Spatial-Temporal Changes of Soil Respiration across China and the Response to Land Cover and Climate Change
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Analysis
2.2.1. Calculation of Rs Values
2.2.2. Analysis of the Trends in Rs
2.2.3. Correlation Analysis between Rs and Temperature or Precipitation
3. Results
3.1. The Distribution of RS and Its Changes across China
3.2. Correlation Analysis between Rs and Temperature Or Precipitation
3.3. Rs Values in Different Climate Zones, Land-Use Types and Soil Types
3.4. Cross Analysis of Climate Zones and Land-Use Types in Terms of Their Rs Values
4. Discussion
4.1. Model Validation and Comparison of Rs Evaluations Presented by Different Studies
4.2. Spatiotemporal Patterns of Rs and Its Changes across China
4.3. Effects of Precipitation and Temperature on Rs
4.4. Effects of Land Use on Rs
4.5. Effects of Soil Type on Rs
4.6. Suggested Management Strategies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Coryc, C.; Dianar, N.; Stevenk, S.; Alanr, T. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 2007, 82, 229–240. [Google Scholar]
- Schlesinger, W.H. Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Evol. Syst. 1977, 8, 51–81. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Raich, J.W.; Potter, C.S.; Bhagawati, D. Interannual variability in global soil respiration, 1980-94. Glob. Chang. Biol. 2002, 8, 800–812. [Google Scholar] [CrossRef]
- Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosci. Discuss. 2015, 12, 4331–4364. [Google Scholar] [CrossRef]
- Hashimoto, S.; Morishita, T.; Sakata, T.; Ishizuka, S.; Kaneko, S.; Takahashi, M. Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site data. Ecol. Model. 2011, 222, 1283–1292. [Google Scholar] [CrossRef]
- Frank, A.B.; Liebig, M.A.; Tanaka, D.L. Management effects on soil CO2, efflux in northern semiarid grassland and cropland. Soil Tillage Res. 2006, 89, 78–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Liu, Q.; Jiang, J.; Wang, R.; Li, N. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid loess plateau. Ecol. Eng. 2015, 74, 196–205. [Google Scholar] [CrossRef]
- Jones, C.D.; Cox, P.; Huntingford, C. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus B 2003, 55, 642–648. [Google Scholar] [CrossRef]
- Trumbore, S. Carbon respired by terrestrial ecosystems—Recent progress and challenges. Glob. Chang. Biol. 2006, 12, 141–153. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y. Spatial and seasonal variations of Q, 10, determined by soil respiration measurements at a Sierra Nevadan Forest. Glob. Biogeochem. Cycles 2001, 15, 687–696. [Google Scholar] [CrossRef]
- Arevalo, C.B.M.; Bhatti, J.S.; Chang, S.X.; Jassal, R.S.; Sidders, D. Soil respiration in four different land use systems in north central Alberta, Canada. J. Geophys. Res. Biogeosci. 2015, 115, 262. [Google Scholar] [CrossRef]
- Webster, K.L.; Creed, I.F.; Bourbonnière, R.A.; Beall, F.D. Controls on the heterogeneity of soil respiration in a tolerant hardwood forest. J. Geophys. Res. Biogeosci. 2015, 113, 851–854. [Google Scholar] [CrossRef]
- Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Banza, J. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. 2003, 17, 1104. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Qi, Y.; Xu, M.; Wu, J. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: Nonlinearity begets surprises. Ecol. Model. 2002, 153, 131–142. [Google Scholar] [CrossRef]
- Curiel, Y.J.; Janssens, I.A.; Carrara, A.; Meiresonne, L.; Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 2003, 23, 1263–1270. [Google Scholar] [Green Version]
- Bradford, M.A.; Davies, C.A.; Frey, S.D.; Maddox, T.R.; Melillo, J.M.; Mohan, J.E. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 2008, 11, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Cable, J.M.; Ogle, K.W.D.G.; Weltzin, J.F.; Huxman, T.E. Soil Texture Drives Responses of Soil Respiration to Precipitation Pulses in the Sonoran Desert: Implications for Climate Change. Ecosystems 2008, 11, 961–979. [Google Scholar] [CrossRef]
- Thomey, M.L.; Collins, S.L.; Vargas, R.; Johnson, J.E.; Brown, R.F.; Natvig, D.O. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob. Chang. Biol. 2015, 17, 1505–1515. [Google Scholar] [CrossRef]
- Bae, J.; Ryu, Y. Spatial and temporal variations in soil respiration among different land cover types under wet and dry years in an urban park. Landsc. Urban Plan. 2017, 167, 378–385. [Google Scholar] [CrossRef]
- Crum, S.M.; Jenerette, G.D. Scaling soil respiration dynamics across regional land-use and climate gradients in southern California, USA. In Proceedings of the 98th ESA Annual Meeting, Minneapolis, MN, USA, 5 August 2013; pp. 358–368. [Google Scholar]
