Biogas Micro-Production from Human Organic Waste—A Research Proposal
Abstract
:1. Introduction
2. Waste Management and Sanitation in Developing Regions and Humanitarian Camps
3. Anaerobic Digestion Review
3.1. Anaerobic Digester Structure and Layout
3.2. OW Biogas Properties
4. Proposed Biogas-Micro-Production Integrated System
5. Prototyping and Experimental Lab-Test
5.1. Characterisation of Bio Digester and OWHB
5.2. Results and Discussion
6. Conclusions and Future Research Opportunities
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Manga, V.E.; Forton, O.T.; Mofor, L.A.; Woodard, R. Health care waste management in Cameroon: A case study from the Southwestern Region. Resour. Conserv. Recycl. 2011, 57, 108–116. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Siles, J.A.; Diz, J.; Chica, A.F.; Martín, M.A. Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions. Waste Manag. 2017, 59, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Rada, E.C.; Ferrari, A.; Ragazzi, M.; Schiavon, M.; Torretta, V. PCDD/Fs environmental impact from an anaerobic digestion treatment. Prog. Ind. Ecol. 2016, 10, 83927. [Google Scholar] [CrossRef]
- Murugesan, V.; Joshua Amarnath, D. Control of green house gas emissions by energy recovery from the organic fraction of municipal solid waste through bio methanation process. Int. J. ChemTech Res. 2015, 8, 1168–1174. [Google Scholar]
- Gutiérrez, M.C.; Martin, M.A.; Chica, A.F. Usual variables and odour concentration to evaluate composting process and odour impact. Environ. Technol. (UK) 2014, 35, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Lleó, T.; Albacete, E.; Barrena, R.; Font, X.; Artola, A.; Sánchez, A. Home and vermicomposting as sustainable options for biowaste management. J. Clean. Prod. 2013, 47, 70–76. [Google Scholar] [CrossRef]
- Andreottola, G.; Ragazzi, M.; Foladori, P.; Villa, R.; Langone, M.; Rada, E.C. The Unit Intregrated Approch for OFMSW Treatment. Univ. Politeh. Buchar. Sci. Bull. Ser. C 2012, 74, 19–26. [Google Scholar]
- Alagöz, A.Z.; Kocasoy, G. Determination of the best appropriate management methods for the health-care wastes in Istanbul. Waste Manag. 2008, 28, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Patwary, M.A.; O’Hare, W.T.; Street, G.; Maudood Elahi, K.; Hossain, S.S.; Sarker, M.H. Quantitative assessment of medical waste generation in the capital city of Bangladesh. Waste Manag. 2009, 29, 2392–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudasar, R.; Kim, M.H. Experimental study of power generation utilizing human excreta. Energy Convers. Manag. 2017, 147, 86–99. [Google Scholar] [CrossRef]
- Colón, J.; Forbis-Stokes, A.A.; Deshusses, M.A. Anaerobic digestion of undiluted simulant human excreta for sanitation and energy recovery in less-developed countries. Energy Sustain. Dev. 2015, 29, 57–64. [Google Scholar] [CrossRef]
- Alibardi, L.; Cossu, R. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 2015, 36, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Decrey, L.; Kohn, T. Virus inactivation in stored human urine, sludge and animal manure under typical conditions of storage or mesophilic anaerobic digestion. Environ. Sci. Water Res. Technol. 2017, 3, 492–501. [Google Scholar] [CrossRef]
- Lansing, S.; Botero, R.B.; Martin, J.F. Waste treatment and biogas quality in small-scale agricultural digesters. Bioresour. Technol. 2008, 99, 5881–5890. [Google Scholar] [CrossRef] [PubMed]
- Caniato, M.; Vaccari, M. How to assess solid waste management in armed conflicts? A new methodology applied to the Gaza Strip, Palestine. Waste Manag. Res. 2014, 32, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Regattieri, A.; Santarelli, G.; Piana, F.; Gamberi, M. Classification of technical requirements and the means of addressing the problem of waste management in a refugee camp. In Humanitarian Logistics and Sustainability; Klumpp, M., Sander, L., Regattieri, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; p. 200. ISBN 3319154540. [Google Scholar]
- Bjerregard, M.; Meekings, H. Domestic and Refugee Camp Waste Management Collection and Disposal; Oxfam Technical Briefing Notes; Oxfam GB: Newcastle, UK, 2008; Volume 15, pp. 1–8. [Google Scholar]
- Garfì, M.; Tondelli, S.; Bonoli, A. Multi-criteria decision analysis for waste management in Saharawi refugee camps. Waste Manag. 2009, 29, 2729–2739. [Google Scholar] [CrossRef] [PubMed]
- UNHCR. Handbook for Emergencies; United Nations High Commissioner for Refugees: Geneva, Switzerland, 2007. [Google Scholar]
- Birkeland, N.; Forselv, G.L.; Vogel, V. Camp Management Toolkit—Norwegian Refugee Council, Oslo, Norway, 2008; ISBN 928-82-7411-185-0.
