Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014
Abstract
1. Introduction
2. Materials and Methods
2.1. Monitoring Sites
2.2. Monitoring Methods
2.3. Statistical Methods
3. Results
3.1. Nitrate Concentrations in Groundwater under Different Agro-Ecosystems
3.2. Temporal Variation of Nitrate Concentrations in Groundwater under Different Agro-Ecosystems
3.3. Nitrate Concentration in Groundwater under Different Soil Types
4. Discussion
4.1. Spatial Variation of Nitrate-N Concentrations in Groundwater
4.2. Temporal Variation of Nitrate-N Concentrations in Groundwater
4.3. Nitrate-N Concentrations in Groundwater under Different Soil Types
4.4. Mitigation Measures
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bárdossy, A. Copula-based geostatistical models for groundwater quality parameters. Water Resour. Res. 2006, 42, 11416. [Google Scholar] [CrossRef]
- Velthof, G.L.; Lesschen, J.P.; Webb, J.; Pietrzak, S.; Miatkowski, Z.; Pinto, M.; Kros, J.; Oenema, O. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 2014, 468–469, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Mencio, A.; Mas-Pla, J.; Otero, N.; Regas, O.; Boy-Roura, M.; Puig, R.; Bach, J.; Domenech, C.; Zamorano, M.; Brusi, D.; et al. Nitrate pollution of groundwater; all right..., but nothing else? Sci. Total Environ. 2016, 539, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Gulis, G.; Czompolyova, M.; Cerhan, J.R. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ. Res. 2002, 88, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Fazal, A.; Imaizumi, M.; Ishida, S.; Kawachi, T.; Tsuchihara, T.; Takenuchi, J.; Badiul Alam, A.H.M. Review on Groundwater Nitrate Contamination: Causes, Effects and Remedies: A Guideline for Efficient Management Strategies. J. Rainwater Catchment Syst. 2003, 8, 15–33. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, P.; Christie, P.; Zhu, Z.L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.T.; Gates, T.K.; Romero, E.C. Assessing the effectiveness of land and water management practices on nonpoint source nitrate levels in an alluvial stream-aquifer system. J. Contam. Hydrol. 2015, 179, 2–15. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Ground Water Vulnerability Assessment: Contamination Potential under Conditions of Uncertainty. Committee on Techniques for Assessing Ground Water Vulnerability. In Water Science and Technology Board, Commission on Geosciences, Environment, and Resources; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- U.S. Environmental Protection Agency Office of Water. Drinking Water Regulations and Health Advisories; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 1996.
- Department of Geology and Mineral Resources. China National Standard: Quality Standard for Ground Water; GB/T 14848-93; Department of Geology and Mineral Resources: Beijing, China, 1994.
- Ma, H.; Li, X.X.; Hu, C.S. Status of Nitrate Nitrogen Contamination of Groundwater in China. Chin. J. Soil Sci. 2012, 43, 1532–1536. (In Chinese) [Google Scholar]
