Characterization of Southern Illinois Water Treatment Residues for Sustainable Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. WTR Sample Collection and Preparation
2.2. Analytical Methods
3. Results and Discussion
3.1. Physicochemical Analysis
3.2. Total Metal Analysis
3.3. Toxicity Analysis
3.4. Analysis of WTR Nutrient Compositions
3.5. Influence of WTR Application on Phosphorus
3.6. Mineralogical Analysis
3.7. DTPA Extractable Micronutrient
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trinh, T.K.; Kang, L.S. Response surface methodological approach to optimize the coagulation–flocculation process in drinking water treatment. Chem. Eng. Res. Des. 2011, 89, 1126–1135. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Drinking Water Treatment Plant Residuals Management Technical Report: Summary of Residuals Generation, Treatment, and Disposal at Large Community Water Systems. 2011. Available online: https://www.epa.gov/sites/production/files/2015-11/documents/dw-treatment-residuals-mgmt-tech-report-sept-2011.pdf (accessed on April 2018).
- Agyin-Birikorang, S.; O’Connor, G. Aging effects on reactivity of an aluminum-based drinking-water treatment residual as a soil amendment. Sci. Total Environ. 2009, 407, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Illinois Environmental Protection Agency (IDPH); Illinois Department of Public Health (IEPA). Final Report on Lead in Public Water Systems; 2017. Available online: http://www.epa.illinois.gov/Assets/iepa/citizens/Lead-PWSFinalReport.pdf (accessed on April 2018).
- Ahmad, T.; Ahmad, K.; Alam, M. Characterization of Water Treatment Plant’s Sludge and its Safe Disposal Options. Procedia Environ. Sci. 2016, 35, 950–955. [Google Scholar] [CrossRef]
- Callahan, J.; Johnston, T. Sustainable Solution to the Disposal Epidemic: Beneficial Use of Water Treatment Residual in Manufactured Topsoil. Proc. Water Environ. Fed. 2013, 2013, 140–156. [Google Scholar] [CrossRef]
- Castaldi, P.; Mele, E.; Silvetti, M.; Garau, G.; Deiana, S. Water treatment residues as accumulators of oxoanions in soil. Sorption of arsenate and phosphate anions from an aqueous solution. J. Hazard. Mater. 2014, 264, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, J.; Barbarick, K.; Elliott, H. Drinking water treatment residuals: A review of recent uses. J. Environ. Qual. 2011, 40, 1–12. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, G.; Elliott, H.; Lu, R. Characterizing water treatment residuals phosphorus retention. Annu. Proc. Soil Crop Sci. Soc. Fla. 2002, 61, 67–73. [Google Scholar]
- Schmitt, C.; Hall, J. Analytical characterization of water-treatment-plant sludge. J. AWWA 1975, 67, 40–42. [Google Scholar] [CrossRef]
- Titshall, L.; Hughes, J. Characterisation of some South African water treatment residues and implications for land application. Water SA 2005, 31, 299–308. [Google Scholar] [CrossRef]
- Chen, H.; Ma, X.; Dai, H. Reuse of water purification sludge as raw material in cement production. Cem. Concr. Compos. 2010, 32, 436–439. [Google Scholar] [CrossRef]
- Huang, C.; Pan, J.R.; Liu, Y. Mixing water treatment residual with excavation waste soil in brick and artificial aggregate making. J. Environ. Eng. 2005, 131, 272–277. [Google Scholar] [CrossRef]
- Rodríguez, N.H.; Ramírez, S.M.; Varela, M.B.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions. Cem. Concr. Res. 2010, 40, 778–786. [Google Scholar] [CrossRef]
- Teixeira, S.; Santos, G.; Souza, A.; Alessio, P.; Souza, S.; Souza, N. The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Appl. Clay Sci. 2011, 53, 561–565. [Google Scholar] [CrossRef]
- Babatunde, A.; Zhao, Y.; Doyle, R.; Rackard, S.; Kumar, J.; Hu, Y. Performance evaluation and prediction for a pilot two-stage on-site constructed wetland system employing dewatered alum sludge as main substrate. Bioresour. Technol. 2011, 102, 5645–5652. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.W.; Ghyselbrecht, K.; Santos, R.M.; Martens, J.A.; Swennen, R.; Cappuyns, V.; Meesschaert, B. Adsorption of multi-heavy metals onto water treatment residuals: Sorption capacities and applications. Chem. Eng. J. 2012, 200, 405–415. [Google Scholar] [CrossRef]
