An Empirical Study on the Relationship between Agricultural Science and Technology Input and Agricultural Economic Growth Based on E-Commerce Model
Abstract
:1. Preface
2. State of the Art
3. Methodology
3.1. Indicators and Data Sources
3.2. Research Hypothesis
3.3. Variable Design and Model Description
4. Result Analysis and Discussion
4.1. Descriptive Statistics
4.2. Regression Results and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bryant, C.E.; Javalgi, R.G. Global Economic Integration in Developing Countries: The Role of Corruption and Human Capital Investment. J. Bus. Ethics 2016, 136, 1–14. [Google Scholar] [CrossRef]
- Tanner, C.J.; Adler, F.R.; Grimm, N.B. Urban ecology: Advancing science and society. Front. Ecol. Environ. 2016, 12, 574–581. [Google Scholar] [CrossRef]
- Parikh, K.S.; Ghosh, P.P. Binswanger-Mkhize H P. Rapid Economic Growth in India: Technical Change in Agriculture, Irrigation and Food Security. Indian Econ. J. Q. J. Indian Econ. Assoc. 2016, 64, 115–136. [Google Scholar] [CrossRef]
- Tian, M.; Xu, X.; Hu, H. Optimisation of enzymatic production of sulforaphane in broccoli sprouts and their total antioxidant activity at different growth and storage days. J. Food Sci. Technol. 2017, 54, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Epaphra, M.; Mwakalasya, A.H. Analysis of Foreign Direct Investment, Agricultural Sector and Economic Growth in Tanzania. Mod. Econ. 2017, 8, 111–140. [Google Scholar] [CrossRef]
- Sinha, J.K. Contribution of investment in economic growth of major sectors: With focus on agriculture and allied sector in Bihar. Stat. J. Iaos. 2017, 33, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Retallick, K.J.; Bormann, J.M.; Weaber, R.L. Genetic variance and covariance and breed differences for feed intake and average daily gain to improve feed efficiency in growing cattle. J. Anim. Sci. 2017, 95, 1444–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Sharma, P.; Joshi, S. Assessing the impacts of climate change on land productivity in Indian crop agriculture: An evidence from panel data analysis. J. Agric. Sci. Technol. 2016, 18, 1–13. [Google Scholar]
- Banson, K.E.; Nguyen, N.C.; Bosch, O.J.H. Systemic Management to Address the Challenges Facing the Performance of Agriculture in Africa: Case Study in Ghana. Syst. Res. Behav. Sci. 2016, 33, 544–574. [Google Scholar] [CrossRef]
- Guadix, J.; Carrillocastrillo, J.; Onieva, L. Success variables in science and technology parks. J. Bus. Res. 2016, 69, 4870–4875. [Google Scholar] [CrossRef]
- Núñez, O.C. Reseña de libro Agriculture and Economic Growth. Theory and Measurement. Econ. Agrar. Recur. Nat.-Agric. Resour. Econ. 2016, 4, 155. [Google Scholar]
- Jie, S.; Lei, H.; Hui, J. Dynamic relationship between economic growth, agriculture, taxation and processing industry of agricultural products based on the time series model. Boletin Tecnico/Tech. Bull. 2017, 55, 86–93. [Google Scholar]
- Lanz, B.; Dietz, S.; Swanson, T. Global Economic Growth and Agricultural Land Conversion under Uncertain Productivity Improvements in Agriculture. Foodsecure Work. Pap. 2016, 100, 545–569. [Google Scholar] [CrossRef]
- Ainan, H.B.; Luan, J. Sustaining the economic growth for agriculture sector in Benin#: How do agricultural technologies influence the growth rate. J. Dev. Agric. Econ. 2018, 10, 135–145. [Google Scholar]
