Stochastic Empty Container Repositioning Problem with CO2 Emission Considerations for an Intermodal Transportation System
Abstract
:1. Introduction
2. Mathematical Model for Stochastic ECRP with CO2 Emissions
2.1. Notations and Assumptions
2.2. A Chance-Constrained Nonlinear Integer Programming Model
3. Solution Methodology
3.1. SAA Method
3.2. Two-Phase Tabu Search Algorithm
3.2.1. Distribution Phase
3.2.2. Routing Phase
4. Computational Study
4.1. Deterministic Case
4.2. Stochastic Case
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Liu, R.; Zhang, X.; Whiteing, A. A chance-constrained stochastic approach to intermodal container routing problems. PLoS ONE 2018, 13, e0192275. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Lee, L.H.; Chew, E.P. The sample average approximation method for empty container repositioning with uncertainties. Eur. J. Oper. Res. 2012, 222, 65–75. [Google Scholar] [CrossRef]
- Review of Maritime Transportation 2017. UNCTAD 2017. Available online: https://unctad.org/en/PublicationsLibrary/rmt2017_en.pdf (accessed on 15 October 2018).
- Demir, E.; Burgholzer, W.; Hrušovský, M.; Arıkan, E.; Jammernegg, W.; van Woensel, T. A green intermodal service network design problem with travel time uncertainty. Transp. Res. Part B Methodol. 2016, 93, 789–807. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Zhou, Y.; Xue, Q.; Sun, L. Individuals’ acceptance to free-floating electric carsharing mode: A web-based survey in China. Int. J. Environ. Res. Public Health 2017, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Third IMO GHG Study 2014: Executive Summary and Final Report. International Maritime Organization 2014. Available online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Third%20Greenhouse%20Gas%20Study/GHG3%20Executive%20Summary%20and%20Report.pdf (accessed on 15 October 2018).
- Huang, Y.F.; Hu, J.K.; Yang, B. Liner services network design and fleet deployment with empty container repositioning. Comput. Ind. Eng. 2015, 89, 116–124. [Google Scholar] [CrossRef]
- Jula, H.; Chassiakos, A.; Ioannou, P. Port dynamic empty container reuse. Transp. Res. Part E Logist. Transp. Rev. 2006, 42, 43–60. [Google Scholar] [CrossRef]
- Feng, C.M.; Chang, C.H. Empty container reposition planning for intra-Asia liner shipping. Marit. Policy Manag. 2008, 35, 469–489. [Google Scholar] [CrossRef]
- Braekers, K.; Janssens, G.K.; Caris, A. Challenges in managing empty container movements at multiple planning levels. Transp. Rev. 2011, 31, 681–708. [Google Scholar] [CrossRef]
- Song, D.P.; Dong, J.X. Empty container repositioning. In Handbook of Ocean Container Transport Logistics; Lee, C.Y., Meng, Q., Eds.; Springer: Cham, Switzerland, 2015; pp. 163–208. ISBN 978-3-319-11890-1. [Google Scholar]
- Florez, H. Empty-container Repositioning and Leasing: An Optimization Model. Ph.D. Thesis, Polytechnic-Institute of New York, Brooklyn, NY, USA, 1986. [Google Scholar]
- Crainic, T.G.; Delorme, L. Dual-ascent procedures for multicommodity location-allocation problems with balancing requirements. Transp. Sci. 1993, 27, 90–101. [Google Scholar] [CrossRef]
- Shintani, K.; Imai, A.; Nishimura, E.; Papadimitriou, S. The container shipping network design problem with empty container repositioning. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 39–59. [Google Scholar] [CrossRef]
- Song, D.P.; Carter, J. Empty container repositioning in liner shipping. Marit. Policy Manag. 2009, 36, 291–307. [Google Scholar] [CrossRef]
- Moon, I.K.; Do Ngoc, A.D.; Hur, Y.S. Positioning empty containers among multiple ports with leasing and purchasing considerations. OR Spectr. 2010, 32, 765–786. [Google Scholar] [CrossRef]
- Brouer, B.D.; Pisinger, D.; Spoorendonk, S. Liner shipping cargo allocation with repositioning of empty containers. INFOR: Inf. Syst. Oper. Res. 2011, 49, 109–124. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, S. Liner shipping service network design with empty container repositioning. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 695–708. [Google Scholar] [CrossRef]
