Farmers’ Willingness to Pay for Climate Information Services: Evidence from Cowpea and Sesame Producers in Northern Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Collection and Analysis
2.3. Conceptual and Theoretical Framework
- The effects of a given explanatory variable on the probability of WTP is:
- The marginal effect of an explanatory variable on the expected value of the dependent variable is:
- The change in the amount a respondent is willing to pay with respect to a change in explanatory variable among individuals who are willing to pay is:
2.4. Empirical Model
2.4.1. Dependent Variable
2.4.2. Independent Variables
3. Results
3.1. Socio-Economic Characteristics of Farmers
3.2. Access to Climate Information Services
3.2.1. Traditional Climate Forecasts
3.2.2. Modern Climate Forecasts
3.2.3. Appropriate Sources for Climate Information Dissemination
3.3. Willingness-to-Pay for Climate Information Services
3.4. Determinants of the Willingness-to-Pay for Climate Information Services
3.5. Predicted WTP and Estimation of Consumer Surplus of Climate Information Services
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lebel, T.; Diedhiou, A.; Laurent, H. Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J. Geophys. Res. 2003, 108, 1–11. [Google Scholar] [CrossRef]
- Le Barbe, L.; Lebel, T.; Taps, D. Rainfall Variability in West Africa during the Years 1950–90. J. Clim. 2002, 15, 187–202. [Google Scholar] [CrossRef]
- Onibon, H.; Lebel, T.; Afouda, A. Space-time rainfall variability in West Africa derived from observations and GCMs. In Proceedings of the International Conference on FRIEND (Flow Regimes from International Network Data), Cape Town, South Africa, 18–22 March 2002; Volume 274, pp. 483–490. [Google Scholar]
- Jalloh, A.; Nelson, G.C.; Thomas, T.S.; Zougmoré, R.; Roy-Macauley, H. (Eds.) West African Agriculture and Climate Change: A Comprehensive Analysis; IFPRI Books and Research Monographs; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2013; 408p, ISBN 978-0-89629-204-8. [Google Scholar] [CrossRef]
- Diba, I.; Camara, M.; Sarr, A.B. Impacts of the Sahel-Sahara Interface Reforestation on West African Climate: Intraseasonal Variability and Extreme Precipitation Events. Adv. Meteorol. 2016, 2016, 1–20. [Google Scholar] [CrossRef]
- Ziervogel, G.; Opere, A. Integrating meteorological and indigenous knowledge-based seasonal climate forecasts in the agricultural sector: Lessons from participatory action research in sub-Saharan Africa. Clim. Chang. Adapt. Afr. Learn. Pap. Ser. 2010, 1, 1–24. [Google Scholar]
- Zongo, B.; Diarra, A.; Barbier, B.; Zorom, M.; Yacouba, H.; Dogot, T. Farmers’ perception and willingness to pay for climate information in Burkina Faso. J. Agric. Sci. 2016, 8, 175–187. [Google Scholar] [CrossRef]
- Debaeke, P.; Pellerin, S.; Scopel, E. Climate-smart cropping systems for temperate and tropical agriculture: Mitigation, adaptation and trade-offs. Cah. Agric. 2017, 26, 1–12. [Google Scholar] [CrossRef]
- Ouédraogo, M.; Zougmoré, R.; Barry, S.; Somé, L.; Baki, G. The value and benefits of using seasonal climate forecasts in agriculture: Evidence from cowpea and sesame sectors in climate-smart villages of Burkina Faso. CCAFS Info Note 2015, 1–4. [Google Scholar] [CrossRef]
- Roudier, P. Climat et agriculture en Afrique de l’Ouest: Quantification de L’impact du Changement Climatique sur les Rendements et Evaluation de L’utilité des Prévisions Saisonnières. Thèse de Doctorat, Ecole des Hautes Etudes en Sciences Sociales, Paris France, 2012. 189p, Available online: http://www2.centre-cired.fr/IMG/pdf/roudier_these_2012.pdf (accessed on 20 December 2016).
- MAHRH. Situation alimentaire et Nutritionnelle Résultats Définitifs de la Campagne Agricole 2014/2015 et Perspectives de la Situation Alimentaire et Nutritionnelle; MAHRH: Ouagadougou, Burkina Faso, 2008; p. 95. [Google Scholar]
- MAAH. Rapport Général des Résultats Définitifs de la Campagne Agricole 2016/2017 et des perspectives de la situation Alimentaire et Nutritionnelle; MAAH: Ouagadougou, Burkina Faso, 2017; p. 95. [Google Scholar]
- APEX-Burkina. Offre Exportable du Burkina Faso: Cas du Sésame; APEX-Burkina: Ouagadougou, Burkina Faso, 2016; Available online: http://apexb.bf/wp-content/uploads/Telecharger-fiche-sesame-burkina.pdf. (accessed on 15 December, 2017).
