Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality
Abstract
:1. Introduction
2. Contrasting LAC to Asia Rice Production Systems
3. Mitigation Actions That Have Been Studied in LAC
3.1. Soil Tillage Practices
3.2. Nitrogen Fertilizer Management
3.3. Water Management
3.4. Residue Management
4. Mitigation Actions That Have Not Been Studied in LAC
4.1. Cultivar Choice
4.2. Seeding Practices
5. Summary and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nguyen, N.V. Global Climate Changes and Rice Food Security; International Rice Commission Newsletter (FAO): Rome, Italy, 2005; Volume 54, pp. 24–30. [Google Scholar]
- GRiSP (Global Rice Science Partnership). 2013 Rice Almanac, 4th ed.; International Rice Research Institute: Los Baños, Philippines, 2013; p. 283. [Google Scholar]
- Sanint, L.R. New Rice Technologies for Latin America: Social Benefits, Past Reminiscences and Issues for the Future. Trends CIAT Commod. 1992, 111, 1–35. Available online: http://agris.fao.org (accessed on 10 April 2017).
- Pulver, E.L. Strategy for sustainable rice production in Latin America and the Caribbean. In Sustainable Rice Production for Food Security, Proceedings of the 20th Session International, Rice Commun, Bangkok, Thailand, 23–26 July 2002; Van Tran, D., Duffy, R., Eds.; FAO: Rome, Italy, 2003; pp. 287–299. [Google Scholar]
- FAO. FAOSTAT Rice Market Monitor. Volume XVIII, Issue N° 3, October 2015. 2015. Available online: http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/ (accessed on 12 April 2017).
- Martínez, C.P.; Torres, E.A.; Chatel, M.; Mosquera, G.; Duitama, J.; Ishatani, M.; Selvaraj, M.; Dedicova, B.; Tohme, J.; Grenier, C.; et al. Rice breeding in Latin America. In Plant Breeding Reviews; Plant Breeding Reviews, 38; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; Volume 38, pp. 187–277. ISBN 978-1-118-91683-4. [Google Scholar]
- Espinosa, J. Rice Nutrition Management in Latin America. Better Crops Int. 2002, 16, 36–39. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Linquist, B.A.; Adviento, M.A.; Pittelkow, C.M.; van Kassel, C.; van Groenigen, K.J. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Nazaries, L.; Murrell, J.C.; Millard, P.; Baggs, L.; Singh, B.K. Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. Environ. Microbiol. 2013, 15, 2395–2417. [Google Scholar] [CrossRef] [PubMed]
- Fazli, P.; Man, H.C.; Shah, U.K.M.; Idris, A. Characteristics of Methanogens and Methanotrophs in Rice Fields: A Review. Asia Pac. J. Mol. Biol. Biotechnol. 2013, 21, 3–17. [Google Scholar]
- Butterbach-Bahl, K.; Papen, H.; Rennenberg, H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 1997, 20, 1175–1183. [Google Scholar] [CrossRef]
- Yu, K.W.; Wang, Z.P.; Chen, G.X. Nitrous oxide and methane transport through rice plants. Biol. Fertil. Soils 1997, 24, 341–343. [Google Scholar] [CrossRef]
- Hussain, S.; Peng, S.; Fahad, S.; Khaliq, A.; Huang, J.; Cui, K.; Nie, L. Rice management interventions to mitigate greenhouse gas emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 3342–3360. [Google Scholar] [CrossRef] [PubMed]
- Sass, R.L.; Fisher, F.M.; Turner, F.T.; Jund, M.F. Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Glob. Biogeochem. Cycles 1991, 5, 335–350. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Wassmann, R.; Rennenberg, H. Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agric. Ecosyst. Environ. 2002, 91, 59–71. [Google Scholar] [CrossRef]