- Yang, R.; Liu, W.J. Nitrate contamination of groundwater in an agroecosystem in Zhangye Oasis, Northwest China. Environ. Earth Sci. 2009, 61, 123–129. [Google Scholar] [CrossRef]
- Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. USA 2013, 110, 18185–18189. [Google Scholar] [CrossRef] [PubMed]
- Almasri, M.N.; Kaluarachchi, J.J. Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J. Hydrol. 2004, 295, 225–245. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Malhi, S.S. Interactions of Nitrogen with Other Nutrients and Water: Effect on Crop Yield and Quality, Nutrient Use Efficiency, Carbon Sequestration, and Environmental Pollution. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2005; pp. 341–409. [Google Scholar]
- Wakida, F.T.; Lerner, D.N. Non-agricultural sources of groundwater nitrate: A review and case study. Water Res. 2005, 39, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Tian, Z.X.; Zhang, N.; Li, X.Q. Nitrate pollution of groundwater in northern China. Agric. Ecosyst. Environ. 1996, 59, 223–231. [Google Scholar] [CrossRef]
- Mclay, C.D.; Dragten, R.; Sparling, G.; Selvarajah, N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environ. Pollut. 2001, 115, 191–204. [Google Scholar] [CrossRef]
- Yuan, G.F.; Tang, D.Y.; Sun, X.M. Water Monitoring Protocol of Chinese Ecosystem Research Network; China Environmental Science Press: Beijing, China, 2007. [Google Scholar]
- Li, S.; Yu, G.; Yu, X.; He, H.; Guo, X. A brief introduction to Chinese Ecosystem Research Network (CERN). J. Resour. Ecol. 2015, 6, 192–196. [Google Scholar]
- Zhang, X.Y.; Xu, Z.W.; Sun, X.M.; Dong, W.Y.; Ballantine, D. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010. J. Environ. Sci. 2013, 25, 1007–1014. [Google Scholar] [CrossRef]
- Kim, H.; Park, S. Hydrogeochemical Characteristics of Groundwater Highly Polluted with Nitrate in an Agricultural Area of Hongseong, Korea. Water 2016, 8, 345. [Google Scholar] [CrossRef]
- Castellano, M.J.; David, M.B. Long-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soils. Proc. Natl. Acad. Sci. USA 2014, 111, E766. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.T.; Liu, X.J.; Zhang, F.S.; Roelcke, M. Nitrogen Fertilization, Soil Nitrate Accumulation, and Policy Recommendations in Several Agricultural Regions of China. Ambio 2004, 33, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.Z.; Luo, F. Water environmental degradation of the Heihe River Basin in arid northwestern China. Environ. Monit. Assess. 2005, 108, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.J.; Qian, Y.P.; Han, L.F.; Wang, Z.M.; Li, C.; Zhao, Z.F. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China. J. Hydrol. 2011, 405, 194–208. [Google Scholar] [CrossRef]
- Fan, J.; Hao, M.D.; Malhi, S.S. Accumulation of nitrate N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review. Can. J. Soil Sci. 2010, 90, 423–429. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agro-ecosystems, sources, factors and mitigating strategies. Nutr. Cycl. Agro-Ecosyst. 2002, 46, 237–256. [Google Scholar] [CrossRef]
