Bamboo as an Alternative Bioenergy Crop and Powerful Ally for Land Restoration in Indonesia
Abstract
1. Introduction
2. Suitability of Bamboo for Energy Production
2.1. Energy Generation and Fuel Characteristics
2.2. Local Availability and Familiarity
2.3. Avoiding the Food-Energy-Environment Trilemma
2.4. Livelihood Improvements
2.5. Climate Action
2.6. Land Restoration
3. Potential Challenges
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Energy Council. Indonesia Energy Outlook 2016; National Energy Council, Secretariat General: Jakarta, Indonesia, 2016. [Google Scholar]
- Ministry of Energy and Mineral Resources. Handbook of Energy & Economic Statistics of Indonesia; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2017. [Google Scholar]
- Government of Indonesia. First Nationally Determined Contribution (Republic of Indonesia); UNFCCC: Bonn, Germany, 2016. [Google Scholar]
- Erahman, Q.F.; Purwanto, W.W.; Sudibandriyo, M.; Hidayatno, A. An assessment of Indonesia’s energy security index and comparison with seventy countries. Energy 2016, 111, 364–376. [Google Scholar] [CrossRef]
- Huboyo, H.S.; Tohno, S.; Lestari, P.; Mizohata, A.; Okumura, M. Characteristics of indoor air pollution in rural mountainous and rural coastal communities in Indonesia. Atmos Environ. 2014, 82, 343–350. [Google Scholar] [CrossRef]
- Masera, O.R.; Bailis, R.; Drigo, R.; Ghilardi, A.; Ruiz-Mercado, I. Environmental burden of traditional bioenergy use. Annu. Rev. Environ. Resour. 2015, 40, 121–150. [Google Scholar] [CrossRef]
- Griggs, D.; Nilsson, M.; Stevance, A.; McCollum, D. A Guide to SDG Interactions: From Science to Implementation; International Council for Science: Paris, France, 2017. [Google Scholar]
- Government of Indonesia. Government Regulation of the Republic of Indonesia Number 79 of 2014 on National Energy Policy; Government of Indonesia: Jakarta, Indonesia, 2014. [Google Scholar]
- Souza, G.M.; Victoria, R.L.; Joly, C.A.; Verdade, L.M. Bioenergy & Sustainability: Bridging the Gaps; SCOPE: Paris, France, 2015; pp. 978–982. [Google Scholar]
- Popp, J.; Lakner, Z.; Harangi-Rakos, M.; Fari, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Seta, G.A.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Obidzinski, K.; Andriani, R.; Komarudin, H.; Andrianto, A. Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecol. Society 2012, 17. [Google Scholar] [CrossRef]
- Ohrnberger, D. The Bamboos of the World: Annotated Nomenclature and Literature of the Species and the Higher and Lower Taxa; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Lobovikov, M.; Ball, L.; Guardia, M.; Russo, L. World Bamboo Resources: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005; Food & Agriculture Organization: Rome, Italy, 2007. [Google Scholar]
- Singh, S.; Adak, A.; Saritha, M.; Sharma, S.; Tiwari, R.; Rana, S.; Arora, A.; Nain, L. Bioethanol Production Scenario in India: Potential and Policy Perspective. In Sustainable Biofuels Development in India; Chandel, A.K., Sukumaran, R.K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 21–37. [Google Scholar]
- Boyle, G. Renewable Energy: Power for a Sustainable Future; Oxford University Press: Oxford, UK, 2004; p. 464. [Google Scholar]
- Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Fullerton, D.G.; Bruce, N.; Gordon, S.B. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans R. Soc. Trop. Med. Hyg. 2008, 102, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Eisentraut, A.; Brown, A. Technology Roadmap: Bioenergy for Heat and Power. Technol. Roadmaps 2012, 2, 1–41. [Google Scholar]
- IEA. Bioenergy—A Sustainable and Reliable Energy Source; IEA: Paris, France, 2009. [Google Scholar]
- Kerlero, D.R.; de Bussy, J. Electrical Valorization of Bamboo in Africa; ENEA Consulting: Paris, France, 2012. [Google Scholar]
