Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Sites
2.2. Monitoring Methods
2.3. Statistical Methods
3. Results
3.1. Nitrate Concentrations in Groundwater under Different Agro-Ecosystems
3.2. Temporal Variation of Nitrate Concentrations in Groundwater under Different Agro-Ecosystems
3.3. Nitrate Concentration in Groundwater under Different Soil Types
4. Discussion
4.1. Spatial Variation of Nitrate-N Concentrations in Groundwater
4.2. Temporal Variation of Nitrate-N Concentrations in Groundwater
4.3. Nitrate-N Concentrations in Groundwater under Different Soil Types
4.4. Mitigation Measures
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bárdossy, A. Copula-based geostatistical models for groundwater quality parameters. Water Resour. Res. 2006, 42, 11416. [Google Scholar] [CrossRef]
- Velthof, G.L.; Lesschen, J.P.; Webb, J.; Pietrzak, S.; Miatkowski, Z.; Pinto, M.; Kros, J.; Oenema, O. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 2014, 468–469, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Mencio, A.; Mas-Pla, J.; Otero, N.; Regas, O.; Boy-Roura, M.; Puig, R.; Bach, J.; Domenech, C.; Zamorano, M.; Brusi, D.; et al. Nitrate pollution of groundwater; all right..., but nothing else? Sci. Total Environ. 2016, 539, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulis, G.; Czompolyova, M.; Cerhan, J.R. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ. Res. 2002, 88, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Fazal, A.; Imaizumi, M.; Ishida, S.; Kawachi, T.; Tsuchihara, T.; Takenuchi, J.; Badiul Alam, A.H.M. Review on Groundwater Nitrate Contamination: Causes, Effects and Remedies: A Guideline for Efficient Management Strategies. J. Rainwater Catchment Syst. 2003, 8, 15–33. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, P.; Christie, P.; Zhu, Z.L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, R.T.; Gates, T.K.; Romero, E.C. Assessing the effectiveness of land and water management practices on nonpoint source nitrate levels in an alluvial stream-aquifer system. J. Contam. Hydrol. 2015, 179, 2–15. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Ground Water Vulnerability Assessment: Contamination Potential under Conditions of Uncertainty. Committee on Techniques for Assessing Ground Water Vulnerability. In Water Science and Technology Board, Commission on Geosciences, Environment, and Resources; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- U.S. Environmental Protection Agency Office of Water. Drinking Water Regulations and Health Advisories; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 1996.
- Department of Geology and Mineral Resources. China National Standard: Quality Standard for Ground Water; GB/T 14848-93; Department of Geology and Mineral Resources: Beijing, China, 1994.
- Ma, H.; Li, X.X.; Hu, C.S. Status of Nitrate Nitrogen Contamination of Groundwater in China. Chin. J. Soil Sci. 2012, 43, 1532–1536. (In Chinese) [Google Scholar]
- Yang, R.; Liu, W.J. Nitrate contamination of groundwater in an agroecosystem in Zhangye Oasis, Northwest China. Environ. Earth Sci. 2009, 61, 123–129. [Google Scholar] [CrossRef]
- Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. USA 2013, 110, 18185–18189. [Google Scholar] [CrossRef] [PubMed]
- Almasri, M.N.; Kaluarachchi, J.J. Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J. Hydrol. 2004, 295, 225–245. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Malhi, S.S. Interactions of Nitrogen with Other Nutrients and Water: Effect on Crop Yield and Quality, Nutrient Use Efficiency, Carbon Sequestration, and Environmental Pollution. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2005; pp. 341–409. [Google Scholar]