- Lu, W.J.; Wang, H.T.; Huang, C.Y.; Reichardt, W. Communities of iron (III)-reducing bacteria in irrigated tropical rice fields. Microb. Environ. 2002, 17, 170–178. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Chapuis-Lardy, L.; Wrage-Mönnig, N.; Metay, A.; Chotte, J.L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Beauchamp, E.G. Nitrous oxide emission from agricultural soils. Can. J. Soil Sci. 1997, 77, 113–123. [Google Scholar] [CrossRef]
- Hénault, C.; Grossel, A.; Mary, B.; Roussel, M.; Léonard, J. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere 2012, 22, 426–433. [Google Scholar] [CrossRef]
- Bronson, K.F.; Singh, U.; Neue, H.U. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: II Fallow period emissions. Soil Sci. Soc. Am. J. 1997, 61, 988–993. [Google Scholar] [CrossRef]
- Xing, G.X.; Zhao, X.; Xiong, Z.; Yan, X.Y.; Xua, H.; Xie, Y.X.; Shi, S.L. Nitrous oxide emission from paddy fields in China. Acta Ecol. Sin. 2009, 29, 45–50. [Google Scholar] [CrossRef]
- Zschornack, T.; da Rosa, C.M.; Pedroso, G.M.; Marcolin, E.; da Silva, P.R.F.; Bayer, C. Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems. Nutr. Cycl. Agroecosyst. 2016, 105, 61–73. [Google Scholar] [CrossRef]
- Illarze, G.; del Pino, A.; Riccetto, S.; Irisarri, P. Emisión de óxido nitroso, nitrificación, desnitrificación y mineralización de nitrógeno durante el cultivo del arroz en 2 suelos de Uruguay. Rev. Argent. Microbiol. 2017, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- UNFCCC.int. The Paris Agreement—Main Page. 2017. Available online: http://unfccc.int/paris_agreement/items/9485.php (accessed on 30 October 2017).
- Costa, F.S.; Bayer, C.; de Lima, M.A.; Frighetto, R.T.S.; Macedo, V.R.M.; Marcolin, E. Variação diária da emissão de metano em solo cultivado com arroz irrigado no Sul do Brasil. Ciênc. Rural 2008, 38, 2049–2053. [Google Scholar] [CrossRef]
- Moterle, D.F.; da Silva, L.S.; Moro, V.J.; Bayer, C.; Zschornack, T.; Avila, L.A.; CasBundt, A. Methane efflux in rice paddy field under different irrigation managements. Rev. Bras. Ciênc. Solo 2013, 37, 431–437. [Google Scholar] [CrossRef]
- Irisarri, P.; Pereyra, V.; Fernández, A.; Terra, J.; Tarlera, S. CH4 and N2O Emissions in a rice field: First measurements in the Uruguayan productive system. Agrocienc. Urug. 2012, 16, 1–10. [Google Scholar]
- Bayer, C.; Costa, F.S.; Pedroso, G.M.; Zschornack, T.; Camargo, E.S.; Lima, M.A.; Frigheto, R.T.S.; Gomes, J.; Marcolin, E.; Macedo, V.R.M. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crop Res. 2014, 162, 60–69. [Google Scholar] [CrossRef]
- Bayer, C.; Zschornack, T.; Pedroso, G.M.; da Rosa, C.M.; Camargo, E.S.; Boeni, M.; Marcolin, E.; Cecilia dos Reis, C.E.S.; dos Santos, D.C. A seven-year study on the effects of fall soil tillage on yield-scaled greenhouse gas emission from flood irrigated rice in a humid subtropical climate. Soil Tillage Res. 2015, 145, 118–125. [Google Scholar] [CrossRef]
- Chirinda, N.; Arenas, L.; Loaiza, S.; Trujillo, C.; Katto, M.; Chaparro, P.; Nuñez, J.; Jacobo Arango, J.; Martinez-Baron, D.; Loboguerrero, A.M.; et al. Novel technological and management options for accelerating transformational changes in rice and livestock systems. Sustainability 2017, 9, 1891. [Google Scholar] [CrossRef]
- Parra, R.; Escobar, A. Use of fibrous agricultural residues (FAR) in ruminant feeding in Latin America. In Better Utilization of Crop Residues and by-Products in Animal Feeding: Research Guidelines 1. State of Knowledge, Proceedings of the FAO/ILCA Expert Consultation, ILCA Headquarters, Addis Ababa, Ethiopia, 5–9 March 1984; Preston, T.R., Kossila, V.L., Goodwin, J., Reed, S.B., Eds.; FAO: Rome, Italy, 1985. [Google Scholar]
- FAO. FAOSTAT Emissions Database, Agriculture, Rice Cultivation. 2016. Available online: http://www.fao.org/faostat/en/#data/GR (accessed on 11 June 2017).