- Scurlock, J.; Dayton, D.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Sritong, C.; Kunavongkrit, A.; Piumsombun, C. Bamboo: An innovative alternative raw material for biomass power plants. Int. J. Innov. Manag. Technol. 2012, 3, 759. [Google Scholar]
- Kumar, R.; Chandrashekar, N. Fuel properties and combustion characteristics of some promising bamboo species in India. J. For. Res. 2014, 25, 471–476. [Google Scholar] [CrossRef]
- Kuttiraja, M.; Sindhu, R.; Varghese, P.E.; Sandhya, S.V.; Binod, P.; Vani, S.; Pandey, A.; Sukumaran, R.K. Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass Bioenergy 2013, 59, 142–150. [Google Scholar] [CrossRef]
- Marsoem, S.N.; Irawati, D. Basic properties of Acacia Mangium and Acacia Auriculiformis as a Heating Fuel; AIP Publishing: Melville, NY, USA, 2016. [Google Scholar]
- FAO. Global Forest Resources Assessment 2005: Indonesia Country Report; Food and Agricultural Organization of the United Nations (FAO)/International Network for Bamboo and Rattan (INBAR): Rome, Italy, 2005. [Google Scholar]
- Immerzeel, D.J.; Verweij, P.; Hilst, F.; Faaij, A.P. Biodiversity impacts of bioenergy crop production: A state-of-the-art review. GCB Bioenergy 2014, 6, 183–209. [Google Scholar] [CrossRef]
- Mishra, G.; Giri, K.; Panday, S.; Kumar, R.; Bisht, N. Bamboo: Potential resource for eco-restoration of degraded lands. J. Biol. and Earth Sci. 2014, 4, 130–136. [Google Scholar]
- De Carvalho, A.L.; Nelson, B.W.; Bianchini, M.C.; Plagnol, D.; Kuplich, T.M.; Daly, D.C. Bamboo-dominated forests of the southwest Amazon: Detection, spatial extent, life cycle length and flowering waves. PloS ONE 2013, 8, e54852. [Google Scholar] [CrossRef] [PubMed]
- Benton, A. Priority Species of Bamboo. In Bamboo: The Plant and its Uses; Liese, W., Köhl, M., Eds.; Springer International Publishing: Basel, Switzerland, 2015; pp. 31–41. [Google Scholar]
- Banik, R.L. Bamboo silviculture. In Bamboo, The Plant and its Uses; Liese, W., Köhl, M., Eds.; Springer International Publishing: Basel, Switzerland, 2015; pp. 113–174. [Google Scholar]
- Xiao, J.H. Improving Benefits of Bamboo Stands by Classified Management and Oriental Cultivation. J. Bamboo Res. 2001, 20, 3. [Google Scholar]
- Bank Indonesia. Economic Report on Indonesia (2017); Bank Indonesia: Central Jakarta, Indonesia, 2018. [Google Scholar]
- Asian Development Bank. Summary of Indonesia’s Agriculture, Natural Resources, and Environment Sector Assessment; Asian Development Bank: Manila, Philippines, 2015. [Google Scholar]
- Ben-zhi, Z.; Mao-yi, F.; Jin-zhong, X.; Xiao-sheng, Y.; Zheng-cai, L. Ecological functions of bamboo forest: Research and Application. J. of Fores Res 2005, 16, 143–147. [Google Scholar] [CrossRef]
- Sinaga, H. Employment and income of workers on Indonesian oil palm plantations: Food crisis at the micro level. Future Food J. Food Agric. Soc. 2013, 1, 64–78. [Google Scholar]
- Xuhe, C. Promotion of bamboo for poverty alleviation and economic development. J. Bamboo Rattan 2003, 2, 345–350. [Google Scholar] [CrossRef]
- Bradshaw, B.; Dolan, H.; Smit, B. Farm-level adaptation to climatic variability and change: Crop diversification in the Canadian prairies. Clim. Chang. 2004, 67, 119–141. [Google Scholar] [CrossRef]
- World Resources Institute. CAIT Climate Data Explorer; World Resources Institute: Washington, DC, USA, 2018. [Google Scholar]
- Lou, Y.; Li, Y.; Buckingham, K.; Henley, G.; Zhou, G. Bamboo and Climate Change Mitigation; Technical Report; International Network for Bamboo and Rattan (INBAR): Beijing, China, 2010. [Google Scholar]
- Zhou, G.; Jiang, P. Density, storage and spatial distribution of carbon in Phyllostachy pubescens forest. Sci. Silvae Sin. 2004, 40, 20–24. [Google Scholar]