- Wakida, F.T.; Lerner, D.N. Non-agricultural sources of groundwater nitrate: A review and case study. Water Res. 2005, 39, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Tian, Z.X.; Zhang, N.; Li, X.Q. Nitrate pollution of groundwater in northern China. Agric. Ecosyst. Environ. 1996, 59, 223–231. [Google Scholar] [CrossRef]
- Mclay, C.D.; Dragten, R.; Sparling, G.; Selvarajah, N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environ. Pollut. 2001, 115, 191–204. [Google Scholar] [CrossRef]
- Yuan, G.F.; Tang, D.Y.; Sun, X.M. Water Monitoring Protocol of Chinese Ecosystem Research Network; China Environmental Science Press: Beijing, China, 2007. [Google Scholar]
- Li, S.; Yu, G.; Yu, X.; He, H.; Guo, X. A brief introduction to Chinese Ecosystem Research Network (CERN). J. Resour. Ecol. 2015, 6, 192–196. [Google Scholar]
- Zhang, X.Y.; Xu, Z.W.; Sun, X.M.; Dong, W.Y.; Ballantine, D. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010. J. Environ. Sci. 2013, 25, 1007–1014. [Google Scholar] [CrossRef]
- Kim, H.; Park, S. Hydrogeochemical Characteristics of Groundwater Highly Polluted with Nitrate in an Agricultural Area of Hongseong, Korea. Water 2016, 8, 345. [Google Scholar] [CrossRef]
- Castellano, M.J.; David, M.B. Long-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soils. Proc. Natl. Acad. Sci. USA 2014, 111, E766. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.T.; Liu, X.J.; Zhang, F.S.; Roelcke, M. Nitrogen Fertilization, Soil Nitrate Accumulation, and Policy Recommendations in Several Agricultural Regions of China. Ambio 2004, 33, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.Z.; Luo, F. Water environmental degradation of the Heihe River Basin in arid northwestern China. Environ. Monit. Assess. 2005, 108, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.J.; Qian, Y.P.; Han, L.F.; Wang, Z.M.; Li, C.; Zhao, Z.F. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China. J. Hydrol. 2011, 405, 194–208. [Google Scholar] [CrossRef]
- Fan, J.; Hao, M.D.; Malhi, S.S. Accumulation of nitrate N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review. Can. J. Soil Sci. 2010, 90, 423–429. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agro-ecosystems, sources, factors and mitigating strategies. Nutr. Cycl. Agro-Ecosyst. 2002, 46, 237–256. [Google Scholar] [CrossRef]
- Zhang, S.L.; Cai, G.X.; Wang, X.Z.; Xu, Y.H.; Zhu, Z.L.; Ferney, J.R. Losses of urea-nitrogen applied to maize on a calcareous flubo-aquic soil in North China Plain. Pedosphere 1992, 2, 171–178. [Google Scholar]
- Harter, T.; Davis, H.; Mathews, M.C.; Meyer, R.D. Shallow groundwater quality on dairy farms with irrigated forage crops. J. Contam. Hydrol. 2002, 55, 287–315. [Google Scholar] [CrossRef]
- Williams, M. Groundwater Level and Nitrate Concentration Trends on Mountain Home Air Force Base, Southwestern Idaho. Open-File Rep. 2014. [Google Scholar] [CrossRef]
- Xu, Z.W.; Zhang, X.Y.; Sun, X.M.; Yuan, G.F.; Wang, S.Z.; Liu, W.H. Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese Ecosystem Research Network (CERN) during 2004–2009. Environ. Sci. 2011, 32, 2827–2833. [Google Scholar]
- Wang, T.; Zhu, B.; Cao, M.R.; Xu, T.P.; Kuang, F.H. Nitrate pollution of groundwater in a typical small watershed in the Central Sichuan Hilly Region. J. Ecol. Rural Environ. 2006, 22, 84–87. [Google Scholar]
- Liu, H.B.; Li, Z.H.; Zhang, Y.G. Characteristics of Nitrate Distribution and Accumulation in Soil Profiles under Main Agro-land Use Types in Beijing. Sci. Agric. Sin. 2004, 37, 692–698. [Google Scholar]
- Ju, X.T.; Liu, X.J.; Zhang, F.S. Accumulation and movement of NO3−-N in soil profile in winter wheat-summer maize rotation system. Acta Pedol. Sin. 2003, 40, 538–546. [Google Scholar]
