Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. Research Methods
2.1.1. Objectives of the Evaluation
2.1.2. Functional Unit
2.1.3. System Boundary
2.2. Data Sources
2.3. Allocation Criteria
2.4. Impact Categories and Impact Assessment Methodology
3. Results
3.1. LCA Results of the Environmental Effects in the Circular Agriculture Industry Chain and the Main Industrial Model-Pig Farming Industry
3.2. Economic-Environmental Benefits of Circular Agriculture and the Pig Farming Industry
3.3. The Environmental Impact and Economic Benefit Evaluation of the Sub-Industrial Chain of the Circular Agricultural Industry Chain
4. Discussion
4.1. Sensitivity Analysis of the Overall Circular Agriculture System
4.2. Sensitivity Analysis of the Premix to Circular Agriculture
5. Conclusions
- (1)
- Opposite to conventional understanding, as a multi-coupled system, a circular agriculture system does not result in zero emissions. In addition, if simply considering the potential environmental impact, circular agriculture that links different sub-industrial chains does not have less environmental effects than those of the main industrial model. The circular agriculture mode could reduce the environmental emissions by reducing the input of raw materials with improved recycling rates to offset or even exceed the increased environmental emissions caused by the increased input of raw materials. However, based on the results of this study, we determined that the development of circular agriculture does not mean that the recycling industry chain can be extended without considering other factors. By reasonably building an optimal recycling model, the potential environmental impacts of the circular agriculture system can be minimized.
- (2)
- If the economic benefits are included in this study, then the results show that it is not easy to compare circular agriculture and the main industrial model, the pig farming industry, to determine which one is better. In addition, depending on the indicators, the evaluation results may be different. Specifically, the BAP, BGWP, BPOCP, BODP, BEP, and BTETP indicators of the circular agriculture system are higher than those of the pig farming industry, while the BFAETP, BHTP and BMAETP indicators are lower than those of the pig farming industry.
- (3)
- If we consider reducing the potential environmental impacts while improving the economic benefits per unit of environmental emissions of the circular agriculture system, then we can consider removing mushroom planting and organic fertilizer production from the recycling framework and rely on measures such as increasing recycling efficiency to minimize the potential environmental impact over the life cycle of the system.
- (4)
- From the perspectives of the material and energy input and depending on the sensitivity of different materials to the environmental indicators of circular agriculture, it is possible to reduce the potential impact of the environment without changing the circular agriculture system. At the same time, the effect of the premix in the sub-industry chain of the pig farming industry on the potential environmental impact of circular agriculture is obvious, especially for corn at the farm, soybean meal and whey protein concentrate. Thus, we should focus on the above three components of the premix to reduce the potential environmental impact of circular agriculture.
Author Contributions
Funding
Conflicts of Interest
Appendix A. Input-Output Data of the Subsystems of the Circular Agriculture for 100-kg Live Pigs
Inputs | Outputs | Inputs | Outputs | ||||
---|---|---|---|---|---|---|---|
Pig Farming Industry | Biogas Generation | ||||||
Premix | Corn at farm (12% H2O content) 111.98 kg | Complete feed | Corn grains, at farm (12% H2O content) 25.50 kg | Pig manure 353.18 kg | For pig farming 4.01 kW·h | ||