- Attwood, J.; Carter, C.; Banes, R.; Jensen, D.; Ravier, S. Assessment of Energy, Water and Waste Reduction Options for the Proposed AMISOM HQ Camp in Mogadishu, Somalia and the Support Base in Mombasa, Kenya; UNEP/DFS/UNSOA Technical Report; Unite Nations Environment Programme: Nairobi, Kenya, 2010. [Google Scholar]
- Harvey, P.; Baghri, S.; Reed, B. Emergency sanitation—Assessment and programme design. Water Pract. Technol. 2011, 5, 1–19. [Google Scholar] [CrossRef]
- Anttilator, B.; Bjerregard, M.; Jonsson, L. Disaster Waste Management Guidelines, 2 ed.; UNEP/OCHA Environment Unit: Geneva, Switzerland, 2013. [Google Scholar]
- Bjerregaard, M.; Meekings, H. Composting of Organic Materials and Recycling; Oxfam Technical Briefing Notes; Oxfam GB: Newcastle, UK, 2008; Volume 16, pp. 1–5. [Google Scholar]
- Hungría, J.; Gutiérrez, M.C.; Siles, J.A.; Martín, M.A. Advantages and drawbacks of OFMSW and winery waste co-composting at pilot scale. J. Clean. Prod. 2017, 164, 1050–1057. [Google Scholar] [CrossRef]
- Cabbai, V.; De Bortoli, N.; Goi, D. Pilot plant experience on anaerobic codigestion of source selected OFMSW and sewage sludge. Waste Manag. 2016, 49, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Reed, B. Technical Notes on Drinking-Water, Sanitation and Hygiene in Emergencies; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Ersel, M. Water and sanitation standards in humanitarian action. Turk. J. Emerg. Med. 2015, 15, 27–33. [Google Scholar] [CrossRef] [PubMed]
- De Bruijn, B. The living conditions and well-being of refugees. Human Development Research Paper (HDRP) Series, 2009; Volume 25. [Google Scholar]
- Schuler, S. Technology for Water Supply and Sanitation in Developing Countries; WHO: Geneva, Switzerland, 1987. [Google Scholar]
- World Health Organization. M Connolly Communicable Disease Control in Emergencies: A field Manual; WHO: Geneva, Switzerland, 2005; ISBN 9241546166. [Google Scholar]
- Harvey, P.; Bastable, A.; Bikaba, D.; Ferron, S.; Forster, T.; Hoque, E.; House, S.; Morris, L.; Smith, M.; Verheijen, L.; et al. Excreta Disposal in Emergencies: A Field Manual; Water, Engineering and Development Centre (WEDC), Loughborough University of Technology: Loughborough, UK, 2007. [Google Scholar]
- Marshall, G.; Lewthwaite, P.; Logan, T.; Young, K.; Png, M.M.; Koto, S. A Practical Guide to Building and Maintaining Toilets in the Pacific; LIVE&LEARN-Environmental Education: Melbourne, Australia, 2011. [Google Scholar]
- Curtis, V.; Cairncross, S. Effect of washing hands with soap on diarrhoea risk in the community: A systematic review. Lancet Infect. Dis. 2003, 3, 275–281. [Google Scholar] [CrossRef]
- Depoortere, E.; Brown, V. Rapid Health Assessment of Refugee or Displaced Populations; Medecins Sans Frontieres: Paris, France, 2006; ISBN 2906498645. [Google Scholar]
- Langergraber, G.; Muellegger, E. Ecological Sanitation—A way to solve global sanitation problems? Environ. Int. 2005, 31, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Sphere Project. The Sphere Handbook: Humanitarian Charter and Minumum Standars in Disaster Response; Geneva, Switzerland, 2011; ISBN 9781908176004. [Google Scholar]
