The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Climate
2.3. Experimental Design
2.4. Soil Sampling and Analysis
2.5. Crop Traits and Yield Measurement
2.6. Statistical Analysis
3. Results
3.1. Dry Bulk Density and Total Porosity
3.2. Soil Organic Matter (SOM) and Total Nitrogen (TN) in Different Straw Incorporation Treatment
3.3. Soil Carbon Storage (SCS) under Different Treatments
3.4. Crop Growth Parameters
3.5. Crop Yield with Different Modes of Straw Incorporation under Both Tillage Methods
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 1–10. [Google Scholar] [CrossRef]
- Ladha, J.K.; Fischer, K.S.; Hossain, M.; Hobbs, P.R.; Hardy, B. Improving the Productivity and Sustainability of Rice-Wheat Systems of the Indo-Gangetic Plains: A Synthesis of NARS-IRRI Partnership Research; International Rice Research Institute: Los Baños, Laguna, Philippines, 2000; p. 40. [Google Scholar]
- Kumari, M.; Chakraborty, D.; Gathala, M.K.; Pathak, H.; Dwivedi, B.S.; Tomar, R.K.; Garg, R.N.; Singh, R.; Ladha, J.K. Soil Aggregation and Associated Organic Carbon Fractions as Affected by Tillage in a Rice-Wheat Rotation in North India. Soil Sci. Soc. Am. J. 2011, 75, 560–567. [Google Scholar] [CrossRef]
- Cheng, H.; Ren, W.; Ding, L.; Liu, Z.; Fang, C. Responses of a rice–wheat rotation agroecosystem to experimental warming. Ecol. Res. 2013, 28, 959–967. [Google Scholar] [CrossRef]
- Editorial Board of China Agriculture. Electronic Edition; China Agriculture Press: Beijing, China, 2012. [Google Scholar]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidificaton in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.L.; Lal, R.; Zhao, X.; Xue, J.F.; Chen, F. Opportunities and Challenges of Soil Carbon Sequestration by Conservation Agriculture in China, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 124, ISBN 9780128001387. [Google Scholar]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of Tillage and Crop Establishment Methods on Physical Properties of a Medium-Textured Soil under a Seven-Year Rice–Wheat Rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition and framework for evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Lal, R.; Follett, R.F.; Kimble, J.M. Achieving soil carbon sequestration in the United States: A challenge to the policy makers. Soil Sci. 2003, 168, 827–845. [Google Scholar] [CrossRef]
- Husnjak, S.; Filipovie, D.; Kosutiae, S. Influence of different tillage systems on soil physical properties and crop yield. Rostl. Vyroba-UZPI 2002, 48, 249–254. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Borie, F.; Rubio, R.; Rouanet, J.L.; Morales, A.; Borie, G.; Rojas, C. Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res. 2006, 88, 253–261. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of No-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 2012. [Google Scholar] [CrossRef]
- Xu, G.-W.; Tan, G.-L.; Wang, Z.-Q.; Liu, L.-J.; Yang, J.-C. Effects of Wheat Residue Application and Site-Specific Nitrogen Management on Growth and Development in Direct-Seeding Rice. Acta Agron. Sin. 2009, 35, 685–694. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication; FAO: Rome, Italy, 2006; ISBN 9789251055113. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy by Soil Survey Staff, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; Volume 12, ISBN 0926487221.