Soybean meal (wet mill) 33.29 kg | Soybean meal (wet mill) 8.86 kg | Live pigs 100 kg | For pitaya 0.02 kW·h | ||||
Wheat bran (wheat mill) 19.30 kg | Rapeseed meal (wet mill) 0.97 kg | Electricity 7.93 kW·h | For fishery 0.21 kW·h | ||||
Fish meal 1.00 kg | Wheat bran (wheat mill) 2.24 kg | Pig manure 353.18 kg | Pig urine 639.09 kg | For edible fungus 0.02 kW·h | |||
Soybean hulls (wet mill) 2.20 kg | Monocalcium phosphate 0.08 kg | For organic fertilizer 1.69 kW·h | |||||
Whey protein concentrate (powder) 2.61 kg | Limestone flour (CaCO3; dried) 0.10 kg | Pig urine 639.09 kg | For fishery 1354.13 kg | ||||
Cottonseed meal 1.79 kg | Sodium chloride (rock salt) 0.05 kg | Used flushing water 2087.22 kg | Biogas slurry 2771.54 kg | For grass 202.49 kg | |||
Rapeseed meal (wet mill) 1.93 kg | Water 3136.08 kg | Tap water 33.44% | Used flushing water 2087.22 kg | For pitaya 607.46 kg | |||
Tricalcium phosphate 2.21 kg | Water from fish pond 66.56% | Pig residue 23.10 kg | For edible fungus 6.33 kg | ||||
Limestone flour (CaCO3; dried) 1.90 kg | Electricity 164.74 kW·h | From hard coal 160.73 kW·h From biogas power 4.01 kW·h | Electricity from hard coal 0.55 kW·h | For organic fertilizer 10.44 kg | |||
Heat 38.62 MJ | Biogas residue 64.67 kg | ||||||
Sodium chloride (rock salt) 0.61 kg | Grass | From Grass planting 12.66 kg |
Inputs | Outputs | Inputs | Outputs | Inputs | Outputs | Inputs | Outputs | ||
---|---|---|---|---|---|---|---|---|---|
Mushroom Planting | Organic Fertilizer | Dragon Fruit Planting | Fishery Industry | ||||||
Electricity 0.0228 kW·h | Electricity 1.6874 kW·h | Organic fertilizer 5.0622 kg | Biogas slurry 1354.1335 kg | ||||||
Limestone 2088.1410 kg | Pig residue 10.4407 kg | Npk(15N-15P2O5-15K2O) 0.2531 kg | tap water 1,533,274,170 kg | Fish 1.6874 kg | |||||
Pig residue 6.3277 kg | Mushrooms 6.3277 kg | Mushroom dreg 21.0923 kg | Triple Superphosphate 0.0020 kg | Electricity 0.2109 kW·h | Water 151,865,439 kg | ||||
Soil 18.9831 kg | Mushroom dreg 21.0923 kg | Biogas residue 64.6694 kg | Organic fertilizer 92.8062 kg | Pesticide (average) 0.0033 kg | Dragon fruits 35.4354 kg | Forage planting | |||
Straw 1.2655 kg | Soil 9.8431 kg | Household refuse 0.8437 kg | Electricity 0.0168 kW·h | Biogas slurry 202.4873kg | |||||
Wasted Wood 0.0562 kg | Polyvinyl chloride 92.8062 kg | Diesel mix at refinery 0.0202 L | Tap water 3837.1343 kg | Grass 12.6555 kg | |||||
Well water 1.0124 kg | Diesel 0.0190 kg | Biogas slurry 607.464 kg | Seedlings 0.0844 kg | ||||||
Soil 9.8431 kg |
References
- Shelef, O.; Weisberg, P.J.; Provenza, F.D. The value of native plants and local production in an era of global agriculture. Front. Plant Sci. 2017, 8, 2069. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Q.; Mei, X.R. A sustainable agricultural development assessment method and a case study in China based on euclidean distance theory. J. Clean. Prod. 2017, 168, 551–557. [Google Scholar] [CrossRef]
- Lwin, C.M.; Murakami, M.; Hashimoto, S. The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater. Resour. Conserv. Recycl. 2017, 122, 94–105. [Google Scholar] [CrossRef]
- Wu, H.J.; Gao, L.M.; Yuan, Z.W.; Wang, S. Life cycle assessment of phosphorus use efficiency in crop production system of three crops in Chaohu Watershed, China. J. Clean. Prod. 2016, 139, 1298–1307. [Google Scholar] [CrossRef]
- Wang, H.G.; Zhai, H.Y. Research review and outlook of agricultural circular economy. J. Huazhong Agric. Univ. 2016, 4, 59–66. [Google Scholar]
- Sun, Y.M.; Li, G.X.; Zhang, F.D.; Shi, C.L.; Sun, Z.J. Status quo and developmental strategy of agricultural residues resources in China. Trans. Chin. Soc. Agric. Eng. 2005, 21, 169–173. [Google Scholar]
- National Development and Reform Commission, Ministry of Agriculture. National Rural Biogas Development 13th Five-Year Plan. Available online: http://www.gov.cn/xinwen/2017-02/10/content_5167076.htm/ (accessed on 28 May 2018).