- Scadd-Burkina Faso. Stratégie de Croissance Accélérée et de Développement Durable 2011–-2015; Gouvernement du Burkina Faso: Ouagadougou, Burkina Faso, 2011; 116p.
- Sanou, J.; Bationo, A.B.; Barry, S.; Nabie, D.L.; Bayala, J.; Zougmore, R. Combining soil fertilization, cropping systems and improved varieties to minimize climate risks on farming productivity in northern region of Burkina Faso. Agric. Food Secur. 2016, 5, 20. [Google Scholar] [CrossRef]
- Zougmore, R.; Ouattara, K.; Mando, A.; Ouattara, B. Rôle des nutriments dans le succès des techniques de conservation des eaux et des sols (cordons pierreux, bandes enherbées, zaï et demi-lune) au Burkina Faso. Sécheresse 2004, 15, 41–48. [Google Scholar]
- Freebairn, J.W.; Zillman, J.W. Economic benefits of meteorological services. Meteorol. Appl. 2002, 9, 33–44. [Google Scholar] [CrossRef]
- Pearce, D.; Turner, R.K. Economics of Natural Resources and the Environment; The Johns Hopkins University press: Baltimore, MD, USA, 1990; 378p. [Google Scholar]
- Mabe, F.N.; Nketiah, P.; Darko, D. Farmers’ willingness to pay for weather forecast information in savelugu-nanton municipality of the northern region. RJOAS 2014, 13. [Google Scholar] [CrossRef]
- Amegnaglo, J.C.; Anaman, A.K.; Mensah-Bonsu, A.; Onumah, E.E.; Gero, A.F. Contingent valuation study of the benefits of seasonal climate forecasts for maize farmers in the Republic of Benin, West Africa. Clim. Serv. 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Makaudze, M.E. Do Seasonal Climate Forecasts and Crop Insurance Matter for Smallholder Farmers in Zimbabwe? Using Contingent Valuation Method and Remote Sensing Applications. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2005; 167p. Available online: https://etd.ohiolink.edu/rws_etd/document/get/osu1110389049/inline (accessed on 15 December 2017).
- Predicatori, F.; Giacomazzi, F.; Frontero, P.; Bellodi, M. Agriculture and Climate Change: An Evaluation of the Willingness to Pay for Improved Weather Forecasts; FORALPS Technical Report, 12; Università degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale: Trento, Italy, 2008; 36p, Available online: http://www.ing.unitn.it/dica/tools/download/Quaderni/Foralps_TR_12.pdf (accessed on 15 December 2017).
- Gebremariam, G.G.; Edriss, K.A.; Maganga, M.A.; Terefe, T.A. Labor as a Payment Vehicle for Valuing Soil Conservation Practices in a Subsistence Economy: Case of Adwa Woreda in Ethiopia. Am. J. Econ. 2013, 3, 283–290. [Google Scholar] [CrossRef]
- Terra, S. Guide de bonnes pratiques pour la mise en oeure de la méthode d’évaluation contingente. DoSerie Méthode 2004, 05-MO4, 74. [Google Scholar]
- Maddala, G.S. Limited-Dependent and Qualitative Variables in Economics; Cambridge University Press: New York, NY, USA, 1983; 401p, ISBN 0521-3382-55. [Google Scholar]
- Tobin, J. Estimation of relationship for Limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef]
- McDonald, J.F.; Moffit, R.A. The Use of Tobit Analysis. Rev. Econ. Stat. 1980, 62, 318–320. [Google Scholar] [CrossRef]
- Madala, G.S. Limited Dependent and Qualitative Variables in Econometrics; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar]
- Ouédraogo, M.; Zougmoré, R.; Moussa, S.A.; Partey, T.S.; Thornton, K.P.; Kristjanson, P.; Ndour, B.Y.N.; Somé, L.; Naab, J.; Boureima, M.; et al. Markets and climate are driving rapid change in farming practices in Savannah West Africa. Reg. Environ. Chang. 2017, 17, 437–449. [Google Scholar] [CrossRef]