- Guo, L.-J.J.; Lin, S.; Liu, T.-Q.Q.; Cao, C.-G.G.; Li, C.-F.F. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.)–Wheat (Triticum aestivum L.) Cropping System in Central China. PLoS ONE 2016, 11, e0146145. [Google Scholar] [CrossRef] [PubMed]
- Lu, R. Methods of Soil and Agro-chemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Zhao, H.; Shar, A.G.; Li, S.; Chen, Y.; Shi, J.; Zhang, X.; Tian, X. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Li, Y.; Wang, K.; Jia, Z.; Han, Q.; Ren, X. Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China. Soil Tillage Res. 2015, 153, 28–35. [Google Scholar] [CrossRef]
- Yadav, G.S.; Lal, R.; Meena, R.S.; Babu, S.; Das, A.; Bhowmik, S.N.; Datta, M.; Layak, J.; Saha, P. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol. Indic. 2017. [Google Scholar] [CrossRef]
- Mi, W.; Wu, L.; Brookes, P.C.; Liu, Y.; Zhang, X.; Yang, X. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil Tillage Res. 2016, 163, 64–70. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- He, J.; Wang, Q.; Li, H.; Tullberg, J.N.; McHugh, A.D.; Bai, Y.; Zhang, X.; McLaughlin, N.; Gao, H. Soil physical properties and infiltration after long-term no-tillage and ploughing on the Chinese Loess Plateau. N. Z. J. Crop Hortic. Sci. 2009, 37, 157–166. [Google Scholar] [CrossRef]
- Tripathy, R.; Singh, A.K. Effect of water and nitrogen management on aggregate size and carbon enrichment of soil in rice-wheat cropping system. J. Plant Nutr. Soil Sci. 2004, 167, 216–228. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.; Han, Q.; Ren, X. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of Northwest China. Geoderma 2014, 230–231, 41–49. [Google Scholar] [CrossRef]
- Dolan, M.S.; Clapp, C.E.; Allmaras, R.R.; Baker, J.M.; Molina, J.A.E. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China. Geoderma 2009, 149, 318–324. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xu, M.; Feng, G.; Zhang, W.; Lu, C. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl. Agroecosyst. 2015, 102, 371–381. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Muhammad, N.; Aziz, R.; Brookes, P.C.; Xu, J. Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult. J. Soil Sci. Plant Nutr. 2017, 17. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, T.F.; Chen, Y.; Westby, A.P.; Ren, W.J. Soil physicochemical and biological properties of paddy-upland rotation: A review. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Datta, R.; Imran Pathan, S.; Lal, R.; Meena, R.; Babu, S.; Das, A.; Bhowmik, S.; Datta, M.; Saha, P.; et al. Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza sativa L.)–Rice System in North Eastern Region of India. Sustainability 2017, 9, 1816. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Goddard, T.; Puurveen, D. Long-term tillage, straw management and N fertilization effects on quantity and quality of organic C and N in a Black Chernozem soil. Nutr. Cycl. Agroecosyst. 2011, 90, 227–241. [Google Scholar] [CrossRef]
- Campbell, C.A.; Selles, F.; Lafond, G.P.; McConkey, B.G.; Hahn, D. Effect of crop management on C and N in long-term crop rotations after adopting no-tillage management: Comparison of soil sampling strategies. Can. J. Soil Sci. 1998, 78, 155–162. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Sheng, H.; Li, Y.; Tong, C.; Ge, T.; Wu, J. Lower C sequestration and N use efficiency by straw incorporation than manure amendment on paddy soils. Agric. Ecosyst. Environ. 2016, 219, 93–100. [Google Scholar] [CrossRef]