- Guan, D.X.; Qiu, C. Preliminary research of the situation and countermeasures of pollution of rural domestic garbage. China Resour. Compr. Util. 2008, 26, 29–31. [Google Scholar]
- Zhao, L.X.; Meng, H.B.; Shen, Y.J.; Ding, J.T.; Zhang, X. Investigation and development analysis of planting-breeding circulating agriculture ecosystem system in northern plains in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 1–10. [Google Scholar]
- Alberti, J.; Balaguera, A.; Brodhag, C.; Fullana-i-Palmer, P. Towards life cycle sustainability assessent of cities. A review of background knowledge. Sci. Total Environ. 2017, 609, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Kilkis, S.; Kilkis, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Clean. Prod. 2017, 167, 1084–1098. [Google Scholar] [CrossRef]
- Therond, O.; Duru, M.; Roger-Estrade, J.; Richard, G. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Dev. 2017, 37, 21. [Google Scholar] [CrossRef]
- Wang, L.G.; Qu, F.; Yin, X.Z.; Qiu, Y.H.; Huang, D.Q.; Tao, M.S. Economic analysis and standardization of Pig-Biogas-Fruit eco-agriculture model in South China. China J. Eco-Agric. 2008, 16, 1283–1286. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L.; Zhang, S.M.; Sun, T.; Ning, T.Y.; Li, C.R.; Li, Z.J. Comparison of emergy efficiency and sustainable development capability between different agricultural circulation modes with straw utilization. Acta Ecol. Sin. 2016, 36, 4739–4750. [Google Scholar]
- Wei, X.M.; Chen, B.; Qu, Y.H.; Lin, C.; Chen, G.Q. Emergy analysis for ‘Four in One’ peach production system in Beijing. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 946–958. [Google Scholar] [CrossRef]
- Liu, H.Z.; Chen, H.X.; Zhang, Y.F.; Kang, Z.H. Evaluation of the circular clean production model of a wheat-rice double cropping system in south Jiangsu. Jiangsu J. Agric. Sci. 2010, 26, 1395–1401. [Google Scholar]
- Li, Y.C.; Huang, X.S.; Pan, Y.; Ying, Z.Y.; Huang, Y.B. Emergy analysis of circular agriculture mode of Dairy cattle-Biogas-Forage. J. Ecol. Rural Environ. 2010, 26, 120–125. [Google Scholar]
- Wielemaker, R.C.; Weijma, J.; Zeeman, G. Harvest to harvest: Recovering nutrients with new sanitation systems for reuse in urban agriculture. Resour. Conserv. Recycl. 2018, 128, 426–437. [Google Scholar] [CrossRef]
- Vega-Quezada, C.; Blanco, M.; Romero, H. Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador. New Biotechnol. 2017, 39, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.X.; Li, J.; Li, L. Estimating circular agricultural efficiency using DEA methods. Agro Food Ind. Hi Tech 2016, 27, 94–98. [Google Scholar]