- Meza, F.; Hansen, J.; Osgood, D. Economic Value of Seasonal Climate Forecasts for Agriculture: Review of Ex-Ante Assessments and Recommendations for Future Research. J. Appl. Meteorol. Climatol. 2008, 47, 1269–1286. [Google Scholar] [CrossRef]
- Zougmoré, R.; Jalloh, A.; Tioro, A. Climate-smart soil water and nutrient management options in semiarid West Africa: A review of evidence and analysis of stone bunds and zaï techniques. Agric. Food Secur. 2014, 3, 16. [Google Scholar] [CrossRef]
Variables | Categories | Frequency | Percent |
---|---|---|---|
Gender | Man | 113 | 66.86 |
Woman | 56 | 33.14 | |
Marital status | Married | 162 | 95.86 |
Single | 6 | 3.55 | |
Widow/divorced | 1 | 0.59 | |
Education level | Non educated | 88 | 52.07 |
Literate | 46 | 27.22 | |
Formal education | 35 | 20.71 | |
Origin of farm head | Indigenous | 149 | 88.17 |
Migrant | 20 | 11.83 | |
Main secondary activity | Livestock | 77 | 45.56 |
Gold mining | 34 | 20.12 | |
Commerce | 27 | 15.98 | |
Gardening | 17 | 10.06 | |
Other | 14 | 8.27 | |
Member of farmers organization | None | 81 | 47.93 |
Cowpea producers association | 30 | 17.75 | |
Sesame producers association | 31 | 18.34 | |
SWC techniques | 20 | 11.83 | |
Cowpea and sesame association | 5 | 2.96 | |
Gardening producers association | 2 | 1.18 | |
Objective for cowpea production | Only consumption | 29 | 17.16 |
Consumption and selling | 59 | 34.91 | |
Objective for sesame production | Only consumption | 2 | 1.18 |
Only selling | 50 | 29.59 | |
Consumption and selling | 32 | 18.93 | |
Cowpea production system | Associated | 12 | 7.10 |
Pure | 77 | 45.56 | |
Sesame production system | Associated | 10 | 5.92 |
Pure | 74 | 43.79 |
Type of Information | Percent | Channel of Climate Information Services | ||||
---|---|---|---|---|---|---|
Workshop | Rural Radio | National Radio | Extension Service Agent | From Other Farmers | ||
Nature of the rainy season | 73.96 | 27.81 | 44.97 | 5.26 | 0.59 | 0.59 |
Length of rainy season | 65.68 | 18.34 | 46.15 | 5.26 | 0.59 | 0.59 |
Start of the rainy season | 53.25 | 14.20 | 37.87 | 5.26 | 0.59 | 0.59 |
End of the rainy season | 53.85 | 10.06 | 42.01 | 5.27 | 0.59 | 0.59 |
Drought spells periods | 68.64 | 14.79 | 52.66 | 5.25 | 0.59 | 0.00 |
Floods | 50.89 | 4.14 | 46.75 | 0.00 | 0.00 | 0.00 |
Daily rainfall information | 75.74 | 1.17 | 73.99 | 5.19 | 0.58 | 0.00 |
Channel of Information | Frequency | Percent | Cumulative Frequency |
---|---|---|---|
Radio | 116 | 68.64 | 68.64 |
Television | 6 | 3.55 | 72.19 |
Workshops (face to face meetings) | 2 | 1.18 | 73.37 |
Mobile phone | 3 | 1.78 | 75.15 |
Extension agent | 4 | 2.37 | 77.51 |
Farmer’ organisation | 1 | 0.59 | 78.11 |
No response | 37 | 21.89 | 100.00 |
Total | 169 | 100 |
Statistics | Seasonal Climate Forecast | Decadal Climate Information | Daily Climate Information | Agro-Advisories |
---|---|---|---|---|
N | 169 | 169 | 169 | 169 |
Mean | 3706 | 1113 | 1923 | 1674 |
Median | 300 | 0 | 100 | 0 |
Standard deviation | 6723 | 3930 | 4749 | 4526 |
Minimum | 0 | 0 | 0 | 0 |
Maximum | 25,000 | 25,000 | 25,000 | 25,000 |
WTB (%) | 53 | 33 | 53 | 39 |
Variables | N | Seasonal Climate Forecast | Decadal Climate Information | Daily Climate Information | Agro-Advisories |
---|---|---|---|---|---|
Gender | |||||
Men | 113 | 4145 | 1252 | 2339 | 1916 |
Women | 56 | 2820 | 831 | 1084 | 1184 |
Age | |||||
Less than 40 | 66 | 4521 | 1852 | 2600 | 2022 |
40 to 60 years | 87 | 3125 | 628 | 1490 | 1575 |
More than 60 years | 16 | 3500 | 703 | 1488 | 772 |
Cropping area | |||||
Less than 4 ha | 104 | 3490 | 1180 | 1871 | 1756 |
4 to 6 ha | 43 | 4792 | 1251 | 2365 | 1866 |
More than 6 ha | 22 | 2600 | 523 | 1307 | 907 |
Active population | |||||
Less than 6 person | 59 | 3413 | 1377 | 1569 | 1141 |
6 to 10 person | 69 | 3870 | 1010 | 2377 | 1942 |
More than 10 person | 41 | 3851 | 905 | 1668 | 1989 |
Endogenous forecast | |||||
Don’t use indigenous indicator | 81 | 3415 | 1065 | 2035 | 1288 |
Use indigenous indicator | 88 | 3973 | 1157 | 1820 | 2029 |
Awareness to CI | |||||
Not exposed | 61 | 1748 | 348 | 875 | 925 |
Exposed | 108 | 4812 | 1545 | 2515 | 2097 |
Soil and water conservation (SWC) technique | |||||
Not adopted SWC techniques | 118 | 4158 | 1328 | 2276 | 2161 |
Adopted SWC techniques | 51 | 2658 | 614 | 1107 | 547 |
Education | |||||
Not educated | 134 | 3360 | 1053 | 1872 | 1620 |
Educated | 35 | 5029 | 1343 | 2120 | 1880 |
Use of organic manure | |||||
Not adopted organic manure | 69 | 2598 | 1030 | 1362 | 829 |
Adopted organic manure | 100 | 4470 | 1170 | 2310 | 2257 |
Livestock | |||||
No livestock | 92 | 3359 | 850 | 1841 | 1768 |
Practice livestock | 77 | 4119 | 1427 | 2021 | 1561 |
Market orientation | |||||
Non market oriented | 119 | 3792 | 1320 | 1925 | 1858 |
Market oriented | 50 | 3501 | 620 | 1919 | 1235 |
Total | 169 | 3706 | 1113 | 1923 | 1674 |
Variables | Seasonal Climate Forecast | Decadal Climate Information | ||
---|---|---|---|---|
Coefficient | Marginal Effect | Coefficient | Marginal Effect | |
Sex male | 5824.99 *** | 2503.63 *** | 3745.14 ** | 842.18 ** |
(2133.30) | (831.88) | (1815.41) | (370.18) | |
Educated | −33.79 | −15.83 | −3657.87 * | −757.16 ** |
(2232.58) | (1045.00) | (1972.73) | (340.46) | |
Age | −121.42 | −56.93 | −216.19 *** | −53.92 *** |
(86.56) | (40.53) | (75.03) | (18.94) | |
Household size | 91.51 | 42.91 | 54.34 | 13.55 |
(167.17) | (78.47) | (139.78) | (34.88) | |
Farm size | −104.25 | −48.88 | −82.08 | −20.47 |
(150.53) | (70.74) | (132.65) | (33.11) | |
Indigenous forecast | 1468.60 | 686.82 | 1866.44 | 463.45 |
(1856.84) | (865.35) | (1568.25) | (387.31) | |
Awareness to CIS | 8414.33 *** | 3563.83 *** | 4844.48 *** | 1089.27 *** |
(2039.17) | (772.67) | (1722.45) | (354.30) | |
Stone bunds | −1520.31 | −690.21 | −4809.52 ** | −988.98 *** |
(2020.72) | (889.33) | (1922.07) | (332.57) | |
Organic manure | 4894.90 ** | 2207.61 *** | 1639.68 | 398.89 |
(1908.99) | (829.02) | (1616.18) | (383.16) | |
Secondary activity–livestock | 1363.31 | 642.66 | 1717.26 | 434.98 |
(1735.66) | (823.46) | (1464.70) | (377.10) | |
Market oriented | 833.51 | 396.66 | −1352.27 | −321.40 |
(1943.45) | (937.42) | (1656.94) | (377.31) | |
Constant | −9148.61 * | −1370.96 | ||
(4658.70) | (3917.38) | |||
Sigma | 9681.28 *** | 7172.08 *** | ||
(776.08) | (730.45) | |||
Number of obs | 169 | 169 | ||
LR chi2(11) | 37.05 | 32.61 | ||
Prob > chi2 | 0.0001 | 0.0006 | ||
Pseudo R2 | 0.0184 | 0.0260 | ||
Log likelihood | −987.65 | −610.88 | ||
Left-censored observations (<=0) | 80 | 114 | ||
Uncensored observations | 89 | 55 | ||
Right-censored observations | 0 | 0 |
Variables | Daily Climate Information | Agro-Met Advisories | ||
---|---|---|---|---|
Coefficient | Marginal Effect | Coefficient | Marginal Effect | |
Sex male | 5471.56 *** | 2023.92 *** | 4469.12 ** | 1305.66 *** |
(1474.08) | (481.72) | (1845.78) | (487.20) | |
Educated | −2953.05 * | −1094.42 ** | −1902.28 | −568.35 |
(1542.95) | (500.75) | (1952.48) | (536.76) | |
Age | −178.94 *** | −75.34 *** | −114.23 | −36.99 |
(59.38) | (25.13) | (75.87) | (24.61) | |
Household size | 42.36 | 17.83 | 153.70 | 49.78 |
(112.42) | (47.35) | (141.65) | (45.82) | |
Farm size | −48.78 | −20.54 | −270.14 | −87.49 |
(100.85) | (42.50) | (172.71) | (55.67) | |
Indigenous forecast | 141.22 | 59.43 | 2610.37 | 840.90 |
(1238.55) | (520.91) | (1590.74) | (509.70) | |
Awareness to CIS | 5745.50 *** | 2167.75 *** | 4696.45 *** | 1394.19 *** |
(1389.97) | (467.56) | (1701.12) | (464.40) | |
Stone bunds | −1072.17 | −434.91 | −2417.99 | −720.70 |
(1370.20) | (536.11) | (1774.13) | (488.09) | |
Organic manure | 3074.98 ** | 1245.08 ** | 4449.98 *** | 1368.42 *** |
(1290.98) | (503.29) | (1648.35) | (485.29) | |
Secondary activity–livestock | 862.08 | 364.99 | 359.84 | 116.81 |
(1178.38) | (500.97) | (1488.09) | (483.99) | |
Market oriented | 1095.09 | 475.99 | −955.06 | −300.77 |
(1301.84) | (582.17) | (1675.67) | (514.12) | |
Constant | −2622.36 | −7481.36 * | ||
(3138.12) | (4090.67) | |||
Sigma | 6463.43 *** | 7700.16 *** | ||
(501.84) | (719.24) | |||
Number of obs | 169 | 169 | ||
LR chi2(11) | 42.19 | 30.92 | ||
Prob > chi2 | 0.0000 | 0.0011 | ||
Pseudo R2 | 0.0216 | 0.0207 | ||
Log likelihood = | −957.15 | −731.52 | ||
Left-censored observations (<=0) | 79 | 103 | ||
Uncensored observations | 90 | 66 | ||
Right-censored observations | 0 | 0 |
CIS | Total Households at the CSV Site | % Households Willing to Pay for CIS | Expected Number of Households Willing to Pay CIS | Predicted Value of the WTP Per Year | Aggregated Value (XOF) * |
---|---|---|---|---|---|
Seasonal forecast | 12,662 | 52.66 | 6668 | 3496 | 23,312,723 |
Decadal information | 12,662 | 32.54 | 4121 | 1066 | 4,394,357 |
Daily information | 12,662 | 53.25 | 6743 | 1985 | 13,388,368 |
Agro-advisories | 12,662 | 39.05 | 4945 | 1628 | 8,050,094 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouédraogo, M.; Barry, S.; Zougmoré, R.B.; Partey, S.T.; Somé, L.; Baki, G. Farmers’ Willingness to Pay for Climate Information Services: Evidence from Cowpea and Sesame Producers in Northern Burkina Faso. Sustainability 2018, 10, 611. https://doi.org/10.3390/su10030611
Ouédraogo M, Barry S, Zougmoré RB, Partey ST, Somé L, Baki G. Farmers’ Willingness to Pay for Climate Information Services: Evidence from Cowpea and Sesame Producers in Northern Burkina Faso. Sustainability. 2018; 10(3):611. https://doi.org/10.3390/su10030611
Chicago/Turabian StyleOuédraogo, Mathieu, Silamana Barry, Robert B. Zougmoré, Samuel Tetteh Partey, Leopold Somé, and Gregoire Baki. 2018. "Farmers’ Willingness to Pay for Climate Information Services: Evidence from Cowpea and Sesame Producers in Northern Burkina Faso" Sustainability 10, no. 3: 611. https://doi.org/10.3390/su10030611
APA StyleOuédraogo, M., Barry, S., Zougmoré, R. B., Partey, S. T., Somé, L., & Baki, G. (2018). Farmers’ Willingness to Pay for Climate Information Services: Evidence from Cowpea and Sesame Producers in Northern Burkina Faso. Sustainability, 10(3), 611. https://doi.org/10.3390/su10030611