- Song, D.P.; Dong, J.X. Cargo routing and empty container repositioning in multiple shipping service routes. Transp. Res. Part B Methodol. 2012, 46, 1556–1575. [Google Scholar] [CrossRef]
- Song, D.P.; Dong, J.X. Long-haul liner service route design with ship deployment and empty container repositioning. Transp. Res. Part B Methodol. 2013, 55, 188–211. [Google Scholar] [CrossRef]
- An, F.; Hu, H.; Xie, C. Service network design in inland waterway liner transportation with empty container repositioning. Eur. Transp. Res. Rev. 2015, 7, 9. [Google Scholar] [CrossRef]
- Cheung, R.K.; Chen, C.Y. A two-stage stochastic network model and solution methods for the dynamic empty container allocation problem. Transp. Sci. 1998, 32, 142–162. [Google Scholar] [CrossRef]
- Crainic, T.G.; Gendreau, M.; Dejax, P. Dynamic and stochastic models for the allocation of empty containers. Oper. Res. 1993, 41, 102–126. [Google Scholar] [CrossRef]
- Li, J.A.; Liu, K.; Leung, S.C.; Lai, K.K. Empty container management in a port with long-run average criterion. Math. Comput. Model. 2004, 40, 85–100. [Google Scholar] [CrossRef]
- Li, J.A.; Leung, S.C.; Wu, Y.; Liu, K. Allocation of empty containers between multi-ports. Eur. J. Oper. Res. 2007, 182, 400–412. [Google Scholar] [CrossRef]
- Song, D.P. Characterizing optimal empty container reposition policy in periodic-review shuttle service systems. J. Oper. Res. Soc. 2007, 58, 122–133. [Google Scholar] [CrossRef]
- Lam, S.W.; Lee, L.H.; Tang, L.C. An approximate dynamic programming approach for the empty container allocation problem. Transp. Res. Part C Emerg. Technol. 2007, 15, 265–277. [Google Scholar] [CrossRef]
- Song, D.P.; Dong, J.X. Empty container management in cyclic shipping routes. Marit. Econ. Logist. 2008, 10, 335–361. [Google Scholar] [CrossRef]
- Di Francesco, M.; Crainic, T.G.; Zuddas, P. The effect of multi-scenario policies on empty container repositioning. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 758–770. [Google Scholar] [CrossRef]
- Song, D.P.; Zhang, Q. A fluid flow model for empty container repositioning policy with a single port and stochastic demand. SIAM J. Control Optim. 2010, 48, 3623–3642. [Google Scholar] [CrossRef]
- Song, D.P.; Dong, J.X. Flow balancing-based empty container repositioning in typical shipping service routes. Marit. Econ. Logist. 2011, 13, 61–77. [Google Scholar] [CrossRef]
- Lee, L.H.; Chew, E.P.; Luo, Y. Empty container management in multi-port system with inventory-based control. Int. J. Adv. Syst. Meas. 2012, 5, 164–177. [Google Scholar]
- Dong, J.X.; Xu, J.; Song, D.P. Assessment of empty container repositioning policies in maritime transport. Int. J. Logist. Manag. 2013, 24, 49–72. [Google Scholar] [CrossRef]
- Sainz Bernat, N.; Schulte, F.; Voß, S.; Böse, J. Empty container management at ports considering pollution, repair options, and street-turns. Math. Probl. Eng. 2016. [Google Scholar] [CrossRef]
- Choong, S.T.; Cole, M.H.; Kutanoglu, E. Empty container management for intermodal transportation networks. Transp. Res. Part E Logist. Transp. Rev. 2002, 38, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Wang, S.; Liu, Z. Network design for shipping service of large-scale intermodal liners. Transp. Res. Rec. 2012, 2269, 42–50. [Google Scholar] [CrossRef]
- Braekers, K.; Caris, A.; Janssens, G.K. Optimal shipping routes and vessel size for intermodal barge transport with empty container repositioning. Comput. Ind. 2013, 64, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Kolar, P.; Schramm, H.J.; Prockl, G. Intermodal transport and repositioning of empty containers in Central and Eastern Europe hinterland. J. Transp. Geogr. 2018, 69, 73–82. [Google Scholar] [CrossRef]