- Pagotto, M.; Halog, A. Towards a circular economy in Australian agri-food industry: An application of input-output oriented approaches for analyzing resource efficiency and competitiveness potential. J. Ind. Ecol. 2016, 20, 1176–1186. [Google Scholar] [CrossRef]
- Kuisma, M.; Kahiluoto, H. Biotic resource loss beyond food waste: Agriculture leaks worst. Resour. Conserv. Recycl. 2017, 124, 129–140. [Google Scholar] [CrossRef]
- Sun, L.; Tian, G.C.; Wu, F.Q. Emergy evaluation of a Pig-Methane-Grain circular agricultural mode in Guanzhong Plain. Agric. Res. Arid Areas 2015, 33, 246–252. [Google Scholar]
- Han, Y.; Long, P.; Chen, Y.Q.; Sui, P.; Gu, S.G. Research progress of evaluation system for China circular agriculture development. China J. Eco-Agric. 2013, 21, 1039–1048. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Busch, J.; Purnell, P.; Zwirner, O.; Velis, C.A.; Brown, A.; Hahladakis, J.; Iacovidou, E. Fully integrated modelling for sustainability assessment of resource recovery from waste. Sci. Total Environ. 2018, 612, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Liu, J.R.; Yang, J.X.; Yang, D. Comparative life cycle assessment of regional electricity supplies in China. Resour. Conserv. Recycl. 2017, 119, 47–59. [Google Scholar] [CrossRef]
- Levasseur, A.; Bahn, O.; Beloin-Saint-Pierre, D.; Marinova, M.; Vaillancourt, K. Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach. Appl. Energy 2017, 198, 440–452. [Google Scholar] [CrossRef]
- Khatri, P.; Jain, S.; Pandey, S. A cradle-to-gate assessment of environmental impacts for production of mustard oil using life cycle assessment approach. J. Clean. Prod. 2017, 166, 988–997. [Google Scholar] [CrossRef]
- Gilpin, G.S.; Andrae, A.S.G. Comparative attributional life cycle assessment of European cellulase enzyme production for use in second-generation lignocellulosic bioethanol production. Int. J. Life Cycle Assess. 2017, 22, 1034–1053. [Google Scholar] [CrossRef]
- Kim, K.J.; Yun, W.G.; Cho, N.; Ha, J. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase. Environ. Impact Assess. Rev. 2017, 64, 47–56. [Google Scholar] [CrossRef]
- Xiao, R.F.; Zhang, Y.; Yuan, Z.W. Environmental impacts of reclamation and recycling processes of refrigerators using life cycle assessment (LCA) methods. J. Clean. Prod. 2016, 131, 52–59. [Google Scholar] [CrossRef]
- Brito, M.; Martins, F. Life cycle assessment of butanol production. Fuel 2017, 208, 476–482. [Google Scholar] [CrossRef]