- Intergovernmental Panel on Climate Change (IPCC). Intergovernmental Panel on Climate Change guidelines for National Greenhouse Gas Inventories. In Agriculture: Nitrous Oxide from Agricultural Soils and Manure Management; Chapter 4; OECD: Paris, France, 1997; Available online: http://www.ipcc-nggip.iges.or.jp/public/gp/english/4_Agriculture.pdf (accessed on 11 June 2017).
- Intergovernmental Panel on Climate Change (IPCC). Land Use, Land-use Change, and Forestry. A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000; p. 377. [Google Scholar]
- Metay, A.; Alves Moreira, J.A.; Bernoux, M.; Boyer, T.; Douzet, J.M.; Feigl, B.; Feller, C.; Maraux, F.; Oliver, R.; Scopel, E. Storage and forms of organic carbon in a no-tillage under cover crops system on clayey Oxisol in dryland rice production (Cerrados, Brazil). Soil Tillage Res. 2007, 94, 122–132. [Google Scholar] [CrossRef]
- Li, C.; Hang, Z.; Guo, L.; Cai, M.; Cao, C. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos. Environ. 2013, 80, 438–444. [Google Scholar] [CrossRef]
- Hanaki, M.; Toyoaki, I.; Saigysa, M. Effect of no-tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application. Jpn. Soc. Soil Sci. Plant Nutr. 2002, 73, 135–143. [Google Scholar]
- Ahmad, S.; Li, C.; Dai, G.; Zhan, M.; Wang, J.; Pan, S.; Cao, C. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res. 2009, 106, 54–61. [Google Scholar] [CrossRef]
- Ali, M.A.; Lee, C.H.; Lee, Y.B.; Kim, P.J. Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity. Agric. Ecosyst. Environ. 2009, 132, 16–22. [Google Scholar] [CrossRef]
- Zhang, X.X.; Yin, S.; Li, Y.S.; Zhuang, H.L.; Li, C.S.; Liu, C.J. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China. Sci. Total Environ. 2014, 472, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Derpsch, R.; Friedrich, T. Development and Current Status of No-till Adoption in the World. In Proceedings of the CD, 18th Triennial Conference of the International Soil Tillage Research Organization (ISTRO), Izmir, Turkey, 15–19 June 2009. [Google Scholar]
- Linquist, B.A.; Adviento-Borbe, M.A.; Pittelkow, C.M.; van Kessel, C.; van Groenigen, K.J. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
- Schimel, J. Global change: Rice, microbes and methane. Nature 2000, 403, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zheng, X.; Wang, Y.; Han, S.; Huang, Y.; Zhu, J.; Butterbach-Bahl, K. Effects of elevated CO2 and N fertilization on CH4 emissions from paddy rice fields. Glob. Biogeochem. Cycles 2004, 18, 1–8. [Google Scholar] [CrossRef]
- Gulledge, J.; Schimel, J.P. Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH4+ inhibition. Appl. Environ. Microbiol. 1998, 64, 4291–4298. [Google Scholar] [PubMed]
- Cai, Z.; Xing, G.; Yan, X.; Xu, H.; Tsuruta, H.; Yagi, K.; Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 1997, 196, 7–14. [Google Scholar] [CrossRef]
- Banger, K.; Tian, H.; Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob. Chang. Biol. 2012, 18, 3259–3267. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, V.; Irisarri, P.; Gonnet, S. Emisiones de óxido nitroso por suelos cultivados con arroz: Efecto de un inhibidor de la nitrificación. Agrociencia 2007, 11, 50–57. [Google Scholar]
- Scivittaro, W.B.; Nunes, G.D.R.; Campos do Vale, M.L.; Ricordi, V.G. Nitrogen losses by ammonia volatilization and lowland rice response to NBPT urease inhibitor-treated urea. Ciênc. Rural 2010, 40, 1283–1289. [Google Scholar] [CrossRef]