- Chu, W. Dye removal from textile dye wastewater using recycled alum sludge. Water Res. 2001, 35, 3147–3152. [Google Scholar] [CrossRef]
- Dayton, E.A.; Basta, N.T.; Jakober, C.A.; Hattey, J.A. Using treatment residuals to reduce phosphorus in agricultural runoff. J. AWWA 2003, 95, 151–158. [Google Scholar] [CrossRef]
- Hardy, M.; Makris, K.C.; Sarkar, D.; Datta, R. A Packed Bed Reactor System to Treat Chromium-Contaminated Shipyard Stormwater. In Proceedings of the International Annual Meetings, Agronomy Abstracts, New Orleans, LA, USA, 4–8 November 2007. [Google Scholar]
- Hovsepyan, A.; Bonzongo, J.-C.J. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation. J. Hazard. Mater. 2009, 164, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.C.; Sarkar, D.; Datta, R. Aluminum-based drinking-water treatment residuals: A novel sorbent for perchlorate removal. Environ. Pollut. 2006, 140, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Quinones, K.D.; Hovsepyan, A.; Oppong-Anane, A.; Bonzongo, J.-C.J. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals. J. Hazard. Mater. 2016, 307, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pei, Y. The removal of hydrogen sulfide in solution by ferric and alum water treatment residuals. Chemosphere 2012, 88, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Capito, M.; Cath, T.Y. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate. J. Hazard. Mater. 2013, 260, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Babatunde, A.; Hu, Y.; Kumar, J.; Zhao, X. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 2011, 46, 278–283. [Google Scholar] [CrossRef]
- Codling, E.E. Effects of soil acidity and cropping on solubility of by-product-immobilized phosphorus and extractable aluminum, calcium, and iron from two high-phosphorus soils. Soil Sci. 2008, 173, 552–559. [Google Scholar] [CrossRef]
- Fan, J.; He, Z.; Ma, L.Q.; Yang, Y.; Yang, X.; Stoffella, P.J. Immobilization of copper in contaminated sandy soils using calcium water treatment residue. J. Hazard. Mater. 2011, 189, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Oladeji, O.O.; Sartain, J.B.; O’Connor, G.A. Land application of aluminum water treatment residual: Aluminum phytoavailability and forage yield. Commun. Soil Sci. Plant Anal. 2009, 40, 1483–1498. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Y.; Pei, Y. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China. J. Hazard. Mater. 2012, 237, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.; James, B. Studying dried, stored soil samples—Some pitfalls 1. Soil Sci. Soc. Am. J. 1980, 44, 721–724. [Google Scholar] [CrossRef]
- Laboratory, R.S. Diagnosis and Improvement of Saline and Alkali Soils; United States Government Publishing Office: Washington, DC, USA, 1954.
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Simard, R. Ammonium acetate-extractable elements. Soil Sampl. Methods Anal. 1993, 1, 39–42. [Google Scholar]
- Liang, J.; Karamanos, R. DTPA-extractable Fe, Mn, Cu and Zn. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; CRC Press: Boca Raton, FL, USA, 1993; pp. 87–90. [Google Scholar]
- Hartz, T. Soil Testing for Nutrient Availability: Procedures and Interpretation for California Vegetable Crop Production; Department of Plant Sciences: Davis, CA, USA, 2007. [Google Scholar]
- Lefticariu, L.; Sutton, S.R.; Bender, K.S.; Lefticariu, M.; Pentrak, M.; Stucki, J.W. Impacts of detrital nano-and micro-scale particles (dNP) on contaminant dynamics in a coal mine AMD treatment system. Sci. Total Environ. 2017, 575, 941–955. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y. Table of Key Lines in X-ray Powder Diffraction Patterns of Minerals in Clays and Associated Rocks; Geological Survey: Reston, VA, USA, 1977.
- American Society of Civil Engineers; American Water Works Association; The United States Environmental Protection Agency. Technology Transfer Handbook: Management of Water Treatment Plant Residuals; ASCE Publications: New York, NY, USA; Denver, CO, USA, 1996.