- Sengupta, D.; Hawkins, T.R.; Smith, R.L. Using national inventories for estimating environmental impacts of products from industrial sectors: A case study of ethanol and gasoline. Int. J. Life Cycle Assess. 2015, 20, 597–607. [Google Scholar] [CrossRef]
- Martinez, E.; Blanco, J.; Jimenez, E.; Saenz-Diez, J.C.; Sanz, F. Comparative evaluation of life cycle impact assessment software tools through a wind turbine case study. Renew. Energy 2015, 74, 237–246. [Google Scholar] [CrossRef]
- Petrescu, L.; Bonalumi, D.; Valenti, G.; Cormos, A.M.; Cormos, C.C. Life cycle assessment for supercritical pulverized coal power plants with post-combustion carbon capture and storage. J. Clean. Prod. 2017, 157, 10–21. [Google Scholar] [CrossRef]
- Zhou, Z.Z.; Tang, Y.J.; Chi, Y.; Ni, M.J.; Buekens, A. Waste-to-energy: A review of life cycle assessment and its extension methods. Waste Manag. Res. 2018, 36, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.G.; Dong, X.B.; Wei, H.J.; Weng, B.Q.; Liang, L.; Xu, Z.H.; Wang, X.C.; Wu, F.L.; Chen, Z.D.; Jin, Y.; et al. Is it true that the longer the extended industrial chain, the better the circular agriculture? A case study of circular agriculture industry company in Fuqing, Fujian. J. Clean. Prod. 2018, 189, 718–728. [Google Scholar] [CrossRef]
Output | Units | Quantity | Recycle Quantity | Rate of Circuit |
---|---|---|---|---|
Recycled water | kg | 151,865,439.25 | 2087.22 | 0.0014% |
Organic fertilizer | kg | 92.81 | 5.06 | 5.45% |
Pig residue | kg | 23.10 | 16.77 | 72.60% |
Biogas slurry | kg | 2771.54 | 2164.08 | 78.08% |
Electricity | kW·h | 7.93 | 5.94 | 74.98% |
Category | S1 | S2 | Units |
---|---|---|---|
ADP elements | 4.45 × 10−4 | 5.26 × 10−4 | kg Sb-Equiv. |
ADP fossil | 2.73 × 103 | 3.66 × 103 | MJ |
AP | 1.47 × 100 | 1.62 × 100 | kg SO2-Equiv. |
GWP | 3.06 × 102 | 3.76 × 102 | kg CO2-Equiv. |
POCP | 8.20 × 10−2 | 9.93 × 10−2 | kg Ethene-Equiv. |
ODP | 7.97 × 10−9 | 9.92 × 10−9 | kg R11-Equiv. |
EP | 8.58 × 10−1 | 8.85 × 10−1 | kg P-Equiv. |
FAETP | 6.88 × 100 | 1.31 × 101 | kg DCB-Equiv. |
HTP | 1.66 × 101 | 5.18 × 101 | kg DCB-Equiv. |
MAETP | 1.61 × 104 | 2.11 × 104 | kg DCB-Equiv. |
TETP | 2.61 × 100 | 2.78 × 100 | kg DCB-Equiv. |
Category | S1 | S2 | Units |
---|---|---|---|
BAP | 1.75 × 103 | 1.99 × 103 | yuan/kg SO2-Equiv. |
BGWP | 8.36 × 100 | 8.58 × 100 | yuan/kg CO2-Equiv. |
BPOCP | 3.12 × 104 | 3.24 × 104 | yuan/kg Ethene-Equiv. |
BODP | 3.21 × 1011 | 3.25 × 1011 | yuan/kg R11-Equiv. |