- Zhu, B.; Wang, T.; Kuang, F.; Xu, T.; Tang, J.; Wu, Y. Characteristics of nitrate leaching from hilly cropland of purple soil. Acta Sci. Circumst. 2008, 28, 525–533. [Google Scholar]
- Gaines, T.P.; Gaines, S.T. Soil texture effect on nitrate leaching in soil percolates. Commun. Soil Sci. Plant Anal. 1994, 25, 2561–2570. [Google Scholar] [CrossRef]
- Jamieson, R.C.; Gordon, R.J.; Sharples, K.E.; Stratton, G.W.; Madani, A. Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. Can. Biosyst. Eng. 2002, 44, 1–1. [Google Scholar]
- Su, Y.Z.; Yang, R. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China. J. Geochem. Explor. 2008, 98, 57–64. [Google Scholar] [CrossRef]
- Yuan, X.M.; Tong, Y.A.; Yang, X.Y.; Li, X.L.; Zhang, F.S. Effect of phosphate application on soil nitrate nitrogen accumulation. Plant Nutr. Fertil. Sci. 2000, 6, 397–403. [Google Scholar]
- Yang, Z.P.; Mei, X.; Gao, F.; Li, Y.; Guo, J. Effect of Different Nitrogen Fertilizer Types and Application Measures on Temporal and Spatial Variation of Soil Nitrate-Nitrogen at Cucumber Field. J. Environ. Prot. 2013, 4, 129–135. [Google Scholar] [CrossRef]
- Yang, R.; Su, Y.Z.; Wang, T.; Yang, Q. Effect of chemical and organic fertilization on soil carbon and nitrogen accumulation in a newly cultivated farmland. J. Integr. Agric. 2016, 15, 658–666. [Google Scholar] [CrossRef]
- Campbell, C.A.; Dejong, R.; Zentner, R.P. Effect of cropping, summer fallow and fertilizer nitrogen on nitrate-nitrogen lost by leaching on a Brown Chernozemic soil. Can. J. Soil Sci. 1984, 64, 61–74. [Google Scholar] [CrossRef]
- Vos, J.; van der Putten, P.E.L.; Hussein, M.H.; van Dam, A.M.; Leffelaar, P.A. Field observations on nitrogen catch crops. II. Root length and root length distribution in relation to species and nitrogen supply. Plant Soil 1998, 210, 149–155. [Google Scholar] [CrossRef]
- Malki, M.; Bouchaou, L.; Hirich, A.; Ait, B.Y.; Choukrallah, R. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci. Total Environ. 2017, 574, 760–770. [Google Scholar] [CrossRef] [PubMed]
Station Name | Longitude (E) | Latitude (N) | Altitude (m) | MAAT (°C) | MAP (mm) | N Application Rate (kg·hm−2) | Irrigation Method |
---|---|---|---|---|---|---|---|
HLA | 126°55′39″ | 47°27′15″ | 236 | 1.5 | 400–650 | 120 | Non-irrigation in growing season |
SYA | 123°22′05″ | 41°31′06″ | 41 | 7–8 | 650–700 | 75 | Well irrigation |
CSA | 120°25′08″ | 31°19′46″ | 1.3 | 15.5 | 1038 | 466 | Surface water irrigation |
HJA | 108°18′ | 24°43′ | 272.0–647.2 | 19.9 | 1389.1 | 220 | Surface water irrigation |
TYA | 111°26′26″ | 28°55′46″ | 106 | 16 | 1448 | 270 | Surface water irrigation |
YTA | 116°33′18″ | 28°07′23″ | 45 | 17.8 | 1785 | 150 | Furrow irrigation |
YGA | 105°27′21″ | 31°16′18″ | 420 | 17.5 | 826 | 300 | Rain-fed |
QYA | 115°02′04″ | 26°26′40″ | 76 | -- | -- | 320 | Surface water irrigation |
CLD | 80°43′39″ | 37°01′15″ | 1306 | 11.9 | 33 | 468 | Furrow irrigation |
FKD | 87°55′58″ | 44°17′26″ | 460 | 6.6 | 164 | 275 | Drip irrigation |
LZD | 100°07′42″ | 39°20′59″ | 1375 | 7.7 | 118.4 | 122 | Flood irrigation |
NMD | 120°42′00″ | 42°55′47″ | 363 | 3–7 | 350–500 | 207 | Flood irrigation |
SPD | 105°00′01″ | 37°16′04″ | 1350 | 9.6 | 186 | 256 | Surface water irrigation |
ESD | 110°11′29″ | 39°29′37″ | 1290 | 6.2 | 348 | 175 | Furrow irrigation |
AKA | 80°51′40″ | 40°37′49″ | 1028 | 11.2 | 45.7 | 160 | Drip irrigation |
ASA | 109°19′12″ | 36°14′27″ | 1083 | 8.8 | 540 | 120 | Rain-fed |
CWA | 107°40′59″ | 35°14′27″ | 1200 | 9.1 | 580 | 345 | Rain-fed |
YCA | 116°34′13″ | 36°49′51″ | 22 | 13.3 | 555 | 510 | Flood irrigation |
FQA | 114°19′43″ | 35°00′40″ | 67.5 | 13.9 | 605 | 345 | Well irrigation |