- Boone, R.D.; Nadelhoffer, K.J.; Canary, J.D.; Kaye, J.P. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 1998, 396, 570–572. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Janssens, I.A.; Carrara, A.; Ceulemans, R. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob. Chang. Biol. 2004, 10, 161–169. [Google Scholar] [CrossRef]
- Thomas, A.D.; Hoon, S.R.; Dougill, A.J. Soil respiration at five sites along the Kalahari Transect: Effects of temperature, precipitation pulses and biological soil crust cover. Geoderma 2011, 167–168, 284–294. [Google Scholar] [CrossRef]
- Tang, J.; Qi, Y.; Xu, M.; Misson, L.; Goldstein, A.H. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiol. 2005, 25, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astiani, D.; Hatta, M.; Hanisah, M.; Fifian, F. Soil CO2, Respiration along Annual Crops or Land-cover Type Gradients on West Kalimantan Degraded Peatland Forest. Procedia Environ. Sci. 2015, 28, 132–141. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Lomas, M.; Beer, C.; Liu, H.; Fang, J. Contribution of climate change and rising CO2, to terrestrial carbon balance in East Asia: A multi-model analysis. Glob. Planet. Chang. 2011, 75, 133–142. [Google Scholar] [CrossRef]
- Chao, F.U.; Guirui, Y.U.; Fang, H.; Wang, Q. Effects of land use and cover change on terrestrial carbon balance of China. Prog. Phys. Geogr. 2012, 31, 88–96. [Google Scholar]
- Cao, M.; Woodward, F.I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob. Chang. Biol. 1998, 4, 185–198. [Google Scholar] [CrossRef]
- Zhou, T.; Shi, P.; Sun, R.; Wang, S. The impacts of climate change on net ecosystem production in China. Acta Geogr. Sin. 2004, 59, 357–365. [Google Scholar]
- Yu, G.; Zheng, Z.; Wang, Q.; Fu, Y.; Zhuang, J.; Sun, X. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: The development of a geostatistical model and its simulation. Environ. Sci. Technol. 2010, 44, 6074–6080. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Huang, Y.; Zou, J.W.; Shi, Y.S.; Lu, Y.Y.; Zhang, W. Interannual variability in soil respiration from terrestrial ecosystems in China and its response to climate change. Sci. China Earth Sci. 2012, 55, 2091–2098. [Google Scholar] [CrossRef]
- Tao, Z.; Shi, P.J.; Hui, D.F.; Luo, Y.Q. Spatial patterns in temperature sensitivity of soil respiration in China: Estimation with inverse modeling. Sci. China Life Sci. 2009, 52, 982–989. [Google Scholar]
- Wang, J.B.; Fu, X.L.; Zhong, H.X.; Wang, J.F.; Ni, H.W. Seasonal and interannual variation of soil respiration on the Sanjiang Plain Wentlands in Northeast China. J. Appl. Biomater. Biomech. 2014, 692, 70–73. [Google Scholar] [CrossRef]
- Monson, R.K.; Lipson, D.L.; Burns, S.P.; Turnipseed, A.A.; Delany, A.C.; Williams, M.W.; Schmidt, S.K. Winter forest soil respiration controlled by climate and microbial community composition. Nature 2006, 439, 711–714. [Google Scholar] [CrossRef]
- Meng, C. Effect of sensitivity of soil respiration to soil temperature in a conifer-broadleave forest in Xiaoxing’an Mountain after select cutting. Sci. Silvae Sin. 2011, 47, 102–106. [Google Scholar]
- Zhang, Y. Annual dynamic of soil respiration and its influential factors in intensively-managed forests of phyllostachys praecox. Sci. Silvae Sin. 2011, 47, 17–22. [Google Scholar]
- Zhou, L.; Zhou, X.; Zhang, B.; Lu, M.; Luo, Y.; Liu, L.; Li, B. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob. Chang. Biol. 2014, 20, 2332–2343. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Wang, Y.; Zhang, H.; Li, Y.; Yu, L.H.B. Responses of soil respiration to simulated nitrogen deposition in an evergreen broad-leaved forest in Jinyun Mountain. Sci. Silvae Sin. 2014, 50, 1–8. [Google Scholar]
- Cao, M.; Prince, S.D.; Kerang, L.I.; Tao, B.O.; Small, J.; Shao, X. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Chang. Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.J.; Mei, H.; Li, K.R. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci. China Earth Sci. 2008, 51, 885–898. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S. Spatial Patterns and Driving Forces of Land Use Change in China in the Early 21st Century (in Chinese). Acta Geol. Sin. 2009, 64, 1411–1420. [Google Scholar]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocksin China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ning, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C. Spatio-temporal patterns and characteristics of land-use change in China during 2010–2015 (in Chinese). Acta Geol. Sin. 2018, 73, 789–802. [Google Scholar]
- China Meteorological Administration. 1:36,000,000 China Climate Zoning Map; China Meteorological Administration: Beijing, China, 1994.