BEP | 2.98 × 103 | 3.64 × 103 | yuan/kg P-Equiv. |
BFAETP | 3.72 × 102 | 2.45 × 102 | yuan/kg DCB-Equiv. |
BHTP | 1.54 × 102 | 6.22 × 101 | yuan/kg DCB-Equiv. |
BMAETP | 1.59 × 10−1 | 1.53 × 10−1 | yuan/kg DCB-Equiv. |
BTETP | 9.81 × 102 | 1.16 × 103 | yuan/kg DCB-Equiv. |
Category | Pig Farming Industry | Dragon Fruit Planting | Forage Planting | Fishery Industry | Mushroom Planting | Biogas Generation | Organic Fertilizer |
---|---|---|---|---|---|---|---|
AP | 89.82% | 0.03% | 0.11% | 0.60% | 6.28% | −1.51% | 4.67% |
GWP | 80.21% | 0.06% | 0.21% | 1.16% | 14.18% | −0.21% | 4.51% |
POCP | 81.66% | 0.04% | 0.17% | 0.94% | 11.99% | −0.86% | 6.06% |
ODP | 79.69% | 0.22% | 0.26% | 1.43% | 18.60% | −0.20% | 0.00% |
EP | 96.79% | 0.02% | 0.09% | 0.50% | 2.52% | −0.61% | 0.70% |
FAETP | 52.32% | 0.00% | 0.05% | 0.25% | 0.80% | −0.18% | 46.75% |
HTP | 31.63% | 0.01% | 0.15% | 0.81% | 2.74% | −0.23% | 64.89% |
MAETP | 74.00% | 0.03% | 0.83% | 4.58% | 16.30% | −1.03% | 5.28% |
TETP | 93.45% | 0.01% | 0.10% | 0.57% | 4.01% | 0.03% | 1.82% |
Categories | Pig Farming Industry | Organic Fertilizer | |||||
---|---|---|---|---|---|---|---|
Parameter | Premix | Complete Feed | Tap Water | Electricity (from Hard Coal) | Transport Distance | Polyvinyl Chloride | Diesel |
Variation | 10% | 10% | 10% | 10% | 10% | 10% | 10% |
ADP elements | 6.59 × 10−2 | 1.38 × 10−2 | 1.39 × 10−5 | 1.83 × 10−4 | 4.67 × 10−5 | 1.75 × 10−2 | 4.69 × 10−8 |
ADP fossil | 2.47 × 10−2 | 3.30 × 10−3 | 6.79 × 10−5 | 4.48 × 10−2 | 2.47 × 10−3 | 7.89 × 10−3 | 1.39 × 10−6 |
AP | 7.18 × 10−2 | 4.68 × 10−3 | 2.90 × 10−5 | 1.33 × 10−2 | 2.22 × 10−3 | 4.67 × 10−3 | 1.85 × 10−7 |
GWP | 3.33 × 10−2 | 3.22 × 10−3 | 5.57 × 10−5 | 4.35 × 10−2 | 1.69 × 10−3 | 4.51 × 10−3 | 1.45 × 10−7 |
POCP | 6.32 × 10−2 | 2.07 × 10−5 | 4.50 × 10−5 | 1.84 × 10−2 | 1.49 × 10−2 | 6.06 × 10−3 | 4.91 × 10−7 |
ODP | 7.09 × 10−2 | 7.82 × 10−3 | 6.88 × 10−5 | 8.85 × 10−4 | 5.05 × 10−6 | 0.00 × 100 | 1.72 × 10−7 |
EP | 8.38 × 10−2 | 9.29 × 10−3 | 2.39 × 10−5 | 3.65 × 10−3 | 9.57 × 10−4 | 6.99 × 10−4 | 5.70 × 10−8 |
FAETP | 4.45 × 10−2 | 7.10 × 10−3 | 1.23 × 10−5 | 6.97 × 10−4 | 4.83 × 10−4 | 4.67 × 10−2 | 1.66 × 10−7 |
HTP | 2.00 × 10−2 | 3.27 × 10−3 | 3.90 × 10−5 | 8.34 × 10−3 | 5.74 × 10−4 | 6.49 × 10−2 | 1.68 × 10−7 |
MAETP | 2.68 × 10−2 | 3.49 × 10−3 | 2.21 × 10−4 | 4.35 × 10−2 | 7.04 × 10−4 | 5.28 × 10−3 | 2.27 × 10−7 |
TETP | 7.32 × 10−2 | 1.70 × 10−2 | 2.75 × 10−5 | 3.23 × 10−3 | 8.55 × 10−5 | 1.82 × 10−3 | 3.02 × 10−7 |