- Morgan, P. Toilets That Make Compost-Low-Cost, Sanitary Toilets That Produce Valuable Compost for Crops in an African Context; EcoSanRes; Stockholm Environment Institute: Stockholm, Sweden, 2008; ISBN 978-1-85339-674-8. [Google Scholar]
- Tilley, E.; Lüthi, C.; Morel, A.; Zurbrügg, C.; Schertenleib, R. Compendium of Sanitation Systems and Technologies; Eawag-aq.: Zürich, Switzerland, 2008. [Google Scholar]
- Ashmore, J.; Bassiouni, M.; Bjerregard, M. Planning Centralised Building Waste Management Programmes in Response to Large Disaster; Shelter Centre, ProAct: Geneva, Switzerland, 2004. [Google Scholar]
- Fenner, R.A.; Guthrie, P.M.; Piano, E. Process selection for sanitation systems and wastewater treatment in refugee camps during disaster-relief situations. Water Environ. J. 2007, 21, 252–264. [Google Scholar] [CrossRef]
- Patel, D.; Brooks, N.; Bastable, A. Excreta disposal in emergencies: Bag and Peepoo trials with internally displaced people in Port-au-Prince. Waterlines 2011, 30, 61–77. [Google Scholar] [CrossRef]
- Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Singh, J.; Gu, S. Biomass conversion to energy in India-A critique. Renew. Sustain. Energy Rev. 2010, 14, 1367–1378. [Google Scholar] [CrossRef]
- Cioablã, A.E.; Ionel, I.; Tri-Tordai, G. Experimental approach for biogas production from biowaste. Int. J. Energy Environ. 2011, 5, 402–409. [Google Scholar]
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew. Sustain. Energy Rev. 2010, 14, 2086–2094. [Google Scholar] [CrossRef]
- Owamah, H.I.; Dahunsi, S.O.; Oranusi, U.S.; Alfa, M.I. Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Manag. 2014, 34, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.Q.; Nyns, E.J. New concept for the evaluation of rural biogas management in developing countries. Energy Convers. Manag. 1996, 37, 1525–1534. [Google Scholar] [CrossRef]
- Sovacool, B.; Drupady, M. Energy Access, Poverty, and Development: The Governance of Small-Scale Renewable Energy in Developing Asia; Routledge: Abingdon-on-Thames, UK, 2012; ISBN 978-140944113-7. [Google Scholar]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Aslanzadeh, S.; Johansson, F.; Taherzadeh, M.J. Experimental and economical evaluation of a novel biogas digester. Energy Convers. Manag. 2013, 74, 183–191. [Google Scholar] [CrossRef]
- Buysman, E. Biogas Production in Climates with Long Cold Winters; Wageningen University: Wageningen, The Netherlands, 2008. [Google Scholar]
- Gwavuya, S.G.; Abele, S.; Barfuss, I.; Zeller, M.; Muller, J. Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy. Renew. Energy 2012, 48, 202–209. [Google Scholar] [CrossRef]
- Kabir, H.; Yegbemey, R.N.; Bauer, S. Factors determinant of biogas adoption in Bangladesh. Renew. Sustain. Energy Rev. 2013, 28, 881–889. [Google Scholar] [CrossRef]
- Surendra, K.C.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z.; Mang, H.P.; Huba, E.M.; Gao, R.; Wang, X. Development and application of prefabricated biogas digesters in developing countries. Renew. Sustain. Energy Rev. 2014, 34, 387–400. [Google Scholar] [CrossRef]
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia. Renew. Sustain. Energy Rev. 2015, 48, 306–316. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Vögeli, Y.; Riu, C.; Gallardo, A.; Diener, S.; Zurbrügg, C. Anaerobic Digestion of Biowaste in Developing Countries, Pratical Information and Case Studies; Eawag-Sandec: Zürich, Switzerland, 2014; ISBN 9783906484587. [Google Scholar]