- LaHue, G.T.; Chaney, R.L.; Adviento-Borbe, M.A.A.; Linquist, B.A. Alternate wetting and drying in high yielding direct-seeded rice systems accomplished multiple environmental and agronomic objectives. Agric. Ecosyst. Environ. 2016, 229, 30–39. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; da Rosa, E.F.F.; van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ge, J.; Tian, S.; Li, S.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Mai, V.T.; Vu, D.Q.; Bui, T.P.L.; Mai, T.L.A.; Jensen, L.S.; de Neergaard, A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosyst. Environ. 2014, 196, 137–146. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, S.; Guo, Y.; Liu, Q.; Zou, J. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol. Fertil. Soils 2010, 46, 825–834. [Google Scholar] [CrossRef]
- Tarlera, S.; Capurro, M.C.; Irisarri, P.; Scavino, A.F.; Cantou, G.; Roel, A. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system. Sci. Agric. 2016, 73, 43–50. [Google Scholar] [CrossRef]
- Yu, K. Redox Potential Control on Cumulative Global Warming Potentials from Irrigated Rice Fields. In Understanding Greenhouse Gas Emissions from Agricultural Management; Guo, L., Gunasekara, A.S., McConnell, L.L., Eds.; ACS Symposium Series 1072; ACS Publications: Washington, DC, USA, 2011; pp. 121–134. [Google Scholar] [CrossRef]
- Minamikawa, K.; Sakai, N. The practical use of water management based on soil redox potential for decreasing methane emissions from a paddy field in Japan. Agric. Ecosyst. Environ. 2006, 116, 181–188. [Google Scholar] [CrossRef]
- Kim, G.Y.; Gutierrez, J.; Jeong, H.C.; Lee, J.S.; Haque, M.D.M.; Kim, J.P. Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 229–236. [Google Scholar] [CrossRef]
- Shiratori, Y.; Watanabe, H.; Furukawa, Y.; Tsuruta, H.; Inubushi, K. Effectiveness of a subsurface drainage system in poorly drained paddy fields on reduction of methane emissions. J. Plant Nutr. Soil Sci. 2007, 53, 387–400. [Google Scholar] [CrossRef]
- Lagomarsino, A.; Agnelli, A.E.; Pastorell, R.; Pallara, G.; Rasse, D.P.; Silvennoinen, H. Past water management affected GHG production and microbial community pattern in Italian rice paddy soils. Soil Biol. Biochem. 2016, 93, 17–27. [Google Scholar] [CrossRef]
- Johnson-Beebout, S.E.; Angeles, O.R.; Alberto, M.C.R.; Buresh, R.J. Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma 2009, 149, 45–53. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, GB2021. [Google Scholar] [CrossRef]
- Mushtaq, S.; Khan, S.; Hafeez, N.; Hanjra, M.A. Does reliability of water resources matter in the adoption of water-saving irrigation practices? A case study in the Zhanghe irrigation system, China. Water Policy 2009, 11, 661–679. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Bouman, B.A.M.; Flor, R.J.; Palis, F.G. Developing and disseminating alternate wetting and drying water saving technology in the Philippines. In Mitigating Water-Shortage Challenges in Rice Cultivation: Aerobic and Alternate Wetting and Drying Rice Water-Saving Technologies; Kumar, A., Ed.; IRRI, Asian Development Bank: Manila, Philippines, 2014. [Google Scholar]
- Kürschner, E.; Henschel, C.; Hildebrandt, T.; Jülich, E.; Leineweber, M.; Paul, C. Water Saving in Rice Production—Dissemination, Adoption and Short Term Impacts of Alternate Wetting and Drying (AWD) in Bangladesh; SLE Publication Series; Humboldt Universität zu Berlin: Berlin, Germany, 2010; p. 96. [Google Scholar]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and wáter use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Li, Y.H.; Barker, R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ. 2004, 2, 187–193. [Google Scholar] [CrossRef]
- Kurtz, D.; Fedre, J. El cultivo del arroz y el ambiente. In Guía de Buenas Prácticas Agrícolas Para el Cultivo de Arroz en Corrientes, 2nd ed.; Moulin, J., Araujo, J., Kruger, J., Eds.; 2016; Available online: http://www.acpaarrozcorrientes.org.ar/Paginas/GUIA.BPA.ARROZ.CTES%20.2016.pdf (accessed on 28 February 2018).
