal environment in Beijing. J. Remote Sens. 2014, 18, 716–735. [Google Scholar]
- Jia, W.; Gao, X.H. Analysis of urban heat island environment in a valley city for policy formulation: A case study of Xining city in Qinghai province of China. J. Geo Inform. Sci. 2014, 16, 592–601. [Google Scholar]
- Ren, Q.F. The effects of urban heat island in the city of Chongqing. Chongqing Environ. Sci. 1992, 14, 37–41. (In Chinese) [Google Scholar]
- Li, Z.H.; Tang, B.; Ren, Q.F. A study on the effects of the heat and Wet Island in the city of Chongqing during wintertime. Acta Geogr. Sin. 1993, 48, 358–366. [Google Scholar]
- He, Z.N.; Li, Y.H.; Chen, Z.J.; Gao, Y.H. Analysis on the urban heat island in summer of 2006 in Chongqing. J. Trop. Meteorol. 2008, 24, 527–532. (In Chinese) [Google Scholar]
- Dan, S.M.; An, H.F.; Ban, B.; Xu, H.X.; Yang, L.; Chen, G.Y. An analysis of urban heat island effects in Chongqing based on AVHR and DEM. Resour. Environ. Yangtze Basin 2009, 18, 680–685. (In Chinese) [Google Scholar]
- Liu, J.; Liu, X.Q.; He, Z.W. Urban heat island effect based on TM remote sensing image in Chongqing. Res. Soil Water Conserv. 2010, 17, 172–175. (In Chinese) [Google Scholar]
- Yang, C.H.; Lei, B.; Wang, Y.C.; Zhang, S. Remote sensing of the spatial pattern of urban heat island effects and its influencing factors using TM data: A case study in core areas of Chongqing city. J. Basic Sci. Eng. 2014, 22, 227–238. (In Chinese) [Google Scholar]
- Luo, X.B.; Peng, Y.D. Scale effects of the relationships between urban heat islands and impact factors based on a geographically-weighted regression model. Remote Sens. 2016, 8, 760. [Google Scholar] [CrossRef]
- Wang, C.Y.; Myint, S.W.; Wang, Z.H.; Song, J.Y. Spatio-temporal modeling of the urban heat island in the Phoenix metropolitan area: Land use change implications. Remote Sens. 2016, 8, 185. [Google Scholar] [CrossRef]
- Dash, P.; Gottsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.Q.; Wang, Y.C.; Chen, L.G.; Yao, F.; Wu, P.Y.; Wang, B.Y.; Li, Y.Y.; Zhou, T.T.; Zhang, T. Research on the contribution of urban land surface moisture to the alleviation effect of urban land surface heat based on Landsat 8 data. Remote Sens. 2015, 7, 10737–10762. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Li, J.; Wang, J.; Shang, R. A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China. Remote Sens. 2015, 7, 4371–4390. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3764. [Google Scholar] [CrossRef]
- Yang, J.M.; Qiu, J.H. A method for estimating precipitable water and effective water vapor content from ground humidity parameters. Chin. J. Atmos. Sci. 2002, 26, 9–22. (In Chinese) [Google Scholar]
Land Use/Cover | Sites | Ground Measurement LST Ttrue (°C) | Method of Improved Parameters | Method of Empirical Parameters | ||
---|---|---|---|---|---|---|
Retrieved LST Ts1 (°C) | Absolute Difference |Tture − Ts1| (°C) | Retrieved LST Ts2 (°C) | Absolute Difference |Ttrue − Ts2| (°C) | |||
Farmland | Yuanyuang | 35.20 | 37.15 | 1.95 | 34.82 | 0.38 |
Wood | Nanshan | 36.00 | 35.83 | 0.17 | 31.95 | 4.05 |
Wood | Zhaomushan | 26.50 | 29.20 | 2.70 | 27.69 | 1.19 |
Wood | Shaping | 34.00 | 34.20 | 0.20 | 30.47 | 3.53 |