- Osabohien, R.; Osabuohien, E.; Urhie, E. Food Security, Institutional Framework and Technology: Examining the Nexus in Nigeria Using ARDL Approach. Curr. Nutr. Food Sci. 2018, 14, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 18, 1–18. [Google Scholar] [CrossRef]
- Shen, Z.; Liao, Q.; Hong, Q.; Gong, Y. An overview of research on agricultural non-point source pollution modelling in China. Sep. Purif. Technol. 2012, 84, 104–111. [Google Scholar] [CrossRef]
- Pretty, J.N. Participatory learning for sustainable agriculture. World Dev. 1995, 23, 1247–1263. [Google Scholar] [CrossRef]
- Kaur, K.; Malhotra, N. Telecommunication and economic growth in India: Causality analysis. Int. J. Res. Bus. Manag. 2014, 2, 31–46. [Google Scholar]
Variable | Number of sections | Sample Number | Minimum Value | Maximum Value | Average Value | Standard Deviation |
---|---|---|---|---|---|---|
Total output value of agriculture, forestry, animal husbandry and fishery (100 million yuan) | 15 | 450 | 23.9 | 2116.5 | 516.4 | 408.7 |
Agricultural labor force (10000 people) | 15 | 450 | 36.3 | 4039.6 | 1054.4 | 863.4 |
Land (1000 hectares) | 15 | 450 | 216.5 | 14,248.7 | 5148.9 | 3671.8 |
Land (1000 hectares) | 15 | 450 | 58.5 | 11,629.0 | 1946. 6 | 2132.5 |
Fertilizer application amount (10000 tons) | 15 | 450 | 1.5 | 711.5 | 170.2 | 150.3 |
Number of large livestock (10000) | 15 | 450 | 5.4 | 2509.0 | 534.0 | 485.6 |
Effective irrigation area (1000 hectares) | 15 | 450 | 144.2 | 5081.0 | 1803.9 | 1381.7 |
Effects Test | Statistic | d.f. | Prob. |
---|---|---|---|
Cross-section F | 1.864760 | (29,323) | 0.0054 |
Cross-section Chi-square | 55.573140 | 29 | 0.0021 |
Test Summary | Chi-Sq.Statistic | Chi-Sq.d.f | Prob. |
---|---|---|---|
Cross-section random | 13.829439 | 6 | 0.0316 |
Variable | Coefticient | Std.Error | 1-Statistic | Prob. |
---|---|---|---|---|
C | 0.954894 | 0.203428 | 4.694019 | 0.0000 |
INF | 0.067085 | 0.060835 | 1.102729 | 0.0709 |
SUP | 0.096886 | 0.163293 | 1.171999 | 0.0635 |
ENV | −0.082096 | 0.099762 | −1.822921 | 0.0111 |
STRU | −0.354161 | 0.139825 | −2.532888 | 0.0117 |
HUMA | 0.196266 | 0.124301 | 1.578951 | 0.0153 |
R-squared | 0.193060 | Mean dependent var | 1.175905 | |
Adjusted R-squared | 0.155621 | S.D.dependent var | 0.256276 | |
S.E.of regression | 0.242364 | Akaike info criterion | 0.098135 | |
Sum squared resid | 18.97312 | Sckwarz criterion | 0.487549 | |
Log likelihood | 18.38472 | Hannan-Quinn criter | 0.252990 | |
F-statistic | 2.207932 | Durbin-Wstson stat | 2.166120 | |
Prob (F-statistic) | 0.000187 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Huang, L. An Empirical Study on the Relationship between Agricultural Science and Technology Input and Agricultural Economic Growth Based on E-Commerce Model. Sustainability 2018, 10, 4465. https://doi.org/10.3390/su10124465
Wang T, Huang L. An Empirical Study on the Relationship between Agricultural Science and Technology Input and Agricultural Economic Growth Based on E-Commerce Model. Sustainability. 2018; 10(12):4465. https://doi.org/10.3390/su10124465
Chicago/Turabian StyleWang, Tianqi, and Lijun Huang. 2018. "An Empirical Study on the Relationship between Agricultural Science and Technology Input and Agricultural Economic Growth Based on E-Commerce Model" Sustainability 10, no. 12: 4465. https://doi.org/10.3390/su10124465
APA StyleWang, T., & Huang, L. (2018). An Empirical Study on the Relationship between Agricultural Science and Technology Input and Agricultural Economic Growth Based on E-Commerce Model. Sustainability, 10(12), 4465. https://doi.org/10.3390/su10124465