- Sohel, M.S.I.; Alamgir, M.; Akhter, S.; Rahman, M. Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development. Land Use Policy 2015, 49, 142–151. [Google Scholar] [CrossRef]
- Nath, A.J.; Das, A.K. Carbon pool and sequestration potential of village bamboos in the agroforestry system of northeast India. Trop. Ecol. 2012, 53, 287–293. [Google Scholar]
- IUCN. Land Degradation Neutrality: Implications and Opportunities for Conservation; IUCN: Nairobi, Kenya, 2015. [Google Scholar]
- Barbier, E.B.; Hochard, J.P. Does Land Degradation Increase Poverty in Developing Countries? PLoS ONE 2016, 11, e0152973. [Google Scholar] [CrossRef] [PubMed]
- Anshari, G.Z.; Afifudin, M.; Nuriman, M.; Gusmayanti, E.; Arianie, L.; Susana, R.; Nusantara, R.; Sugardjito, J.; Rafiastanto, A. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 2010, 7, 3403–3419. [Google Scholar] [CrossRef]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 730. [Google Scholar] [CrossRef]
- Wijaya, A.; Budiharto, R.S.; Tosiani, A.; Murdiyarso, D.; Verchot, L. Assessment of large scale land cover change classifications and drivers of deforestation in Indonesia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 557. [Google Scholar] [CrossRef]
- Gaveau, D.L.; Sheil, D.; Salim, M.A.; Arjasakusuma, S.; Ancrenaz, M.; Pacheco, P.; Meijaard, E. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016, 6, 32017. [Google Scholar] [CrossRef] [PubMed]
- United Nations Convention to Combat Desertification (UNCCD). Indonesia—Land Degradation Neutrality National Report; United Nations Convention to Combat Desertification: Jakarta, Indonesia, 2015. [Google Scholar]
- Sayer, J.; Chokkalingam, U.; Poulsen, J. The restoration of forest biodiversity and ecological values. For Ecol. Manag. 2004, 201, 3–11. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Achieving zero net land degradation: Challenges and Opportunities. J. Arid. Environ. 2015, 112, 44–51. [Google Scholar] [CrossRef]
- Sabogal, C.; Besacier, C.; McGuire, D. Forest and landscape restoration: Concepts, approaches and challenges for implementation. Unasylva 2015, 66, 3. [Google Scholar]
- Sukhdev, P.; Wittmer, H.; Schröter-Schlaack, C.; Nesshöver, C.; Bishop, J.; Brink, P.; Gundimala, H.; Kumar, P.; Simmons, B. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; UNEP: Ginebra, Suiza, 2010. [Google Scholar]
- Yu, Z.; Peng, S. Ecological Studies on Vegetation Rehabilitation of Tropical and Subtropical Degraded Ecosystems; Guangdong Science & Technology Press: Guangzhou, China, 1996. (In Chinese) [Google Scholar]
- Lou, Y.; Henley, G. Biodiversity in Bamboo Forests: A Policy Perspective for Long Term Sustainability; International Network for Bamboo and Rattan (INBAR): Beijing, China, 2010. [Google Scholar]
- Li, R.; Zhang, J.; Zhang, Z. Values of bamboo biodiversity and its protection in China. J. Bamboo Res 2003, 22, 7–13. [Google Scholar]
- Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environ. Rev. 2011, 19, 418–428. [Google Scholar] [CrossRef]
- Reid, S.; Díaz, I.A.; Armesto, J.J.; Willson, M.F. Importance of native bamboo for understory birds in Chilean temperate forests. The Auk 2004, 121, 515–525. [Google Scholar] [CrossRef]
- FAO; INBAR. Bamboo for Land Restoration; INBAR: Beijing, China, 2018. [Google Scholar]
- Benton, A. Greening Red Earth: Restoring Landscapes, Rebuilding Lives; The International Development Research Center (IDRC)/Utthan Centre for Sustainable Development and Poverty Alleviation/International Network for Bamboo and Rattan (INBAR): Beijing, China, 2014. [Google Scholar]
- Buckingham, K. Rebranding Bamboo for Bonn: The 5 Million Hectare Restoration Pledge. Available online: http://www.wri.org/blog/2014/12/rebranding-bamboo-bonn-5-million-hectare-restoration-pledge (accessed on 9 October 2018).