Wood | Huahui | 37.70 | 34.10 | 3.60 | 32.98 | 4.72 |
Wood | Pingtingshan | 31.00 | 33.33 | 2.33 | 29.02 | 1.98 |
Shrub | Guanyinqiao | 39.90 | 39.27 | 0.63 | 35.93 | 3.97 |
Grassland | Chaotianmen | 36.00 | 36.85 | 0.85 | 33.09 | 2.91 |
Grassland | Bailin | 31.00 | 33.06 | 2.06 | 31.05 | 0.05 |
Residential area | Houbao | 35.10 | 35.71 | 0.61 | 32.58 | 2.52 |
Square | Longtousi | 37.20 | 36.92 | 0.28 | 33.57 | 3.63 |
Square | Caiyuanba | 42.50 | 39.84 | 2.66 | 37.42 | 5.08 |
Square | Dachuan | 43.20 | 38.98 | 4.22 | 36.95 | 6.25 |
Pavement | Jinyuan | 27.00 | 30.00 | 3.00 | 26.14 | 0.86 |
River beach | Jialing river 1 | 29.10 | 30.57 | 1.47 | 26.16 | 2.94 |
River beach | Yangtze river 1 | 27.00 | 28.77 | 1.77 | 28.72 | 1.72 |
Water | Jialing river 2 | 28.50 | 30.57 | 2.07 | 32.57 | 4.07 |
Water | Yangtze river 2 | 26.00 | 28.77 | 2.77 | 26.5 | 0.50 |
Wasteland | Dadukou | 36.50 | 38.56 | 2.06 | 34.90 | 1.60 |
Mean | - | 33.65 | 34.30 | 1.86 | 31.71 | 2.73 |
Date | LSTmin | LSTmax | LSTmean | LSTstd |
---|---|---|---|---|
20 September 2007 | 28.63 | 56.90 | 36.71 | 2.02 |
20 July 2008 | 26.00 | 44.64 | 33.24 | 2.02 |
24 August 2009 | 28.43 | 50.22 | 35.04 | 2.25 |
11 September 2010 | 25.44 | 47.20 | 34.01 | 2.24 |
30 August 2011 | 26.28 | 51.26 | 37.00 | 2.78 |
19 August 2013 | 25.32 | 48.21 | 34.89 | 2.40 |
6 August 2014 | 25.98 | 52.79 | 34.90 | 2.33 |
8 July 2015 | 24.98 | 46.58 | 31.24 | 2.34 |
10 July 2016 | 28.01 | 46.52 | 34.61 | 2.20 |
Level | 20 September 2007 | 20 July 2008 | 24 August 2009 | 11 August 2010 | 30 August 2011 | 19 August 2013 | 8 August 2014 | 8 July 2015 | 10 July 2016 |
---|---|---|---|---|---|---|---|---|---|
Very low LST | 4.24 | 4.32 | 5.04 | 3.45 | 2.61 | 4.12 | 12.16 | 12.25 | 4.28 |
Low LST | 49.37 | 23.17 | 41.33 | 4.65 | 7.23 | 38.93 | 35.71 | 39.65 | 40.41 |
Sub-medium LST | 44.29 | 59.77 | 42.65 | 36.93 | 54.99 | 33.39 | 31.10 | 34.16 | 44.67 |
Medium LST | 1.96 | 12.24 | 10.02 | 47.65 | 32.04 | 16.20 | 11.72 | 9.38 | 7.75 |
Sub-high LST | 0.11 | 0.55 | 0.86 | 7.02 | 2.96 | 6.96 | 8.69 | 3.76 | 2.64 |
High LST | 0.02 | 0.04 | 0.09 | 0.28 | 0.16 | 0.37 | 0.55 | 0.77 | 0.24 |
Very high LST | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.03 | 0.07 | 0.03 | 0.01 |
Sum of high and very high LST | 0.03 | 0.04 | 0.10 | 0.30 | 0.17 | 0.40 | 0.62 | 0.80 | 0.25 |
Types | Strong LST Decrease | Slight LST Decrease | No Change | Slight LST Increase | Strong LST Increase |
---|---|---|---|---|---|
LST2011–LST2007 | <−3 °C | −3–−1 °C | −1–1 °C | 1–3 °C | >3 °C |
Land Use/Cover | Minimum LST (°C) | Maximum LST (°C) | Mean LST (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
2007 | 2011 | 2016 | 2007 | 2011 | 2016 | 2007 | 2011 | 2016 | |
Built-up | 30.42 | 26.75 | 25.73 | 51.39 | 46.78 | 43.45 | 38.13 | 35.24 | 35.82 |
Bare land | 30.03 | 28.72 | 26.45 | 56.9 | 47.20 | 46.52 | 38.37 | 36.91 | 37.27 |
Vegetation | 29.52 | 28.33 | 25.79 | 48.39 | 40.99 | 41.77 | 36.27 | 33.43 | 30.37 |
Water | 28.63 | 25.44 | 28.01 | 35.09 | 36.25 | 42.97 | 32.82 | 29.61 | 27.77 |
Road | 30.05 | 32.81 | 26.03 | 45.11 | 43.49 | 42.32 | 37.7 | 34.82 | 32.74 |