- FNA (Federación Nacional de Arroceros). ADOPCIÓN MASIVA DE TECNOLOGÍA. Available online: http://www.fedearroz.com.co/docs/Guia_de_trabajo_baja.pdf (accessed on 10 April 2017).
- DANE (Departamento Administrativo Nacional de Estadística). Federacion Nacional de Arroceros & Fondo Nacional del Arroz. IV Censo Nacional Arrocero 2016. Available online: http://www.fedearroz.com.co/doc_economia/Libro%20zona%20Llanos.pdf (accessed on 10 April 2017).
- Zorrilla, G.; Martínez, C.; Berrío, L.; Corredor, E.; Carmona, L.; Pulver, E. Improving Rice Production Systems in Latin America and the Caribbean. In Eco-Efficiency: From Vision to Reality; Hershey, C.H., Neate, P., Eds.; Issues in Tropical Agriculture Series; CIAT Publication No. 381; Centro Internacional de Agricultura Tropical (CIAT): Valle del Cauca, Colombia, 2012. [Google Scholar]
- Yoshida, S. Fundamentals of Rice Science. Available online: http://books.irri.org/9711040522_content.pdf (accessed on 6 November 2017).
- Calvert, L.A.; Sanint, L.R.; Châtel, M.; Izquierdo, J. Rice production in Latin America at critical crossroads. Int. Rice Comm. Newsl. 2006, 55, 66–73. [Google Scholar]
- Dobermann, A.; Fairhurst, T.H. Rice straw management. Better Crops Int. 2002, 16, 7–11. [Google Scholar]
- Buresh, R.; Sayre, K. Implications of straw removal on soil fertility and sustainability. In Proceedings of the 2007 Expert Consultation on Biofuels, IRRI, Los Banos, Philippines, 27–29 August 2007; pp. 34–44. [Google Scholar]
- Zschornack, T.; Bayer, C.; Acordi, Z.J.; Costa, B.V.F.; Anghinoni, I. Mitigation of methane and nitrous oxide emissions from flood-irrigated rice by no incorporation of winter crop residues into the soil. Rev. Bras. Ciênc. Solo 2011, 35, 623–634. [Google Scholar] [CrossRef]
- Arai, H.; Hosen, Y.; Pham, H.V.; Truong, N.T.; Nguyen, C.H.; Inubushi, K. Greenhouse gas emissions from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the Mekong Delta. J. Plant Nutr. Soil Sci. 2015, 61, 719–735. [Google Scholar] [CrossRef]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cai, Z.C.; Jia, Z.J.; Tsuruta, H. Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period. Nutr. Cycl. Agroecosyst. 2000, 58, 327–332. [Google Scholar] [CrossRef]
- Sander, B.O.; Samson, M.; Buresh, R.J. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 2014, 235, 355–362. [Google Scholar] [CrossRef]
- Cochran, V.L.; Sparrow, E.B.; Schlender, S.F.; Knight, C.K. Long-term tillage and crop residue management in the subarctic: Fluxes of methane and nitrous oxide. Can. J. Soil Sci. 1997, 77, 565–570. [Google Scholar] [CrossRef]
- Sass, R.L.; Fisher, F.M.; Harcombe, P.A.; Turne, F.T. Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw. Glob. Biogeochem. Cycles 1991, 5, 275–287. [Google Scholar] [CrossRef]
- Bossio, D.A.; Horwath, W.R.; Mutters, R.G.; van Kessel, C. Methane pool and flux dynamics in a rice field following straw incorporation. Soil Biol. Biochem. 1999, 31, 1313–1322. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.Y.F.; Wang, C.; Pan, T.; Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Tillage Res. 2015, 152, 8–16. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.Y.F.; Sardans, J.; Wang, C.; Datta, A.; Pan, T.; Zenga, C.; Bartrons, M.; Peñuelas, J. Rice straw incorporation affects global warming potential differently in early vs. late cropping season in Southeastern China. Field Crops Res. 2015, 181, 42–51. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Wassmann, R.; Villegas-Pangga, G. Impact of elevated temperatures on greenhouse gas emissions in rice systems: Interaction with straw incorporation studied in a growth chamber experiment. Plant Soil 2013, 373, 857–875. [Google Scholar] [CrossRef]