- Hou, X.Y. China Vegetation Type Map; SinoMaps Press: Beijing, China, 1982. [Google Scholar]
- Chuai, X.W.; Huang, X.J.; Lu, Q.L.; Zhang, M.; Zhao, R.Q.; Lu, J.Y. Spatial-temporal changes of carbon emission from construction industry across China. Environ. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef] [PubMed]
- China Soil Survey Office. 1:1,000,000 China Soil Map; China Soil Survey Office: Beijing, China, 1995. [Google Scholar]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Liu, C.; Dong, X.; Liu, Y. Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena 2015, 125, 190–199. [Google Scholar] [CrossRef]
- Jobbágy, E.G. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Liu, W.; Chen, S.; Zhao, Q.; Sun, Z.; Ren, J.; Qin, D. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau. Environ. Res. Lett. 2014, 9, 114013. [Google Scholar] [CrossRef] [Green Version]
- Mcculley, R.L.; Burke, I.C.; Nelson, J.A.; Lauenroth, W.K.; Knapp, A.K.; Kelly, E.F. Regional patterns in carbon cycling across the great plains of North America. Ecosystems 2005, 8, 106–121. [Google Scholar] [CrossRef]
- Ma, W.H.; Fang, J.Y.; Yang, Y.H.; Mohammat, A. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Javed, I.; Hu, R.; Feng, M.; Lin, S.; Saadatullah, M.; Ibrahimmohamed, A. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at three gorges reservoir area, south China. Agric. Ecosyst. Environ. 2010, 137, 294–307. [Google Scholar]
- Raich, J.W.; Tufekciogul, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Sheng, H.; Yang, Y.S.; Yang, Z.J.; Chen, G.S.; Xie, J.S.; Guo, J.F. The dynamic response of soil respiration to land-use changes in subtropical China. Glob. Chang. Biol. 2010, 16, 1107–1121. [Google Scholar] [CrossRef]
- Uchida, Y.; Nishimura, S.; Akiyama, H. The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields. Agric. Ecosyst. Environ. 2012, 156, 116–122. [Google Scholar] [CrossRef]
- Epron, D.; Nouvellon, Y.; Roupsard, O.; Mouvondy, W.; Mabiala, A.; Saint-André, L. Spatial and temporal variations of soil respiration in a eucalyptus, plantation in Congo. For. Ecol. Manag. 2004, 202, 149–160. [Google Scholar] [CrossRef]
- Lohila, A.; Aurela, M.; Regina, K.; Laurila, T. Soil and total ecosystem respiration in agricultural fields: Effect of soil and crop type. Plant Soil 2003, 251, 303–317. [Google Scholar] [CrossRef]
ID | Latitude | Longitude | Year | Vegetation | Field-Observed Rs | Model-Calculated Rs | Precision |
---|---|---|---|---|---|---|---|
1 | 29.68 | 91.35 | 2000 | Cropland | 579.00 | 584.20 | 99.10% |
2 | 34.27 | 108.08 | 2001 | Cropland | 425.80 | 433.92 | 98.09% |
3 | 29.67 | 91.33 | 2000 | Cropland | 579.00 | 590.97 | 97.93% |
4 | 47.10 | 126.13 | 2007 | Cropland | 517.17 | 467.81 | 90.46% |
5 | 35.07 | 113.17 | 2002–2004 | Cropland | 286.17 | 338.30 | 81.78% |
6 | 28.92 | 111.45 | 2003 | Cropland | 554.30 | 663.50 | 80.30% |