- Jatinder Singh, K.; Singh Sooch, S. Comparative study of economics of different models of family size biogas plants for state of Punjab, India. Energy Convers. Manag. 2004, 45, 1329–1341. [Google Scholar] [CrossRef]
- Kossmann, W.; Pönitz, U.; Habermehl, S.; Hoerz, T.; Krämer, P.; Klingler, B.; Kellner, C.; Wittur, T.; Klopotek, F.V.; Krieg, A.; et al. Biogas Digest; Biogas Basics: Eschborn, Germany, 1988; Volume I, pp. 1–46. [Google Scholar]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household Biogas Digesters—A Review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef]
- Aggarangsi, P.; Tippayawong, N.; Moran, J.C.; Rerkkriangkrai, P. Overview of livestock biogas technology development and implementation in Thailand. Energy Sustain. Dev. 2013, 17, 371–377. [Google Scholar] [CrossRef]
- Nizami, A.S.; Murphy, J.D. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sustain. Energy Rev. 2010, 14, 1558–1568. [Google Scholar] [CrossRef]
- Ghimire, P.C. SNV supported domestic biogas programmes in Asia and Africa. Renew. Energy 2013, 49, 90–94. [Google Scholar] [CrossRef]
- Lansing, S.; Maile-Moskowitz, A.; Eaton, A. Waste treatment and energy production from small-scale wastewater digesters. Bioresour. Technol. 2017, 245, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Buysman, E.; Mol, A.P.J. Market-based biogas sector development in least developed countries—The case of Cambodia. Energy Policy 2013, 63, 44–51. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Lou, X.F.; Nair, J.; Ho, G. Energy for Sustainable Development Field performance of small scale anaerobic digesters treating food waste. Energy Sustain. Dev. 2012, 16, 509–514. [Google Scholar] [CrossRef]
- Ferrer, I.; Garfí, M.; Uggetti, E.; Ferrer-Martí, L.; Calderon, A.; Velo, E. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenergy 2011, 35, 1668–1674. [Google Scholar] [CrossRef]
- Martí-Herrero, J.; Chipana, M.; Cuevas, C.; Paco, G.; Serrano, V.; Zymla, B.; Heising, K.; Sologuren, J.; Gamarra, A. Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia. Renew. Energy 2014, 71, 156–165. [Google Scholar] [CrossRef]
- Marchaim, U. Biogas Processes for Sustainable Development; MIGAL Galilee Technological Center: Kirtat Shmona, Israel; FAO: Rome, Italy, 1996. [Google Scholar]
- BUILD-A-BIOGAS-PLANT Natural and Renewable. Available online: http://www.build-a-biogas-plant.com/methane-and-biogas/ (accessed on 16 November 2017).
- Bates, L. Biogas. Prat. Action—Technol. Challenging Poverty, Rugby, UK, 2007, 44.
- Lansing, S.; Bowen, H.; Gregoire, K.; Klavon, K.; Moss, A.; Eaton, A.; Lai, Y.J.; Iwata, K. Methane production for sanitation improvement in Haiti. Biomass Bioenergy 2016, 91, 288–295. [Google Scholar] [CrossRef]
- Fixed-dome Biogas Plants. Available online: https://energypedia.info/wiki/Fixed-dome_Biogas_Plants (accessed on 11 October 2017).
- Ramesh, S.; Usman, A.; Usman, A.; Divakar, B.P. Municipal solid waste management in Bangalore and the concept of mini biogas plant in urban localities. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 20–23 October 2013; pp. 468–473. [Google Scholar] [CrossRef]
- Munasinghe; Sanjeevani Using a biogas. Pratical Action, Rugby, UK, 2003, 44.