- Sigren, L.K.; Byrd, G.T.; Fisher, F.M.; Sass, R.L. Comparison of soil acetate concentrations and methane production, transport and emission in two rice cultivars. Glob. Biogeochem. Cycles 1997, 11, 1–14. [Google Scholar] [CrossRef]
- Wassmann, R.; Neue, H.; Lantin, R.S.; Buendia, L.V.; Rennenberg, H. Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutr. Cycl. Agroecosyst. 2000, 58, 1–12. [Google Scholar] [CrossRef]
- Simmonds, M.B.; Anders, M.; Adviento-Borbe, M.A.A.; van Kessel, C.; McClung, A.; Linquist, B.A. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct-seeded systems. J. Environ. Qual. 2015, 44, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Neue, H.U.; Samonte, H.P. Effect of cultivar difference (‘IR72’, ‘IR65598’ and ‘Dular’) on methane emission. Agric. Ecosyst. Environ. 1997, 62, 31–40. [Google Scholar] [CrossRef]
- Mariko, S.; Harazono, Y.; Owa, N.; Nouchi, I. Methane in flooded soil water and the emission through rice plants to the atmosphere. Environ. Exp. Bot. 1991, 31, 343–350. [Google Scholar] [CrossRef]
- Gogoi, N.; Baruah, K.; Gogoi, B.; Gupta, P.K. Methane emission from two different rice ecosystems at lower Brahmaputra valley zone of North East India. Appl. Ecol. Environ. Res. 2008, 6, 99–112. [Google Scholar] [CrossRef]
- Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 2015, 523, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Badawi, T.; Ghanem, S.A. Water use efficiency in rice Culture. CIHEAM Options Mediterr. 2001, 40, 39–45. [Google Scholar]
- Wassmann, R.; Schütz, H.; Papen, H.; Rennenberg, H.; Wolfgang, S.; Aiguo, D.; Renxing, S.; Xingjian, S.; Mingxing, W. Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertilizer treatment. Biogeochemistry 1993, 11, 83–101. [Google Scholar] [CrossRef]
- Yan, X.; Shi, S.; Du, L.; Xing, G. Pathways of N2O emission from rice paddy soil. Soil Biol. Biochem. 2000, 32, 437–440. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, H.; Yao, L.; Liu, J.; He, H.; Tang, J. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Biogeosciences 2014, 11, 3685–3693. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, N.; Baruah, K.; Gupta, P.K. Selection of rice genotypes for lower methane emission. Agron. Sustain. Dev. 2008, 28, 181–186. [Google Scholar] [CrossRef]
- Scopel, E.; Bernard, T.; Ribeiro, M.F.S.; Séguy, L.; Denardin, J.E.; Kochhann, R.A. Direct seeding mulch-based cropping systems (DMC) in Latin America in Latin America. New directions for a diverse planet. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. [Google Scholar]
- Yamano, T.; Arouna, A.; Labarta, R.A.; Huelgas, Z.M. Adoption and impacts of international rice research technologies. Glob. Food Secur. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Bhushan, L.; Ladha, J.K.; Gupta, R.K.; Singh, S.; Tirol-Padre, A.; Saharawat, Y.S.; Gathala, M.; Pathak, H. Saving of water and labor in a rice-wheat system with no-tillage and direct seeding technologies. Agron. J. 2007, 99, 1288–1296. [Google Scholar] [CrossRef]
- DeAngelo, B.J.; de la Chesnaye, F.C.; Beach, R.H.; Sommer, A.; Murray, B.C. Methane and nitrous oxide mitigation in agriculture. Energy J. 2006, 27, 89–108. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct Seeding of Rice: Recent Developments and Future Research Needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Kurtz, D.; Ligier, H. Estimaciones de Las Emisiones de Metano en Suelos Dedicados al Cultivo de Arroz en la Provincia de Corrientes, 2014. Avaliable online: https://ced.agro.uba.ar/ubatic/sites/default/files/files/Servicios%20ecosistemicos/Eje%20Tematico%202.pdf (accessed on 30 October 2017).