- Zhang, S.L.; Cai, G.X.; Wang, X.Z.; Xu, Y.H.; Zhu, Z.L.; Ferney, J.R. Losses of urea-nitrogen applied to maize on a calcareous flubo-aquic soil in North China Plain. Pedosphere 1992, 2, 171–178. [Google Scholar]
- Harter, T.; Davis, H.; Mathews, M.C.; Meyer, R.D. Shallow groundwater quality on dairy farms with irrigated forage crops. J. Contam. Hydrol. 2002, 55, 287–315. [Google Scholar] [CrossRef]
- Williams, M. Groundwater Level and Nitrate Concentration Trends on Mountain Home Air Force Base, Southwestern Idaho. Open-File Rep. 2014. [Google Scholar] [CrossRef][Green Version]
- Xu, Z.W.; Zhang, X.Y.; Sun, X.M.; Yuan, G.F.; Wang, S.Z.; Liu, W.H. Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese Ecosystem Research Network (CERN) during 2004–2009. Environ. Sci. 2011, 32, 2827–2833. [Google Scholar]
- Wang, T.; Zhu, B.; Cao, M.R.; Xu, T.P.; Kuang, F.H. Nitrate pollution of groundwater in a typical small watershed in the Central Sichuan Hilly Region. J. Ecol. Rural Environ. 2006, 22, 84–87. [Google Scholar]
- Liu, H.B.; Li, Z.H.; Zhang, Y.G. Characteristics of Nitrate Distribution and Accumulation in Soil Profiles under Main Agro-land Use Types in Beijing. Sci. Agric. Sin. 2004, 37, 692–698. [Google Scholar]
- Ju, X.T.; Liu, X.J.; Zhang, F.S. Accumulation and movement of NO3−-N in soil profile in winter wheat-summer maize rotation system. Acta Pedol. Sin. 2003, 40, 538–546. [Google Scholar]
- Zhu, B.; Wang, T.; Kuang, F.; Xu, T.; Tang, J.; Wu, Y. Characteristics of nitrate leaching from hilly cropland of purple soil. Acta Sci. Circumst. 2008, 28, 525–533. [Google Scholar]
- Gaines, T.P.; Gaines, S.T. Soil texture effect on nitrate leaching in soil percolates. Commun. Soil Sci. Plant Anal. 1994, 25, 2561–2570. [Google Scholar] [CrossRef]
- Jamieson, R.C.; Gordon, R.J.; Sharples, K.E.; Stratton, G.W.; Madani, A. Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. Can. Biosyst. Eng. 2002, 44, 1–1. [Google Scholar]
- Su, Y.Z.; Yang, R. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China. J. Geochem. Explor. 2008, 98, 57–64. [Google Scholar] [CrossRef]
- Yuan, X.M.; Tong, Y.A.; Yang, X.Y.; Li, X.L.; Zhang, F.S. Effect of phosphate application on soil nitrate nitrogen accumulation. Plant Nutr. Fertil. Sci. 2000, 6, 397–403. [Google Scholar]
- Yang, Z.P.; Mei, X.; Gao, F.; Li, Y.; Guo, J. Effect of Different Nitrogen Fertilizer Types and Application Measures on Temporal and Spatial Variation of Soil Nitrate-Nitrogen at Cucumber Field. J. Environ. Prot. 2013, 4, 129–135. [Google Scholar] [CrossRef]
- Yang, R.; Su, Y.Z.; Wang, T.; Yang, Q. Effect of chemical and organic fertilization on soil carbon and nitrogen accumulation in a newly cultivated farmland. J. Integr. Agric. 2016, 15, 658–666. [Google Scholar] [CrossRef]