- Basta, N.T. Examples and case studies of beneficial reuse of municipal by-products. In Land Application of Agricultural, Industrial, and Municipal by-Products; Soil Science Society of America: Fitchburg, WI, USA, 2000; pp. 481–504. [Google Scholar]
- Dayton, E.; Basta, N. Characterization of drinking water treatment residuals for use as a soil substitute. Water Environ. Res. 2001, 73, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Elliott, H.; Dempsey, B.; Hamilton, D.; DeWolfe, J. Land Application of Water Treatment Sludges: Impact and Management; American Water Works Association Research Foundation: Denver, CO, USA, 1990. [Google Scholar]
- Rengasamy, P.; Oades, J.; Hancock, T. Improvement of soil structure and plant growth by addition of alum sludge. Commun. Soil Sci. Plant. Anal. 1980, 11, 533–545. [Google Scholar] [CrossRef]
- Elliott, H.A.; Singer, L.M. Effect of water treatment sludge on growth and elemental composition of tomato (Lycopersicon esculentum) shoots. Commun. Soil Sci. Plant Anal. 1988, 19, 345–354. [Google Scholar] [CrossRef]
- Codling, E.E.; Mulchi, C.L.; Chaney, R.L. Biomass yield and phosphorus availability to wheat grown on high phosphorus soils amended with phosphate inactivating residues. II. Iron rich residue. Commun. Soil Sci. Plant Anal. 2002, 33, 1063–1084. [Google Scholar] [CrossRef]
- Geertsema, W.S.; Knocke, W.R.; Novak, J.T.; Dove, D. Long-term effects of sludge application to land. J. Am. Water Works Assoc. 1994, 86, 64–74. [Google Scholar] [CrossRef]
- Mahdy, A.; Elkhatib, E.; Fathi, N. Drinking water treatment residuals as an amendment to alkaline soils: Effects on the growth of corn and phosphorus extractability. Int. J. Environ. Sci. Technol. 2007, 4, 489–496. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Scheckel, K.G.; Barbarick, K.A. Selenium adsorption to aluminum-based water treatment residuals. J. Colloid Interface Sci. 2009, 338, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Millaleo, R.; Reyes-Díaz, M.; Ivanov, A.; Mora, M.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef]
- Porter, G.; Bajita-Locke, J.; Hue, N.; Strand, D. Manganese solubility and phytotoxicity affected by soil moisture, oxygen levels, and green manure additions. Commun. Soil Sci. Plant Anal. 2004, 35, 99–116. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V.; Clark, R. Micronutrients in crop production. Adv. Agron. 2002, 77, 185–268. [Google Scholar]
- Audebert, A. Diagnosis of risk and approaches to iron toxicity management in lowland rice farming. In Iron Toxicity in Rice-Based Systems in West Africa; Africa Rice Center (WARDA): Cotonou, Benin, 2006; pp. 6–17. [Google Scholar]
- Nenova, V. Effect of iron supply on growth and photosystem II efficiency of pea plants. Gen. Appl. Plant Physiol. 2006, 32, 81–90. [Google Scholar]
- Whitten, M.; Ritchie, G. Soil tests for aluminum toxicity in the presence of organic matter: Laboratory development and assessment. Commun. Soil Sci. Plant Anal. 1991, 22, 343–368. [Google Scholar] [CrossRef]
WTR Sample | pH (Std. Units) | EC (µs/cm) | Particle Density (g/cc) | Soil Texture (%) | ||
---|---|---|---|---|---|---|
Fine Sand | Silt | Clay | ||||
Al-WTR | 7.00 | 412.0 | 1.54 | und | und | und |
Ca-WTR | 9.10 | 321.3 | 2.47 | 12.5 | 76.5 | 11.0 |
Fe-WTR | 8.40 | 675.5 | 2.32 | 5.0 | 75.0 | 20.0 |
Metals (RCRA) | Mean Concentration in mg/kg ± S.D. | |||||||
---|---|---|---|---|---|---|---|---|
WTR sample | As | Ba | Cd | Cr | Pb | Se | Hg | Ag |