- Dong, J.X.; Song, D.P. Quantifying the impact of inland transport times on container fleet sizing in liner shipping services with uncertainties. OR Spectr. 2012, 34, 155–180. [Google Scholar] [CrossRef]
- Xie, Y.; Liang, X.; Ma, L.; Yan, H. Empty container management and coordination in intermodal transport. Eur. J. Oper. Res. 2017, 257, 223–232. [Google Scholar] [CrossRef]
- Song, D.P.; Xu, J. An operational activity-based method to estimate CO2 emissions from container shipping considering empty container repositioning. Transp. Res. Part D Transp. Environ. 2012, 17, 91–96. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. Chance-constrained programming. Manag. Sci. 1959, 6, 73–79. [Google Scholar] [CrossRef]
- Kleywegt, A.J.; Shapiro, A.; Homem-de-Mello, T. The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 2002, 12, 479–502. [Google Scholar] [CrossRef]
- Verweij, B.; Ahmed, S.; Kleywegt, A.J.; Nemhauser, G.; Shapiro, A. The sample average approximation method applied to stochastic routing problems: A computational study. Comput. Optim. Appl. 2003, 24, 289–333. [Google Scholar] [CrossRef]
- Pagnoncelli, B.K.; Ahmed, S.; Shapiro, A. Sample average approximation method for chance constrained programming: Theory and applications. J. Optim. Theory Appl. 2009, 142, 399–416. [Google Scholar] [CrossRef]
- Luedtke, J.; Ahmed, S. A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 2008, 19, 674–699. [Google Scholar] [CrossRef]
- Cao, Z.; Yuan, Z.; Zhang, S. Performance analysis of stop-skipping scheduling plans in rail transit under time-dependent demand. Int. J. Environ. Res. Public Health 2016, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Tao, F.; Wang, S. Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading. Int. J. Environ. Res. Public Health 2018, 15, 2025. [Google Scholar] [CrossRef] [PubMed]
- Crainic, T.G.; Gendreau, M.; Soriano, P.; Toulouse, M. A tabu search procedure for multicommodity location/allocation with balancing requirements. Ann. Oper. Res. 1993, 41, 359–383. [Google Scholar] [CrossRef]
- Pedersen, M.B.; Crainic, T.G.; Madsen, O.B. Models and tabu search metaheuristics for service network design with asset-balance requirements. Transp. Sci. 2009, 43, 158–177. [Google Scholar] [CrossRef]
- Sun, M.; Aronson, J.E.; McKeown, P.G.; Drinka, D. A tabu search heuristic procedure for the fixed charge transportation problem. Eur. J. Oper. Res. 1998, 106, 441–456. [Google Scholar] [CrossRef]
Transportation Mode | Stochastic Demand and/or Supply | CO2 Emissions | Key References |
---|---|---|---|
Unimodal | No | No | Huang et al. [7]; Jula et al. [8]; Feng and Chang [9]; Florez [12]; Crainic and Delorme [13]; Shintani et al. [14]; Song and Carter [15]; Moon et al. [16]; Brouer et al. [17]; Meng and Wang [18]; Song and Dong [19,20]; An et al. [21] |
Unimodal | Yes | No | Long et al. [2]; Cheung and Chen [22]; Crainic et al. [23]; Li et al. [24]; Li et al. [25]; Song [26]; Lam et al. [27]; Song and Dong [28]; Francesco et al. [29]; Song and Zhang [30]; Song and Dong [31]; Lee et al. [32]; Dong et al. [33] |
Unimodal | Yes | Yes | Bernat et al. [34] |
Intermodal | No | No | Choong et al. [35]; Meng et al. [36]; Braekers et al. [37]; Kolar et al. [38] |
Intermodal | Yes | No | Dong and Song [39]; Xie et al. [40] |
Intermodal | Yes | Yes | This paper |
Term | Definition |
---|---|
Index and set | |
the set of nodes, | |
the set of railway stations | |
the set of ports | |
the set of railway stations with surplus empty containers, | |
the set of railway stations with deficit empty containers, | |
the set of ports with surplus empty containers, | |
the set of ports with deficit empty containers, | |
the set of arcs, | |
the set of railway arcs, including the arcs between two railway stations and the arcs between one railway station and one port | |
the set of ship arcs, i.e., the arcs between two ports | |