Country | Harvested Area | Total Production | Yields | CH4 Emissions |
---|---|---|---|---|
(million ha) | (million tonnes) | (tonnes ha−1) | (tonnes CH4 ha−1) | |
India | 43 | 146 | 3.4 | 0.11 |
China | 29 | 195 | 6.5 | 0.18 |
Indonesia | 12 | 63 | 4.9 | 0.21 |
Bangladesh | 11 | 46 | 4.2 | 0.10 |
Viet Nam | 7 | 40 | 5.3 | 0.18 |
Brazil | 2 | 12 | 4.3 | 0.06 |
Colombia | 0.5 | 2 | 4.6 | 0.21 |
Peru | 0.4 | 3 | 7.2 | 0.24 |
Argentina | 0.2 | 1 | 6.6 | 0.28 |
Uruguay | 0.2 | 1 | 7.6 | 0.28 |
Agronomic Practice | Reference | Country | Treatments | Mitigation Strategy Assessment | GHG Reduction (%) | Yield Change (%) | |
---|---|---|---|---|---|---|---|
CH4 | N2O | ||||||
Soil tillage | Bayer et al. [32] | Brazil | CT vs. NT | No tillage | 21 | 3 | −2 |
Bayer et al. [33] | Brazil | ST vs. FT | Fall tillage | 24 | - | +4 | |
Metay et al. [39] | Brazil | OFF vs. DMC | DMC | 39 | 11 | - | |
Water management | Tarlera et al. [59] | Uruguay | CF vs. AWD | AWD | 57–62 | - | −8.2–−16 |
Moterle et al. [30] | Brazil | CF vs. II | II | 25 | - | <1 | |
Zschornack et al. [26] | Brazil | CF vs. II regimes | II | 47–71 | 37–70 | −1 | |
Chirinda et al. [34] | Colombia | CF vs. AWD | AWD | 72 | 41 | - | |
Nitrogen fertilizer | Irrisarri et al. [31] | Uruguay | RCF vs. RC | RC | 50 | 64 | −11 |
Domínguez et al. [52] | Uruguay | Urea-F vs. F + IN | ENTEC | - | NS | −18 | |
Residue management | Zschornack et al. [81] | Brazil | Residues incorporated in soil vs. residues left on soil surface | left on soil surface | 69 | 71–94 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chirinda, N.; Arenas, L.; Katto, M.; Loaiza, S.; Correa, F.; Isthitani, M.; Loboguerrero, A.M.; Martínez-Barón, D.; Graterol, E.; Jaramillo, S.; et al. Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality. Sustainability 2018, 10, 671. https://doi.org/10.3390/su10030671
Chirinda N, Arenas L, Katto M, Loaiza S, Correa F, Isthitani M, Loboguerrero AM, Martínez-Barón D, Graterol E, Jaramillo S, et al. Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality. Sustainability. 2018; 10(3):671. https://doi.org/10.3390/su10030671
Chicago/Turabian StyleChirinda, Ngonidzashe, Laura Arenas, Maria Katto, Sandra Loaiza, Fernando Correa, Manabu Isthitani, Ana Maria Loboguerrero, Deissy Martínez-Barón, Eduardo Graterol, Santiago Jaramillo, and et al. 2018. "Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality" Sustainability 10, no. 3: 671. https://doi.org/10.3390/su10030671
APA StyleChirinda, N., Arenas, L., Katto, M., Loaiza, S., Correa, F., Isthitani, M., Loboguerrero, A. M., Martínez-Barón, D., Graterol, E., Jaramillo, S., Torres, C. F., Arango, M., Guzmán, M., Avila, I., Hube, S., Kurtz, D. B., Zorrilla, G., Terra, J., Irisarri, P., ... Bayer, C. (2018). Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality. Sustainability, 10(3), 671. https://doi.org/10.3390/su10030671