- Richardson, D.; Canavan, S. Understanding the Risks of an Emerging Global Market for Cultivating Bamboo: Considerations for a More Responsible Dissemination of Alien Bamboos. In Proceedings of the 10th World Bamboo Congress, Damyang, Korea, 17–22 September 2015. [Google Scholar]
- O’connor, P.J.; Covich, A.P.; Scatena, F.; Loope, L.L. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: Leaf fall, aquatic leaf decay and patterns of invasion. J. Trop. Ecol. 2000, 16, 499–516. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, P.; Xu, Z. Soil microbial functional diversity under intensively managed bamboo plantations in southern China. J. Soils Sediments 2008, 8, 177. [Google Scholar] [CrossRef]
- Xu, Q.-F.; Jiang, P.-K.; Wu, J.-S.; Zhou, G.-M.; Shen, R.-F.; Fuhrmann, J.J. Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity. Biol. Invasions 2015, 17, 433–444. [Google Scholar] [CrossRef]
- Mariyono, J.; Kuntariningsih, A.; Suswati, E.; Kompas, T. Quantity and monetary value of agrochemical pollution from intensive farming in Indonesia. Manag. Environ. Qual. Int. J. 2018, 29, 759–779. [Google Scholar] [CrossRef]
Biomass Type | Ash (%) | Moisture (%) | Volatile Matter (%) | Heating Value (kJ/kg) |
---|---|---|---|---|
Rice husk | 12.73 | 12.05 | 56.98 | 14.63 |
Palm shell | 3.66 | 12.12 | 68.31 | 18.44 |
Corn stalk | 3.80 | 41.69 | 46.98 | 11.63 |
Bamboo | 2.70 | 5.80 | 71.70 | 17.58 |
Acacia * | 0.36 | 11.2 | 65.7 | 17.40 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.; Wahono, J.; Baral, H. Bamboo as an Alternative Bioenergy Crop and Powerful Ally for Land Restoration in Indonesia. Sustainability 2018, 10, 4367. https://doi.org/10.3390/su10124367
Sharma R, Wahono J, Baral H. Bamboo as an Alternative Bioenergy Crop and Powerful Ally for Land Restoration in Indonesia. Sustainability. 2018; 10(12):4367. https://doi.org/10.3390/su10124367
Chicago/Turabian StyleSharma, Roshan, Jaya Wahono, and Himlal Baral. 2018. "Bamboo as an Alternative Bioenergy Crop and Powerful Ally for Land Restoration in Indonesia" Sustainability 10, no. 12: 4367. https://doi.org/10.3390/su10124367
APA StyleSharma, R., Wahono, J., & Baral, H. (2018). Bamboo as an Alternative Bioenergy Crop and Powerful Ally for Land Restoration in Indonesia. Sustainability, 10(12), 4367. https://doi.org/10.3390/su10124367