7 | 36.93 | 114.60 | 2004 | Cropland | 648.78 | 428.55 | 66.05% |
8 | 26.80 | 109.50 | 2003 | Forest | 526.00 | 709.480 | 65.12% |
9 | 26.73 | 115.07 | 2004 | Forest | 554.00 | 708.67 | 72.08% |
10 | 23.17 | 112.53 | 2003 | Forest | 863.30 | 839.54 | 97.25% |
11 | 31.32 | 110.50 | 2009 | Forest | 627.00 | 644.86 | 97.15% |
12 | 23.17 | 112.53 | 2003 | Forest | 866.00 | 839.54 | 96.94% |
13 | 31.33 | 110.50 | 2009 | Forest | 624.00 | 643.93 | 96.81% |
14 | 31.27 | 105.47 | 2005 | Forest | 511.30 | 527.87 | 96.76% |
15 | 21.93 | 101.25 | 2008 | Forest | 780.00 | 814.56 | 95.57% |
16 | 21.93 | 101.27 | 2004 | Forest | 885.00 | 796.58 | 90.01% |
17 | 21.95 | 101.20 | 2003 | Forest | 742.00 | 822.29 | 89.18% |
18 | 44.00 | 88.00 | 2005 | Forest | 262.50 | 291.13 | 89.09% |
19 | 31.32 | 110.48 | 2009 | Forest | 580.00 | 645.01 | 88.79% |
20 | 26.73 | 115.07 | 2005 | Forest | 632.00 | 718.66 | 86.29% |
21 | 42.40 | 128.47 | 2002 | Forest | 503.00 | 429.92 | 85.47% |
22 | 26.19 | 117.43 | 2003 | Forest | 829.30 | 693.31 | 83.60% |
23 | 21.85 | 101.20 | 2008 | Forest | 1007.00 | 815.03 | 80.94% |
24 | 31.58 | 102.58 | 2008 | Forest | 960.25 | 775.59 | 80.77% |
25 | 31.27 | 105.45 | 2005 | Forest | 655.00 | 527.51 | 80.54% |
26 | 26.22 | 117.53 | 2002 | Forest | 924.00 | 742.99 | 80.41% |
27 | 23.18 | 112.55 | 2003 | Forest | 1053.00 | 839.47 | 79.72% |
28 | 23.18 | 112.54 | 2003 | Forest | 1055.00 | 839.50 | 79.57% |
29 | 27.50 | 114.50 | 2006 | Forest | 975.96 | 747.91 | 76.63% |
30 | 26.20 | 117.43 | 2001 | Forest | 960.33 | 730.31 | 76.05% |
31 | 26.18 | 117.47 | 2012 | Forest | 906.46 | 680.03 | 75.02% |
32 | 26.19 | 117.43 | 2002 | Forest | 1018.70 | 743.64 | 73.00% |
33 | 22.68 | 112.90 | 2004 | Forest | 1162.00 | 840.33 | 72.32% |
34 | 30.23 | 119.70 | 2013 | Forest | 1015.91 | 724.22 | 71.29% |
35 | 41.90 | 124.90 | 2006 | Forest | 498.32 | 346.42 | 69.52% |
36 | 30.30 | 103.00 | 2008 | Forest | 592.00 | 406.85 | 68.73% |
37 | 30.50 | 103.00 | 2004 | Forest | 884.94 | 603.65 | 68.21% |
38 | 26.73 | 115.07 | 2004 | Forest | 537.00 | 712.20 | 67.37% |
39 | 28.12 | 113.03 | 2007 | Forest | 496.00 | 673.99 | 64.11% |
40 | 42.40 | 128.10 | 2004 | Forest | 684.32 | 428.60 | 62.63% |
41 | 28.12 | 113.03 | 2008 | Forest | 488.00 | 678.74 | 60.91% |
42 | 26.32 | 117.60 | 2012 | Forest | 1232.59 | 737.60 | 59.84% |
43 | 23.17 | 112.17 | 2005 | Forest | 627.80 | 881.91 | 59.52% |
44 | 23.13 | 112.59 | 2002 | Forest | 1001.00 | 865.12 | 86.43% |
45 | 21.93 | 101.27 | 2004 | Forest | 1273.00 | 813.53 | 63.91% |
46 | 25.32 | 110.55 | 2013 | Forest | 1160.70 | 748.90 | 64.52% |
47 | 30.23 | 119.70 | 2013 | Forest | 1109.00 | 724.22 | 65.30% |
48 | 26.18 | 117.47 | 2012 | Forest | 927.20 | 680.04 | 73.34% |
49 | 31.30 | 102.93 | 2013 | Forest | 815.50 | 558.62 | 68.50% |
50 | 22.17 | 106.83 | 2012 | Forest | 995.50 | 821.98 | 82.57% |
51 | 32.18 | 118.70 | 2013 | Forest | 980.00 | 639.06 | 65.21% |