LCA | 114°41′47″ | 37°53′26″ | 50 | 13.1 | 582 | 390 | Sprinkling irrigation |
LSA | 91°12′20″ | 29°24′22″ | 3688 | 4–8 | 300–550 | 144 | Surface water irrigation |
Sites | Soil Type (USDA) | Land Use Type | Soil Saturation Moisture Content | Soil Field Capacity | Sandy Particle Content (0–100 cm) | Soil Nitrate-N Content (20 cm Depth) |
---|---|---|---|---|---|---|
% | (mg·kg−1) | |||||
HLA | Black soil | Maize-soybean | 41.3 | 35.3 | 27.0 | — |
SYA | Aquic brown soil | Maize | 35.8 | 28.8 | 12.6 | — |
CSA | Paddy soil | Paddy-wheat | 33.9 | 29.8 | 9.4 | 8.7 |
TYA | Red soil | Paddy | 29.0 | 26.6 | 17.0 | 2.4 |
YTA | Red soil | Peanut | 33.8 | 26.5 | 21.6 | 2.4 |
YGA | Purple soil | Maize-wheat | 26.6 | 21.3 | 18.0 | 3.5 |
QYA | Red soil | Paddy | — | 25.6 | 18.0 | — |
SPD | Aeolian sandy soil | Wheat-maize | — | 23.5 | 72.7 | 1.5 |
LZD | Aeolian sandy soil | Wheat-maize | 42.3 | 21.7 | 86.6 | 3.2 |
ASA | Loess soil | Maize-soybean | 45.2 | 18.8 | 28.6 | 5.3 |
CWA | Malan loess | Maize-wheat | 38.7 | 21.0 | 10.7 | 7.1 |
FQA | Fluvo-aquic soil | Maize-wheat | 65.8 | 38.8 | 31.5 | 29.0 |
YCA | Fluvo-aquic soil | Maize-wheat | 51.4 | 36.4 | 15.3 | 47.0 |
LCA | Aquic cinnamon soil | Maize-wheat | 51.0 | 36.7 | 52.7 | 28.6 |
LSA | Meadow soil | Wheat-barley | 44.8 | 25.6 | 67.1 | — |
Station Name | Number of Wells | Average Groundwater Level (m) (Mean ± S.E.) | NO3−-N (mg·L−1) | >10 mg·L−1 Frequency of Nitrate-N (%) | ||
---|---|---|---|---|---|---|
Max | Mean ± S.E. | |||||
Northeast agricultural area | HLA | 1 | 20.4 ± 2.0 | 0.45 | 0.29 ± 0.05 | 0 |
SYA | 2 | 7.8 ± 3.7 | 1.07 | 0.23 ± 0.18 | 0 | |
South agricultural area | CSA | 1 | 0.54 ± 0.4 | 7.95 | 1.33 ± 1.06 | 0 |
HJA | 1 | 3.53 ± 2.12 | 0.9 | 0.90 ± 0.09 | 0 | |
TYA | 1 | 2.62 ± 0.63 | 4.23 | 0.81 ± 0.70 | 0 | |
YTA | 2 | 3.85 ± 1.25 | 2.5 | 1.11 ± 0.79 | 0 | |
YGA | 3 | 2.28 ± 1.37 | 26.08 | 6.80 ± 4.09 | 16.8 | |
QYA | 2 | 2.57 ± 1.33 | 12.09 | 1.06 ± 1.38 | 15 | |
Northwest oasis agricultural and pastoral area | CLD | 3 | 14.5 ± 0.2 | 9.62 | 4.04 ± 1.26 | 0 |
FKD | 2 | 3.4 ± 0.4 | 3.52 | 1.87 ± 0.63 | 0 | |
LZD | 2 | 4.3 ± 0.6 | 21.5 | 8.42 ± 1.85 | 40.9 | |
NMD | 3 | 7.6 ± 0.2 | 6.35 | 0.97 ± 0.75 | 0 | |
SPD | 1 | 15.2 ± 0.4 | 6.37 | 4.54 ± 1.60 | 0 | |
ESD | 1 | 9.98 ± 2.15 | 10.52 | 3.17 ± 2.07 | 48.8 | |
North China agricultural | AKA | 2 | 2.5 ± 0.2 | 13.68 | 4.81 ± 0.29 | 50 |
ASA | 1 | 12.0 ± 0.4 | 97.39 | 33.26 ± 22.47 | 96 | |
CWA | 1 | 84.5 ± 2.8 | 1.51 | 0.35 ± 0.32 | 0 | |
YCA | 2 | 2.4 ± 0.6 | 17.18 | 2.33 ± 1.92 | 29.7 | |
FQA | 4 | 4.2 ± 0.43 | 3.9 | 0.79 ± 0.63 | 0 | |
LCA | 1 | 37.3 ± 3.7 | 8.49 | 4.49 ± 1.40 | 0 | |
Tibet plateau agricultural | LSA | 3 | 2.8 ± 1.6 | 8.13 | 6.05 ± 0.07 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, Z.; Du, J.; Zhao, L.; Chen, L.; Zhu, X.; Lin, P.; Fang, S.; Zhao, M.; Tian, Q. Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014. Sustainability 2018, 10, 1393. https://doi.org/10.3390/su10051393
Li J, He Z, Du J, Zhao L, Chen L, Zhu X, Lin P, Fang S, Zhao M, Tian Q. Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014. Sustainability. 2018; 10(5):1393. https://doi.org/10.3390/su10051393
Chicago/Turabian StyleLi, Jing, Zhibin He, Jun Du, Liwen Zhao, Longfei Chen, Xi Zhu, Pengfei Lin, Shu Fang, Minmin Zhao, and Quanyan Tian. 2018. "Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014" Sustainability 10, no. 5: 1393. https://doi.org/10.3390/su10051393
APA StyleLi, J., He, Z., Du, J., Zhao, L., Chen, L., Zhu, X., Lin, P., Fang, S., Zhao, M., & Tian, Q. (2018). Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014. Sustainability, 10(5), 1393. https://doi.org/10.3390/su10051393