- Campbell, C.A.; Dejong, R.; Zentner, R.P. Effect of cropping, summer fallow and fertilizer nitrogen on nitrate-nitrogen lost by leaching on a Brown Chernozemic soil. Can. J. Soil Sci. 1984, 64, 61–74. [Google Scholar] [CrossRef]
- Vos, J.; van der Putten, P.E.L.; Hussein, M.H.; van Dam, A.M.; Leffelaar, P.A. Field observations on nitrogen catch crops. II. Root length and root length distribution in relation to species and nitrogen supply. Plant Soil 1998, 210, 149–155. [Google Scholar] [CrossRef]
- Malki, M.; Bouchaou, L.; Hirich, A.; Ait, B.Y.; Choukrallah, R. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci. Total Environ. 2017, 574, 760–770. [Google Scholar] [CrossRef] [PubMed]
Station Name | Longitude (E) | Latitude (N) | Altitude (m) | MAAT (°C) | MAP (mm) | N Application Rate (kg·hm−2) | Irrigation Method |
---|---|---|---|---|---|---|---|
HLA | 126°55′39″ | 47°27′15″ | 236 | 1.5 | 400–650 | 120 | Non-irrigation in growing season |
SYA | 123°22′05″ | 41°31′06″ | 41 | 7–8 | 650–700 | 75 | Well irrigation |
CSA | 120°25′08″ | 31°19′46″ | 1.3 | 15.5 | 1038 | 466 | Surface water irrigation |
HJA | 108°18′ | 24°43′ | 272.0–647.2 | 19.9 | 1389.1 | 220 | Surface water irrigation |
TYA | 111°26′26″ | 28°55′46″ | 106 | 16 | 1448 | 270 | Surface water irrigation |
YTA | 116°33′18″ | 28°07′23″ | 45 | 17.8 | 1785 | 150 | Furrow irrigation |
YGA | 105°27′21″ | 31°16′18″ | 420 | 17.5 | 826 | 300 | Rain-fed |
QYA | 115°02′04″ | 26°26′40″ | 76 | -- | -- | 320 | Surface water irrigation |
CLD | 80°43′39″ | 37°01′15″ | 1306 | 11.9 | 33 | 468 | Furrow irrigation |
FKD | 87°55′58″ | 44°17′26″ | 460 | 6.6 | 164 | 275 | Drip irrigation |
LZD | 100°07′42″ | 39°20′59″ | 1375 | 7.7 | 118.4 | 122 | Flood irrigation |
NMD | 120°42′00″ | 42°55′47″ | 363 | 3–7 | 350–500 | 207 | Flood irrigation |
SPD | 105°00′01″ | 37°16′04″ | 1350 | 9.6 | 186 | 256 | Surface water irrigation |
ESD | 110°11′29″ | 39°29′37″ | 1290 | 6.2 | 348 | 175 | Furrow irrigation |
AKA | 80°51′40″ | 40°37′49″ | 1028 | 11.2 | 45.7 | 160 | Drip irrigation |
ASA | 109°19′12″ | 36°14′27″ | 1083 | 8.8 | 540 | 120 | Rain-fed |
CWA | 107°40′59″ | 35°14′27″ | 1200 | 9.1 | 580 | 345 | Rain-fed |
YCA | 116°34′13″ | 36°49′51″ | 22 | 13.3 | 555 | 510 | Flood irrigation |
FQA | 114°19′43″ | 35°00′40″ | 67.5 | 13.9 | 605 | 345 | Well irrigation |
LCA | 114°41′47″ | 37°53′26″ | 50 | 13.1 | 582 | 390 | Sprinkling irrigation |
LSA | 91°12′20″ | 29°24′22″ | 3688 | 4–8 | 300–550 | 144 | Surface water irrigation |
Sites | Soil Type (USDA) | Land Use Type | Soil Saturation Moisture Content | Soil Field Capacity | Sandy Particle Content (0–100 cm) | Soil Nitrate-N Content (20 cm Depth) |
---|---|---|---|---|---|---|
% | (mg·kg−1) | |||||
HLA | Black soil | Maize-soybean | 41.3 | 35.3 | 27.0 | — |
SYA | Aquic brown soil | Maize | 35.8 | 28.8 | 12.6 | — |
CSA | Paddy soil | Paddy-wheat | 33.9 | 29.8 | 9.4 | 8.7 |
TYA | Red soil | Paddy | 29.0 | 26.6 | 17.0 | 2.4 |
YTA | Red soil | Peanut | 33.8 | 26.5 | 21.6 | 2.4 |