- Xu, S.Q.; Zhang, M.Y.; Zhang, H.L.; Chen, F.; Yang, G.L.; Xiao, X.P. Soil Organic Carbon Stocks as Affected by Tillage Systems in a Double-Cropped Rice Field. Pedosphere 2013, 23, 696–704. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.; Wei, T.; Yang, Z.; Jia, Z.; Yang, B.; Han, Q.; Ren, X. Effects of straw incorporation on the soil nutrient contents, enzyme activities and crop yield in a semiarid region of China. Soil Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Tong, C.; Xiao, H.; Tang, G.; Wang, H.; Huang, T.; Xia, H.; Keith, S.J.; Li, Y.; Liu, S.; Wu, J. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Tillage Res. 2009, 106, 8–14. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Halvorson, A.D. Nitrogen mineralization responses to cropping, tillage and nitrogen rate in the northern Great Plains. Soil Sci. Soc. Am. J. 1999, 63, 192–196. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res. 2007, 95, 240–254. [Google Scholar] [CrossRef]
- Han, B.; Wang, X.K.; Ouyang, Z.Y. Saturation levels and carbon sequestration potentials of soil carbon pools in farmland ecosystems of China. J. Ecol. Rural. 2015, 21, 6–11. [Google Scholar]
- Lal, R. Agricultural activities and the global carbon cycle. Nutr. Cycl. Agroecosyst. 2004, 70, 103–116. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, F.J.; Chen, F.; Malemela, M.P.; Zhang, H.L. Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. J. Clean. Prod. 2013, 54, 101–107. [Google Scholar] [CrossRef]
- Memon, M.; Tagar, A.A.; Jiang, C.; Jiang, S.J.; Soomro, S.A.; Korai, P.K.; Memon, N.; Ameen, M.; CY, J. Influence of straw incorporation and tillage practices on sustainable wheat (Triticum aestivum L.) yield and soil organic carbon dynamics in rice-wheat rotation system. IAEJ 2017, 26, 85–95. [Google Scholar]
- Zhang, P.; Wei, T.; Jia, Z.; Han, Q.; Ren, X.; Li, Y. Effects of straw incorporation on soil organic matter and soil water-stable aggregates content in semiarid regions of Northwest China. PLoS ONE 2014, 9, e92839. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.L.; Zeleke, K.T.; Wang, B.; Macadam, I.; Scott, F.; Martin, R.J. Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. Eur. J. Agron. 2017, 85, 51–68. [Google Scholar] [CrossRef]
- Hejazi, A.; Bahrani, M.; Kazemeini, S. Yield and yield components of irrigated rapeseed-wheat rotation as influenced by crop residues and nitrogen levels in a reduced tillage method. Am. J. Agric. Environ. Sci. 2010, 8, 502–507. [Google Scholar]
- Song, K.; Yang, J.; Xue, Y.; Lv, W.; Zheng, X.; Pan, J. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon and crop yields in a rice-wheat rotation system. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, J.; Chen, L.; Shen, M.; Zhang, X.; Zhang, M.; Bian, X.; Zhang, J.; Zhang, W. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice-wheat cropping system. Eur. J. Agron. 2015, 63, 47–54. [Google Scholar] [CrossRef]
Treatments | Description | Symbol |
---|---|---|
T1 | Reduced tillage (RT), no straw incorporation, and rice crop | RTns |
T2 | RT and 30% wheat straw incorporation and rice crop | RTsi30 |
T3 | RT and 60% wheat straw incorporation and rice crop | RTsi60 |
T4 | RT and 100% wheat straw incorporation and rice crop | RTsi100 |
T5 | Conventional tillage (CT), no wheat straw incorporation, and rice crop | CTns |
T6 | CT and 30% wheat straw incorporation and rice crop | CTsi30 |
T7 | CT and 60% wheat straw incorporation and rice crop | CTsi60 |
T8 | CT and 100% wheat straw incorporation and rice crop | CTsi100 |
Soil Physical Parameter | Treatment | Soil Depth (cm) | |||
---|---|---|---|---|---|
0–10 | 10–20 | 20–30 | Average | ||
Dry Bulk Density (g/cm3) | RTns | 1.304 a | 1.324 a | 1.337 a | 1.321 a |
RTsi30 | 1.278 b | 1.295 b | 1.304 b | 1.292 b | |