the sets of candidate railway routes between two railway stations and from one railway station to one port, distinguished by the origin stations, destination railway stations/ports, and intermediate railway stations. | |
the set of candidate ship routes distinguished by their port calling sequences | |
the planning horizon | |
two railway stations, | |
two ports, | |
a transportation arc, | |
a candidate railway route, | |
a candidate ship route, | |
a time period, | |
Input parameters | |
the distance of arc a (km) | |
the unit transportation cost of one empty container on railway arc a, (US$/TEU) | |
the unit transportation cost of one empty container on ship arc a of ship route r (US$/TEU) | |
the unit loading cost of one empty container at railway station i (US$/TEU) | |
the unit unloading cost of one empty container at railway station j (US$/TEU) | |
the unit loading cost of one empty container at port p (US$/TEU) | |
the unit unloading cost of one empty container at port q (US$/TEU) | |
the unit inventory cost of storing one empty container per time period at railway station i (US$/TEU) | |
the unit inventory cost of storing one empty container per time period at port p (US$/TEU) | |
the unit leasing cost of one empty container at railway station i (US$/TEU) | |
the unit leasing cost of one empty container at port p (US$/TEU) | |
the unit CO2 emission-related cost (US$/kg) | |
the CO2 emissions of arc a (kg/TEU) | |
the transportation capacity of railway arc a (TEUs) | |
the transportation capacity of ship route r when one ship is deployed (TEUs) | |
the handling capacity of railway station i, including loading and unloading operations (TEUs) | |
the handling capacity of port p, including loading and unloading operations (TEUs) | |
the inventory capacity of railway station i (TEUs) | |
the inventory capacity of port p (TEUs) | |
the number of empty containers stored at railway station i at the end of time t (TEUs) | |
the number of empty containers stored at port p at the end of time t (TEUs) | |
a binary variable, equal to 1 if the arc a is on the railway route k; 0 otherwise | |
a binary variable, equal to 1 if the arc a is on the ship route r; 0 otherwise | |
Random variables | |
the uncertain demand of empty containers at railway station i at time t (TEUs) | |
the uncertain supply of empty containers at railway station i at time t (TEUs) | |
the uncertain demand of empty containers at port p at time t (TEUs) | |
the uncertain supply of empty containers at port p at time t (TEUs) | |
Decision variables | |
the number of repositioned empty containers by train from i to j at time t | |
the number of repositioned empty containers by ship from p to q at time t | |
the number of repositioned empty containers by train from i to q at time t | |
a binary variable, equal to 1 if railway route k is selected to transport empty containers from i to j at time t; 0 otherwise | |
a binary variable, equal to 1 if ship route r is selected to transport empty containers from p to q at time t; 0 otherwise | |
a binary variable, equal to 1 if railway route k is selected to transport empty containers from i to q at time t; 0 otherwise | |
the number of leased empty containers at railway station i at time t | |
the number of leased empty containers at port p at time t | |
the vector of all decision variables at time t, i.e., |
Arc | Distance (km) | Cost (US$/TEU) | CO2 (kg/TEU) |
---|---|---|---|
(S1, S2) | 195 | 59.25 | 9.86 |
(S1, S4) | 158 | 53.7 | 7.99 |
(S1, S5) | 158 | 53.7 | 7.99 |
(S2, S3) | 190 | 58.5 | 9.61 |
(S2, S6) | 98 | 44.7 | 5 |
(S3, S7) | 88 | 43.2 | 4.45 |
(S4, S5) | 145 | 51.75 | 7.34 |
(S4, P1) | 135 | 50.25 | 6.83 |
(S5, S6) | 100 | 45 | 5.06 |
(S5, P1) | 165 | 54.75 | 8.35 |
(S6, S7) | 100 | 45 | 5.06 |
(S6, P2) | 100 | 45 | 5.06 |
(S7, P3) | 100 | 45 | 5.06 |
Ship Route | Port Calling Sequence | Arc | