Exploring the Role of Science in Sustainable Landscape Management. An Introduction to the Special Issue
Abstract
:1. Landscapes as Social-Ecological Systems
2. Challenges in Landscape Sustainability Science
- A sustainable landscape is a normative concept: the term means different things to different people and is connected to their beliefs, values, and preferences. Decisions aiming at making a landscape more sustainable depend on the world view of owners and users of the landscape and of the resources they have available. Therefore, sustainability aims and solutions are being defined in a societal process, not in a scientific discourse. Sustainability science requires an understanding of how environmental, social, and economic mechanisms are interdependent [6].
- The relation between humans and landscapes has often been the subject of analytical and impact assessment studies, but generating landscape solutions has not received much attention in sustainability science [9,10]. For achieving sustainable landscapes, understanding the problem should be followed by creating interventions for adapting the landscape. This activity requires a design approach [11].
- Landscape sustainability often requires fundamental societal transformations [12,13]. Collaborative forms of governance, which are adaptive and iterative (rather than rule-based and linear), are known to support such transformations [14]. Such governance requires knowledge exchange and complex forms of learning in social networks [15]. This calls for scientists to engage with society in a way that fosters both motivation and capacity for societal change [4,12].
3. Contribution of the Special Issue to Landscape Sustainability
3.1. Social-Ecological Systems
3.2. Landscape Governance
3.3. Creating Solutions
3.4. The Role of Scientists
Conflicts of Interest
References
- Lang, D.J.; Wiek, A.; Bergmann, M.; Stauffacher, M.; Martens, P.; Moll, P.; Lastname, M.S.; Lastname, F.; Lastname, F. Transdisciplinary research in sustainability science: Practices, principles, and challenges. Sustain. Sci. 2012, 7, 25–43. [Google Scholar] [CrossRef]
- Miller, T.R. Constructing sustainability science: Emerging perspectives and research trajectories. Sustain. Sci. 2013, 8, 279–293. [Google Scholar] [CrossRef]
- Balvanera, P.; Daw Tim, M.; Gardner Toby, A.; Martín-López, B.; Norström Albert, V.; Ifejika Speranza, C.; Spierenburg, M.; Bennett Elena, M.; Farfan, M.; Hamann, M. Key features for more successful place-based sustainability research on social-ecological systems: A Programme on Ecosystem Change and Society (PECS) perspective. Ecol. Soc. 2017, 22, 14. [Google Scholar] [CrossRef]
- Schäpke, N.; Omann, I.; Wittmayer, J.M.; Van Steenbergen, F.; Mock, M. Linking transitions to sustainability: A study of the societal effects of transition management. Sustainability 2017, 9, 737. [Google Scholar] [CrossRef]
- Opdam, P.; Luque, S.; Nassauer, J.I.; Verburg, P.; Wu, J. How can landscape ecology contribute to sustainability science? Landsc. Ecol. 2018. [Google Scholar] [CrossRef]
- Arts, B.; Buizer, M.; Horlings, I.; Ingram, V.; van Oosten, C.; Opdam, P. Landscape Approaches: A State-of-the-Art-Review. Ann. Rev. Environ. Resour. 2017, 42, 439–463. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.; Golubiewski, N. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.R.; Wiek, A.; Sarewitz, D.; Robinson, J.; Olsson, L.; Kriebel, D.; Loorbach, D. The future of sustainability science: A solutions-oriented research agenda. Sustain. Sci. 2014, 9, 239–246. [Google Scholar] [CrossRef]
- Fischer, J.; Gardner, T.A.; Bennett, E.M.; Balvanera, P.; Biggs, R.; Carpenter, S.; Daw, T.; Folke, C.; Hill, R.; Hughes, T.P. Advancing sustainability through mainstreaming a social-ecological systems perspective. Curr. Opin. Environ. Sustain. 2015, 14, 44–149. [Google Scholar] [CrossRef] [Green Version]
- Nassauer, J.; Opdam, P. Design in science: Extending the landscape ecology paradigm. Landsc. Ecol. 2008, 23, 633–644. [Google Scholar] [CrossRef]
- Lambin, E.F. Conditions for sustainability of human-environmental systems: Information, motivation, and capacity. Glob. Environ. Chang. 2005, 15, 177–180. [Google Scholar] [CrossRef]
- Loorbach, D. Transition Management for sustainable development: A Prescriptive, complexity-based Governance Framework. Governance Int. J. Policy Adm. Inst. 2010, 23, 161–183. [Google Scholar] [CrossRef]
- Armitage, D.R.; Plummer, R.; Berkes, F.; Arthur, R.; Charles, A.T.; Davidson-Hunt, I.J.; Diduck, A.P.; Doubleday, N.C.; Johnson, D.S.; Marschke, M.; et al. Adaptive co-management for social–ecological complexity. Front. Ecol. Environ. 2009, 7, 95–102. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Chang. 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Termorshuizen, J.; Opdam, P. Landscape services as a bridge between landscape ecology and sustainable development. Landsc. Ecol. 2009, 24, 1037–1052. [Google Scholar] [CrossRef]
- García-Llorente, M.; Rossignoli, C.M.; Di Iacovo, F.; Moruzzo, R. Social Farming in the Promotion of Social-Ecological Sustainability in Rural and Periurban Areas. Sustainability 2016, 8, 1238. [Google Scholar] [CrossRef]
- Berkowitz, B.N.; Medley, K.E. Home Gardenscapes as Sustainable Landscape Management on St. Eustatius, Dutch Caribbean. Sustainability 2017, 9, 1310. [Google Scholar] [CrossRef]
- Opdam, P.; Steingrover, E. How could companies engage in sustainable landscape management? An exploratory perspective. Sustainability 2018, 10, 220. [Google Scholar] [CrossRef]
- Karrasch, L.; Maier, M.; Klenke, T.; Kleyer, M. Collaborative Landscape Planning: Co-design of 3 Ecosystem-Based Land Management Scenarios. Sustainability 2017, 9, 1668. [Google Scholar] [CrossRef]
- Bürgi, M.; Ali, P.; Chowdhury, A.; Heinimann, A.; Hett, C.; Kienast, F.; Mondal, M.K.; Upreti, B.R.; Verburg, P.H. Integrated Landscape Approach: Closing the Gap between Theory and Application. Sustainability 2017, 9. [Google Scholar] [CrossRef]
- Westerink, J.; Opdam, P.; Van Rooij, S.; Steingröver, E. Landscape Services as Boundary Concept in Landscape Governance: Building Social Capital in Collaboration and Adapting the Landscape. Land Use Policy 2017, 60, 408–418. [Google Scholar] [CrossRef]
- Bieling, C.; Plieninger, T. (Eds.) The Science and Practice of Landscape Stewardship; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Riggs, R.A.; Langston, J.D.; Margules, C.; Boedhihartono, A.K.; Lim, H.S.; Sari, D.A.; Sururi, Y.; Sayer, J. Governance Challenges in an Eastern Indonesian Forest Landscape. Sustainability 2018, 10, 169. [Google Scholar] [CrossRef]
- Soma, K.; Termeer, C.; Opdam, P. Informational Governance—A systematic literature review of governance for sustainability in the Information Age. Environ. Sci. Policy 2016, 56, 89–99. [Google Scholar] [CrossRef]
- Opdam, P.; Coninx, I.; Dewulf, A.; Steingrover, E.; Vos, C.; Van der Wal, M. Does information on landscape benefits influence collective action in landscape governance? Curr. Opin. Environ. Sustain. 2016, 18, 107–114. [Google Scholar] [CrossRef]
- Musacchio, L.R. The grand challenge to operationalize landscape sustainability and the design-in-science paradigm. Landsc. Ecol. 2011, 26, 1–5. [Google Scholar] [CrossRef]
- Opdam, P.; Nassauer, J.I.; Wang, Z.; Albert, C.; Bentrup, G.; Castella, J.; McAlpine, C.; Liu, J.; Sheppard, S.; Swaffield, S. Science for action at the local landscape scale. Landsc. Ecol. 2013, 28, 1439–1445. [Google Scholar] [CrossRef]
- Suh, D.H.; Khachatryan, H.; Rihn, A.; Dukes, M. Relating Knowledge and Perceptions of Sustainable Water Management to Preferences for Smart Irrigation Technology. Sustainability 2017, 9, 607. [Google Scholar] [CrossRef]
- Azjen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar]
- Raquez, P.; Lambin, E.F. Conditions for sustainable land use: Case study evidence. J. Land Use Sci. 2006, 1, 109–125. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opdam, P. Exploring the Role of Science in Sustainable Landscape Management. An Introduction to the Special Issue. Sustainability 2018, 10, 331. https://doi.org/10.3390/su10020331
Opdam P. Exploring the Role of Science in Sustainable Landscape Management. An Introduction to the Special Issue. Sustainability. 2018; 10(2):331. https://doi.org/10.3390/su10020331
Chicago/Turabian StyleOpdam, Paul. 2018. "Exploring the Role of Science in Sustainable Landscape Management. An Introduction to the Special Issue" Sustainability 10, no. 2: 331. https://doi.org/10.3390/su10020331
APA StyleOpdam, P. (2018). Exploring the Role of Science in Sustainable Landscape Management. An Introduction to the Special Issue. Sustainability, 10(2), 331. https://doi.org/10.3390/su10020331