Categories | Dragon Fruit Planting | Fishery Industry | Biogas Generation | |||
---|---|---|---|---|---|---|
Parameter | Npk | Triple Superphosphate | Pesticide | Diesel | Tap Water | Electricity (from Hard Coal) |
Variation | 10% | 10% | 10% | 10% | 10% | 10% |
ADP elements | 2.05 × 10−4 | 8.20 × 10−7 | 8.21 × 10−5 | 7.91 × 10−7 | 2.89 × 10−4 | 4.95 × 10−7 |
ADP fossil | 6.64 × 10−5 | 7.88 × 10−7 | 1.51 × 10−5 | 2.35 × 10−5 | 1.41 × 10−3 | 1.21 × 10−4 |
AP | 2.42 × 10−5 | 6.08 × 10−7 | 4.48 × 10−6 | 3.12 × 10−6 | 6.02 × 10−4 | 3.61 × 10−5 |
GWP | 4.79 × 10−5 | 4.24 × 10−7 | 7.85 × 10−6 | 2.45 × 10−6 | 1.16 × 10−3 | 1.18 × 10−4 |
POCP | 2.72 × 10−5 | 6.47 × 10−7 | 8.32 × 10−6 | 8.27 × 10−6 | 9.35 × 10−4 | 4.98 × 10−5 |
ODP | 2.10 × 10−4 | 2.01 × 10−6 | 6.16 × 10−6 | 2.89 × 10−6 | 9.35 × 10−4 | 2.40 × 10−6 |
EP | 1.40 × 10−5 | 6.11 × 10−8 | 8.87 × 10−7 | 9.60 × 10−7 | 4.96 × 10−4 | 9.89 × 10−6 |
FAETP | 8.58 × 10−7 | 8.74 × 10−8 | 7.04 × 10−7 | 2.79 × 10−6 | 2.55 × 10−4 | 1.89 × 10−6 |
HTP | 4.88 × 10−6 | 8.28 × 10−7 | 1.83 × 10−6 | 2.83 × 10−6 | 8.10 × 10−4 | 2.26 × 10−5 |
MAETP | 1.65 × 10−5 | 3.38 × 10−7 | 6.15 × 10−6 | 3.82 × 10−6 | 4.58 × 10−3 | 1.18 × 10−4 |
TETP | 1.84 × 10−6 | 7.42 × 10−8 | 4.25 × 10−6 | 5.09 × 10−6 | 5.71 × 10−4 | 8.75 × 10−6 |
Categories | Mushroom Planting | Forage Planting | ||||
---|---|---|---|---|---|---|
Parameter | Limestone | Soil | Straw | Wasted Wood | Well Water | Tap Water |
Variation | 10% | 10% | 10% | 10% | 10% | 10% |
ADP elements | 2.88 × 10−3 | 1.28 × 10−7 | 6.42 × 10−6 | 1.47 × 10−6 | 1.39 × 10−8 | 5.26 × 10−5 |
ADP fossil | 1.74 × 10−2 | 3.80 × 10−6 | 1.47 × 10−5 | 7.12 × 10−6 | 6.77 × 10−8 | 2.57 × 10−4 |
AP | 6.24 × 10−3 | 6.28 × 10−6 | 3.24 × 10−5 | 6.01 × 10−6 | 2.89 × 10−8 | 1.10 × 10−4 |
GWP | 1.41 × 10−2 | 2.77 × 10−6 | 3.87 × 10−5 | 5.43 × 10−6 | 5.56 × 10−8 | 2.11 × 10−4 |
POCP | 1.19 × 10−2 | 2.20 × 10−5 | 3.69 × 10−5 | 1.25 × 10−5 | 4.49 × 10−8 | 1.70 × 10−4 |
ODP | 1.85 × 10−2 | 4.68 × 10−7 | 1.50 × 10−5 | 6.61 × 10−5 | 6.87 × 10−8 | 2.60 × 10−4 |
EP | 2.47 × 10−3 | 2.48 × 10−6 | 4.99 × 10−5 | 2.02 × 10−6 | 2.38 × 10−8 | 9.03 × 10−5 |
FAETP | 7.44 × 10−4 | 4.65 × 10−7 | 5.58 × 10−5 | 7.04 × 10−7 | 1.22 × 10−8 | 4.64 × 10−5 |
HTP | 2.72 × 10−3 | 8.67 × 10−7 | 1.91 × 10−5 | 2.23 × 10−6 | 3.89 × 10−8 | 1.47 × 10−4 |
MAETP | 1.63 × 10−2 | 6.18 × 10−7 | 2.66 × 10−5 | 8.41 × 10−6 | 2.20 × 10−7 | 8.35 × 10−4 |
TETP | 4.00 × 10−3 | 8.30 × 10−7 | 3.75 × 10−6 | 1.22 × 10−6 | 2.74 × 10−8 | 1.04 × 10−4 |