Land Use/Cover | LST Levels | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Very Low LST | Low LST | Sub-Medium LST | Medium LST | Sub-High LST | High LST | Very High LST | |||||||||||||||
2007 | 2011 | 2016 | 2007 | 2011 | 2016 | 2007 | 2011 | 2016 | 2007 | 2011 | 2016 | 2007 | 2011 | 2016 | 2007 | 2011 | 2016 | 2007 | 2011 | 2016 | |
Built-up | 0.67 | 0.18 | 1.75 | 41.91 | 5.20 | 53.09 | 227.93 | 119.63 | 251.74 | 14.20 | 171.27 | 44.35 | 0.79 | 13.80 | 14.83 | 0.04 | 0.30 | 1.17 | 0.07 | 0.01 | 0.02 |
Bare land | 0.00 | 0.00 | 0.00 | 0.18 | 0.34 | 0.19 | 0.55 | 4.87 | 5.06 | 7.18 | 19.65 | 31.15 | 2.14 | 8.05 | 4.53 | 0.24 | 0.82 | 1.32 | 0.16 | 0.08 | 0.10 |
Vegetation | 1.18 | 0.01 | 0.79 | 314.26 | 24.48 | 218.65 | 108.33 | 293.80 | 87.07 | 0.65 | 56.89 | 6.96 | 0.04 | 1.02 | 0.49 | 0.01 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 |
Water | 31.29 | 20.18 | 30.48 | 24.39 | 26.27 | 20.04 | 2.70 | 9.96 | 3.69 | 0.04 | 1.14 | 0.19 | 0.05 | 0.17 | 0.02 | 0.02 | 0.08 | 0.04 | 0.00 | 0.00 | 0.00 |
Road | 0.04 | 0.00 | 0.00 | 0.07 | 0.00 | 0.04 | 0.11 | 0.10 | 0.35 | 0.13 | 0.18 | 0.44 | 0.01 | 0.00 | 0.24 | 0.00 | 0.00 | 0.94 | 0.01 | 0.00 | 0.05 |
Buffer (m) | Decrease of LST in West | Decrease of LST in North | Decrease of LST in East | Mean |
---|---|---|---|---|
0–50 | 1.85 | 2.01 | 1.93 | 1.93 |
50–100 | 1.81 | 1.36 | 1.76 | 1.64 |
100–150 | 1.65 | 0.86 | 1.59 | 1.37 |
150–200 | 1.58 | 0.53 | 1.56 | 1.22 |
200–250 | 1.58 | 0.37 | 1.49 | 1.15 |
250–300 | 1.47 | 0.22 | 1.32 | 1.00 |
Buffer (m) | Decreases of LST | Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bolin Park | Dongbu Park | Eling Park | Huahui Park | Zhongyang Park | Pingdingshan Park | Shaping Park | Shanhu Park | Shimen Park | ||
0–50 | 0.83 | 0.29 | 0.37 | 0.15 | 1.73 | 0.33 | 0.06 | 0.43 | 0.44 | 0.51 |
50–100 | 0.29 | 0.30 | 0.31 | −0.02 | 1.12 | 0.63 | −0.27 | 0.30 | 0.11 | 0.31 |
100–150 | −0.30 | 0.09 | 0.14 | −0.04 | 0.33 | 0.83 | −0.23 | 0.18 | −0.11 | 0.10 |
150–200 | −0.44 | −0.10 | −0.04 | 0.03 | −0.43 | 0.75 | 0.02 | −0.18 | −0.12 | −0.06 |
200–250 | −0.22 | −0.37 | −0.29 | 0.00 | −1.08 | 0.71 | 0.15 | −0.45 | −0.16 | −0.19 |
250–300 | −0.17 | −0.22 | −0.46 | −0.12 | −1.69 | 0.36 | 0.23 | −0.25 | −0.14 | −0.27 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, Y. Spatio-Temporal Features of Urban Heat Island and Its Relationship with Land Use/Cover in Mountainous City: A Case Study in Chongqing. Sustainability 2018, 10, 1943. https://doi.org/10.3390/su10061943
Liu C, Li Y. Spatio-Temporal Features of Urban Heat Island and Its Relationship with Land Use/Cover in Mountainous City: A Case Study in Chongqing. Sustainability. 2018; 10(6):1943. https://doi.org/10.3390/su10061943
Chicago/Turabian StyleLiu, Chunxia, and Yuechen Li. 2018. "Spatio-Temporal Features of Urban Heat Island and Its Relationship with Land Use/Cover in Mountainous City: A Case Study in Chongqing" Sustainability 10, no. 6: 1943. https://doi.org/10.3390/su10061943
APA StyleLiu, C., & Li, Y. (2018). Spatio-Temporal Features of Urban Heat Island and Its Relationship with Land Use/Cover in Mountainous City: A Case Study in Chongqing. Sustainability, 10(6), 1943. https://doi.org/10.3390/su10061943