- Karki, A.B. Biogas as renewable energy from organic waste. In BIOTECHNOLOGY; Doelle, H.R., Rokem, S., Beruvic, M., Eds.; Eolss: Oxford, UK, 2009; Volume X. [Google Scholar]
- Regattieri, A.; Piana, F.; Bortolini, M.; Gamberi, M.; Ferrari, E. Innovative portable solar cooker using the packaging waste of humanitarian supplies. Renew. Sustain. Energy Rev. 2016, 57, 319–326. [Google Scholar] [CrossRef]
- Charlottenburg, A. Rosenheim, Anaerobic Digestion. H; European Bioplastics e.V.: Berlin, Germany, 2015; p. 8. [Google Scholar]
- Itodo, I.; Agyo, G.; Yusuf, P. Performance evaluation of a biogas stove for cooking in Nigeria. J. Energy S. Afr. 2007, 18, 5. [Google Scholar]
- Martí-Herrero, J.; Ceron, M.; Garcia, R.; Pracejus, L.; Alvarez, R.; Cipriano, X. The influence of users’ behavior on biogas production from low cost tubular digesters: A technical and socio-cultural field analysis. Energy Sustain. Dev. 2015, 27, 73–83. [Google Scholar] [CrossRef]
- Haque, M.S.; Haque, M.N. Studies on the Effect of Urine on Biogas Production. Bangladesh J. Sci. Ind. Res. 2006, 41, 23–32. [Google Scholar] [CrossRef]
- American Public Health Association. Standard methods for Examination of Water and Waste Water; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Halley, P.; Averous, L. Starch Polymers from Genetic Engineering to Green Applications; Halley, P., Averous, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444537300. [Google Scholar]
- Alvarez, R.; Villca, S.; Lidén, G. Biogas production from llama and cow manure at high altitude. Biomass Bioenergy 2006, 30, 66–75. [Google Scholar] [CrossRef]
- Mukumba, P.; Makaka, G.; Mamphweli, S. Batch anaerobic co-digestion of cow dung and donkey manure. S. Afr. J. Sci. 2016, 112, 4. [Google Scholar] [CrossRef]
- Cummings, J.H.; Bingham, S.A.; Heaton, K.W.; Eastwood, M.A. Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 1992, 103, 1783–1789. [Google Scholar] [CrossRef]
Compound | Symbol | Mass Percentage [%] |
---|---|---|
Methane | CH4 | 50–70 |
Carbon Dioxide | CO2 | 30–40 |
Hydrogen | H2 | 5–10 |
Nitrogen | N2 | 1–2 |
Water Vapour | H2O | 0.3 |
Hydrogen Sulphide | H2S | traces |
Parameter | Average Value |
---|---|
%TS | 17.28 |
%VS/TS | 73.85 |
COD (mg/L) | 40,183 |
pH | 7.30 |
Compound | Mass Fraction [%] |
---|---|
CH4—Methane | 74.69 |
CO2—Carbon dioxide | 15.30 |
H2—Hydrogen | 10.01 |
Other gases | traces |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regattieri, A.; Bortolini, M.; Ferrari, E.; Gamberi, M.; Piana, F. Biogas Micro-Production from Human Organic Waste—A Research Proposal. Sustainability 2018, 10, 330. https://doi.org/10.3390/su10020330
Regattieri A, Bortolini M, Ferrari E, Gamberi M, Piana F. Biogas Micro-Production from Human Organic Waste—A Research Proposal. Sustainability. 2018; 10(2):330. https://doi.org/10.3390/su10020330
Chicago/Turabian StyleRegattieri, Alberto, Marco Bortolini, Emilio Ferrari, Mauro Gamberi, and Francesco Piana. 2018. "Biogas Micro-Production from Human Organic Waste—A Research Proposal" Sustainability 10, no. 2: 330. https://doi.org/10.3390/su10020330
APA StyleRegattieri, A., Bortolini, M., Ferrari, E., Gamberi, M., & Piana, F. (2018). Biogas Micro-Production from Human Organic Waste—A Research Proposal. Sustainability, 10(2), 330. https://doi.org/10.3390/su10020330