RTsi60 | 1.249 c | 1.247 c | 1.250 d | 1.249 d | |
RTsi100 | 1.225 d | 1.231 de | 1.259 d | 1.238 e | |
CTns | 1.292 ab | 1.299 b | 1.306 b | 1.299 b | |
CTsi30 | 1.255 c | 1.243 cd | 1.279 c | 1.259 c | |
CTsi60 | 1.203 e | 1.217 e | 1.229 e | 1.216 f | |
CTsi100 | 1.185 e | 1.201 f | 1.210 f | 1.199 g | |
Total Soil Porosity (%) | RTns | 50.79 e | 50.04 f | 49.55 f | 50.13 g |
RTsi30 | 50.76 d | 51.14 e | 50.79 e | 51.23 f | |
RTsi60 | 52.86 c | 52.96 d | 52.84 c | 52.89 d | |
RTsi100 | 53.76 b | 53.56 bc | 52.48 c | 53.26 c | |
CTns | 51.26 de | 50.97 e | 50.71 e | 50.98 f | |
CTsi30 | 52.65 c | 53.08 cd | 51.73 d | 52.49 e | |
CTsi60 | 54.60 a | 54.08 b | 53.63 b | 54.10 b | |
CTsi100 | 55.27 a | 54.67 a | 54.34 a | 54.76 a |
Treatment | Soil Organic Carbon (SCS, kg/ha) Soil Layer (0–30 cm) |
---|---|
RTns | 6104.41 f ± 20.57 |
RTsi30 | 6384.93 d ± 21.60 |
RTsi60 | 6971.54 a ± 14.23 |
RTsi100 | 6643.11 b ± 16.50 |
CTns | 5874.20 g ± 17.84 |
CTsi30 | 6139.10 e ± 18.03 |
CTsi60 | 6450.48 c ± 17.44 |
CTsi100 | 6402.16 d ± 18.31 |
Year | Treatments | Effective Spike Number (× 104/hm2) | Grains Per Spike | Thousand-Grain Weight (g) |
---|---|---|---|---|
2016 | RTns | 260.25 c ± 5.32 | 119.48 f ± 1.21 | 23.96 b ± 0.24 |
RTsi30 | 276.25 b ± 5.23 | 124.21 d ± 0.85 | 24.52 a ± 0.21 | |
RTsi60 | 293.25 a ± 3.00 | 133.23 a ± 0.47 | 24.33 a ± 0.20 | |
RTsi100 | 278.12 b ± 7.00 | 122.10 e ± 0.45 | 24.43 a ± 0.37 | |
CTns | 249.25 d ± 1.04 | 122.17 e ± 0.28 | 23.58 c ± 0.17 | |
CTsi30 | 257.25 cd ± 2.76 | 126.10 c ± 0.28 | 24.20 ab ± 0.10 | |
CTsi60 | 301.23 a ± 5.50 | 128.00 b ± 0.53 | 23.88 bc ± 0.10 | |
CTsi100 | 283.12 b ± 4.19 | 120.10 f ± 0.25 | 24.36 a ± 0.16 | |
2017 | RTns | 267.25 c ± 7.13 | 117.00 g ± 0.78 | 24.32 a ± 0.20 |
RTsi30 | 288.35 b ± 3.61 | 125.52 c ± 0.18 | 24.63 a ± 0.12 | |
RTsi60 | 325.25 a ± 7.05 | 131.24 a ± 0.78 | 24.52 a ± 0.31 | |
RTsi100 | 290.12 b ± 6.16 | 125.61 c ± 0.13 | 23.90 b ± 0.08 | |
CTns | 271.20 c ± 1.03 | 122.10 f ± 0.94 | 23.88 b ± 0.12 | |
CTsi30 | 292.22 b ± 2.10 | 123.32 e ± 0.23 | 24.48 a ± 0.15 | |
CTsi60 | 318.20 a ± 2.02 | 128.10 b ± 0.61 | 24.57 a ± 0.12 | |
CTsi100 | 294.17 b ± 6.10 | 124.42 d ± 0.69 | 24.46 a ± 0.21 | |
Average | RTns | 263.75 e ± 6.23 | 118.24 f ± 1.00 | 24.14 c ± 0.22 |
RTsi30 | 82.30 c ± 4.42 | 124.87 c ± 0.52 | 24.58 a ± 0.16 | |
RTsi60 | 309.25 a ± 5.02 | 132.24 a ± 0.62 | 24.43 ab ± 0.26 | |
RTsi100 | 284.12 bc ± 6.58 | 123.86 d ± 0.29 | 24.17 c ± 0.22 | |
CTns | 260.23 e ± 1.03 | 122.14 e ± 0.61 | 23.73 d ± 0.14 | |
CTsi30 | 274.74 d ± 2.43 | 124.71 c ± 0.25 | 24.34 bc ± 0.13 | |
CTsi60 | 309.72 a ± 3.76 | 128.05 b ± 0.57 | 24.23 bc ± 0.11 | |
CTsi100 | 288.65 b ± 5.14 | 122.26 e ± 0.47 | 24.41 ab ± 0.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memon, M.S.; Guo, J.; Tagar, A.A.; Perveen, N.; Ji, C.; Memon, S.A.; Memon, N. The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China. Sustainability 2018, 10, 961. https://doi.org/10.3390/su10040961
Memon MS, Guo J, Tagar AA, Perveen N, Ji C, Memon SA, Memon N. The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China. Sustainability. 2018; 10(4):961. https://doi.org/10.3390/su10040961
Chicago/Turabian StyleMemon, Muhammad Sohail, Jun Guo, Ahmed Ali Tagar, Nazia Perveen, Changying Ji, Shamim Ara Memon, and Noreena Memon. 2018. "The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China" Sustainability 10, no. 4: 961. https://doi.org/10.3390/su10040961
APA StyleMemon, M. S., Guo, J., Tagar, A. A., Perveen, N., Ji, C., Memon, S. A., & Memon, N. (2018). The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China. Sustainability, 10(4), 961. https://doi.org/10.3390/su10040961