52 | 27.67 | 114.63 | 2006 | Forest | 1055.00 | 633.87 | 60.08% |
53 | 29.28 | 115.72 | 2006 | Forest | 900.70 | 679.56 | 75.45% |
54 | 43.55 | 116.82 | 2001–2002 2004–2005 | Grassland | 314.46 | 302.48 | 96.19% |
55 | 44.09 | 115.91 | 2002 | Grassland | 111.00 | 326.21 | 93.88% |
56 | 44.75 | 123.75 | 2002 | Grassland | 300.50 | 272.39 | 90.64% |
57 | 43.55 | 116.78 | 2004 | Grassland | 356.00 | 311.84 | 87.59% |
58 | 44.81 | 116.26 | 2011–2012 | Grassland | 219.45 | 248.92 | 86.57% |
59 | 43.55 | 116.78 | 2003 | Grassland | 360.00 | 305.19 | 84.77% |
60 | 43.43 | 116.07 | 2001–2002 2004–2005 | Grassland | 263.42 | 217.32 | 82.50% |
61 | 43.55 | 116.78 | 2002 | Grassland | 409.00 | 296.74 | 72.55% |
62 | 30.85 | 91.08 | 2004 | Grassland | 369.06 | 242.83 | 65.80% |
63 | 30.90 | 91.10 | 2004 | Grassland | 369.00 | 242.73 | 65.78% |
64 | 44.09 | 115.91 | 2003 | Grassland | 126.00 | 332.93 | 64.23% |
65 | 37.58 | 101.33 | 2013 | Wetland | 454.10 | 517.85 | 85.96% |
66 | 37.76 | 118.99 | 2012 | Wetland | 794.70 | 525.47 | 66.12% |
Model | Period | Rs (Pg C/year) | Reference |
---|---|---|---|
GSMSR | 2000–2013 | 4.01 (3.91–4.10) | this study |
GSMSR | 1995–2004 | 3.84 (3.77–4.00) | Yu et al., 2010 |
T&P&C | 1970–2009 | 4.83 (4.58–5.19) | Chen et al., 2012 |
T&P | 1995–2004 | 3.51 | Yu et al., 2010 |
T&P | 1980–1994 | 3.76 | Raich et al., 2002; Yu et al., 2010 |
CEVSA | 1980–2000 | 4.82 | Cao et al., 2003; Yu et al., 2010 |
AVIM2 | 1981–2000 | 4.43 | Ji et al., 2008; Yu et al., 2010 |
a | Land-Use Type | Percentage |
Meadow and herbaceous swamp | 21.23% | |
Shrub and coppice | 20.07% | |
Grassland and savanna shrub grassland | 16.00% | |
Desert vegetation | 12.60% | |
Mixed cropland with three harvests a year | 11.94% | |
b | Soil Type | Percentage |
Alpine soil | 47.26% | |
Primitive | 13.04% | |
Desert | 10.65% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Chuai, X.; Li, S.; Song, S.; Li, J.; Guo, X.; Yang, L. Spatial-Temporal Changes of Soil Respiration across China and the Response to Land Cover and Climate Change. Sustainability 2018, 10, 4604. https://doi.org/10.3390/su10124604
Wen J, Chuai X, Li S, Song S, Li J, Guo X, Yang L. Spatial-Temporal Changes of Soil Respiration across China and the Response to Land Cover and Climate Change. Sustainability. 2018; 10(12):4604. https://doi.org/10.3390/su10124604
Chicago/Turabian StyleWen, Jiqun, Xiaowei Chuai, Shanchi Li, Song Song, Jiasheng Li, Xiaomin Guo, and Lei Yang. 2018. "Spatial-Temporal Changes of Soil Respiration across China and the Response to Land Cover and Climate Change" Sustainability 10, no. 12: 4604. https://doi.org/10.3390/su10124604
APA StyleWen, J., Chuai, X., Li, S., Song, S., Li, J., Guo, X., & Yang, L. (2018). Spatial-Temporal Changes of Soil Respiration across China and the Response to Land Cover and Climate Change. Sustainability, 10(12), 4604. https://doi.org/10.3390/su10124604