Al-WTR | 69.60 ±3.25 | 164 ± 6.01 | 0.09 ± 0.01 | 5.35 ± 0.07 | 5.84 ± 0.12 | 1.45 ± 0.21 | 0.02 ± 0.00 | 0.03 ± 0.00 |
Ca-WTR | 18.10 ± 0.28 | 96.10 ± 1.76 | 0.18 ± 0.01 | 2.00 ± 0.14 | 0.36 ± 0.02 | 0.20 ± 0.00 | <0.01 | 0.01 ± 0.00 |
Fe-WTR | 9.15 ± 0.21 | 126 ± 2.75 | 0.12 ± 0.01 | 20.1 ± 0.77 | 7.04 ± 0.12 | 0.45 ± 0.07 | 0.01 ± 0.01 | 0.03 ± 0.00 |
Metals | Mean concentration in mg/kg ± S.D. | (%) | ||||||
WTR sample | Cu | Mn | Ni | Zn | Co | Ca | Fe | Al |
Al-WTR | 46.20 ± 2.36 | 5283 ± 42.42 | 16.70 ± 0.35 | 47.30 ± 3.74 | 3.65 ± 0.21 | 0.36 ± 0.01 | 0.58± 0.00 | >10.0 |
Ca-WTR | 1.38 ± 0.84 | 203 ± 2.12 | 0.60 ± 0.14 | 9.00 ± 0.00 | 0.85 ± 0.07 | 33.00 ± 0.51 | 0.61 ± 0.01 | 0.04 ± 0.01 |
Fe-WTR | 18.20 ± 0.57 | 2639 ± 40.30 | 14.60 ± 0.00 | 26.50 ± 0.00 | 5.85 ± 0.21 | 16.00 ± 0.20 | 2.92 ± 0.06 | 0.63 ± 0.01 |
Metals | Mean concentration in mg/kg ± S.D. | |||||||
WTR sample | Th | La | Ga | Sc | Nb | Zr | Y | Ce |
Al-WTR | 0.85 ± 0.07 | 3.60 ± 0.14 | 13.30 ± 0.49 | 0.90 ± 0.07 | 0.30 ± 0.00 | 3.40 ± 0.00 | 3.00 ± 0.12 | 7.50 ± 0.49 |
Ca-WTR | 0.10 ± 0.00 | 0.80 ± 0.00 | 0.20 ± 0.00 | 0.50 ± 0.07 | 0.10 ± 0.00 | 1.10 ± 0.00 | 1.40 ± 0.04 | 1.00 ± 0.00 |
Fe-WTR | 2.15 ± 0.07 | 7.55 ± 0.07 | 1.90 ± 0.00 | 0.17 ± 0.00 | 0.30 ± 0.00 | 3.40 ± 0.14 | 5.30 ± 0.14 | 16.60 ± 0.21 |
RCRA Metal | As | Ba | Cd | Cr | Pb | Hg | Se | Ag |
---|---|---|---|---|---|---|---|---|
Waste Number | D004 | D005 | D006 | D007 | D008 | D009 | D010 | D011 |
WTR sample | mg/kg | |||||||
Al-WTR | 3.48 | 8.19 | 0.005 | 0.268 | 0.292 | 0.0011 | 0.073 | 0.0015 |
Ca-WTR | 0.91 | 4.80 | 0.009 | 0.100 | 0.018 | 0.0003 | 0.010 | 0.0003 |
Fe-WTR | 0.46 | 6.31 | 0.006 | 1.013 | 0.352 | 0.0007 | 0.022 | 0.0014 |
US EPA Limits | 5.0 | 100.0 | 1.0 | 5.0 | 5.0 | 0.2 | 1.0 | 5.0 |
Property | Al-WTR | Ca-WTR | Fe-WTR | |
---|---|---|---|---|
Total sulfur (mg/kg) | 99.00 | 46.00 | 189 | |
Total C (%) | UND | 1.68 | 1.01 | |
Total N (%) | UND | <0.03 | 0.14 | |
Organic Matter (%) | 34.90 | 1.30 | 3.10 | |
NO3–N (mg/kg) | 5.00 | 2.00 | 1.00 | |
Phosphorus (mg/kg) | Weak Bray | 12.00 | 1.00 | 1.00 |
Strong Bray | 42.00 | 2.00 | 2.00 | |
Olsen Bicarbonate | 6.00 | 10.0 | 13.00 | |
Soluble salts (mmhos/cm) | 0.50 | 0.30 | 0.90 | |
Exchangeable cations (meq/100 g) | K | 0.09 | 0.04 | 0.12 |
Mg | 0.52 | 4.50 | 7.37 | |
Ca | 3.65 | 8.54 | 8.47 | |
Na | 0.37 | 0.11 | 0.17 | |
Cation exchange capacity (meq/100 g) | 4.60 | 13.20 | 16.20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ackah, L.A.; Guru, R.; Peiravi, M.; Mohanty, M.; Ma, X.; Kumar, S.; Liu, J. Characterization of Southern Illinois Water Treatment Residues for Sustainable Applications. Sustainability 2018, 10, 1374. https://doi.org/10.3390/su10051374
Ackah LA, Guru R, Peiravi M, Mohanty M, Ma X, Kumar S, Liu J. Characterization of Southern Illinois Water Treatment Residues for Sustainable Applications. Sustainability. 2018; 10(5):1374. https://doi.org/10.3390/su10051374
Chicago/Turabian StyleAckah, Louis Akainya, Rajesh Guru, Meisam Peiravi, Manoj Mohanty, Xingmao Ma, Sanjeev Kumar, and Jia Liu. 2018. "Characterization of Southern Illinois Water Treatment Residues for Sustainable Applications" Sustainability 10, no. 5: 1374. https://doi.org/10.3390/su10051374
APA StyleAckah, L. A., Guru, R., Peiravi, M., Mohanty, M., Ma, X., Kumar, S., & Liu, J. (2018). Characterization of Southern Illinois Water Treatment Residues for Sustainable Applications. Sustainability, 10(5), 1374. https://doi.org/10.3390/su10051374