Parameter | Corn at Farm | Soybean Meal | Wheat Bran | Fish Meal | Soybean Hulls | Whey Protein Concentrate | Cottonseed Meal | Rapeseed Meal | Tricalcium Phosphate | Limestone Flour | Sodium Chloride |
---|---|---|---|---|---|---|---|---|---|---|---|
Variation | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% |
ADP elements | 2.8449% | 2.6042% | 0.0763% | 0.0001% | 0.0806% | 0.8141% | 0.0031% | 0.0154% | 0.0908% | 0.0003% | 0.0518% |
ADP fossil | 0.7970% | 0.3095% | 0.1025% | 0.0189% | 0.0096% | 0.9150% | 0.0165% | 0.0131% | 0.0873% | 0.0016% | 0.0005% |
AP | 1.1871% | 0.4754% | 0.1383% | 0.0299% | 0.0147% | 5.0398% | 0.0169% | 0.0253% | 0.0674% | 0.0006% | 0.0007% |
GWP | 0.8133% | 0.3150% | 0.1175% | 0.0147% | 0.0098% | 1.8438% | 0.0155% | 0.0138% | 0.0470% | 0.0013% | 0.0004% |
POCP | 0.4923% | 0.5603% | 0.0501% | 0.0269% | 0.0173% | 6.3864% | 0.0302% | 0.0120% | 0.0716% | 0.0011% | 0.0016% |
ODP | 1.4621% | 0.5153% | 0.0944% | 0.0000% | 0.0160% | 4.7290% | 0.0285% | 0.0199% | 0.2230% | 0.0017% | 0.0015% |
EP | 2.4734% | 1.1370% | 0.2688% | 0.0322% | 0.0352% | 4.2729% | 0.0476% | 0.0293% | 0.0068% | 0.0002% | 0.0003% |
FAETP | 1.9152% | 0.8766% | 0.1350% | 0.0051% | 0.0271% | 1.3378% | 0.0756% | 0.0302% | 0.0097% | 0.0001% | 0.0001% |
HTP | 0.9792% | 0.2733% | 0.0328% | 0.0177% | 0.0085% | 0.5099% | 0.0105% | 0.0267% | 0.0917% | 0.0002% | 0.0001% |
MAETP | 0.9553% | 0.3691% | 0.0970% | 0.0401% | 0.0114% | 1.0758% | 0.0195% | 0.0149% | 0.0374% | 0.0015% | 0.0002% |
TETP | 6.7847% | 0.0848% | 0.0135% | 0.0088% | 0.0026% | 0.1445% | 0.0003% | 0.2617% | 0.0082% | 0.0004% | 0.0001% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Zhang, P.; Xu, Z.; Wei, H.; Lu, N.; Wang, X.; Weng, B.; Chen, Z.; Wu, F.; Dong, X. Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China. Sustainability 2018, 10, 1810. https://doi.org/10.3390/su10061810
Fan W, Zhang P, Xu Z, Wei H, Lu N, Wang X, Weng B, Chen Z, Wu F, Dong X. Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China. Sustainability. 2018; 10(6):1810. https://doi.org/10.3390/su10061810
Chicago/Turabian StyleFan, Weiguo, Peng Zhang, Zihan Xu, Hejie Wei, Nachuan Lu, Xuechao Wang, Boqi Weng, Zhongdian Chen, Feilong Wu, and Xiaobin Dong. 2018. "Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China" Sustainability 10, no. 6: 1810. https://doi.org/10.3390/su10061810
APA StyleFan, W., Zhang, P., Xu, Z., Wei, H., Lu, N., Wang, X., Weng, B., Chen, Z., Wu, F., & Dong, X. (2018). Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China. Sustainability, 10(6), 1810. https://doi.org/10.3390/su10061810