YGA | Purple soil | Maize-wheat | 26.6 | 21.3 | 18.0 | 3.5 |
QYA | Red soil | Paddy | — | 25.6 | 18.0 | — |
SPD | Aeolian sandy soil | Wheat-maize | — | 23.5 | 72.7 | 1.5 |
LZD | Aeolian sandy soil | Wheat-maize | 42.3 | 21.7 | 86.6 | 3.2 |
ASA | Loess soil | Maize-soybean | 45.2 | 18.8 | 28.6 | 5.3 |
CWA | Malan loess | Maize-wheat | 38.7 | 21.0 | 10.7 | 7.1 |
FQA | Fluvo-aquic soil | Maize-wheat | 65.8 | 38.8 | 31.5 | 29.0 |
YCA | Fluvo-aquic soil | Maize-wheat | 51.4 | 36.4 | 15.3 | 47.0 |
LCA | Aquic cinnamon soil | Maize-wheat | 51.0 | 36.7 | 52.7 | 28.6 |
LSA | Meadow soil | Wheat-barley | 44.8 | 25.6 | 67.1 | — |
Station Name | Number of Wells | Average Groundwater Level (m) (Mean ± S.E.) | NO3−-N (mg·L−1) | >10 mg·L−1 Frequency of Nitrate-N (%) | ||
---|---|---|---|---|---|---|
Max | Mean ± S.E. | |||||
Northeast agricultural area | HLA | 1 | 20.4 ± 2.0 | 0.45 | 0.29 ± 0.05 | 0 |
SYA | 2 | 7.8 ± 3.7 | 1.07 | 0.23 ± 0.18 | 0 | |
South agricultural area | CSA | 1 | 0.54 ± 0.4 | 7.95 | 1.33 ± 1.06 | 0 |
HJA | 1 | 3.53 ± 2.12 | 0.9 | 0.90 ± 0.09 | 0 | |
TYA | 1 | 2.62 ± 0.63 | 4.23 | 0.81 ± 0.70 | 0 | |
YTA | 2 | 3.85 ± 1.25 | 2.5 | 1.11 ± 0.79 | 0 | |
YGA | 3 | 2.28 ± 1.37 | 26.08 | 6.80 ± 4.09 | 16.8 | |
QYA | 2 | 2.57 ± 1.33 | 12.09 | 1.06 ± 1.38 | 15 | |
Northwest oasis agricultural and pastoral area | CLD | 3 | 14.5 ± 0.2 | 9.62 | 4.04 ± 1.26 | 0 |
FKD | 2 | 3.4 ± 0.4 | 3.52 | 1.87 ± 0.63 | 0 | |
LZD | 2 | 4.3 ± 0.6 | 21.5 | 8.42 ± 1.85 | 40.9 | |
NMD | 3 | 7.6 ± 0.2 | 6.35 | 0.97 ± 0.75 | 0 | |
SPD | 1 | 15.2 ± 0.4 | 6.37 | 4.54 ± 1.60 | 0 | |
ESD | 1 | 9.98 ± 2.15 | 10.52 | 3.17 ± 2.07 | 48.8 | |
North China agricultural | AKA | 2 | 2.5 ± 0.2 | 13.68 | 4.81 ± 0.29 | 50 |
ASA | 1 | 12.0 ± 0.4 | 97.39 | 33.26 ± 22.47 | 96 | |
CWA | 1 | 84.5 ± 2.8 | 1.51 | 0.35 ± 0.32 | 0 | |
YCA | 2 | 2.4 ± 0.6 | 17.18 | 2.33 ± 1.92 | 29.7 | |
FQA | 4 | 4.2 ± 0.43 | 3.9 | 0.79 ± 0.63 | 0 | |
LCA | 1 | 37.3 ± 3.7 | 8.49 | 4.49 ± 1.40 | 0 | |
Tibet plateau agricultural | LSA | 3 | 2.8 ± 1.6 | 8.13 | 6.05 ± 0.07 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, Z.; Du, J.; Zhao, L.; Chen, L.; Zhu, X.; Lin, P.; Fang, S.; Zhao, M.; Tian, Q. Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014. Sustainability 2018, 10, 1393. https://doi.org/10.3390/su10051393
Li J, He Z, Du J, Zhao L, Chen L, Zhu X, Lin P, Fang S, Zhao M, Tian Q. Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014. Sustainability. 2018; 10(5):1393. https://doi.org/10.3390/su10051393
Chicago/Turabian StyleLi, Jing, Zhibin He, Jun Du, Liwen Zhao, Longfei Chen, Xi Zhu, Pengfei Lin, Shu Fang, Minmin Zhao, and Quanyan Tian. 2018. "Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014" Sustainability 10, no. 5: 1393. https://doi.org/10.3390/su10051393
APA StyleLi, J., He, Z., Du, J., Zhao, L., Chen, L., Zhu, X., Lin, P., Fang, S., Zhao, M., & Tian, Q. (2018). Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014. Sustainability, 10(5), 1393. https://doi.org/10.3390/su10051393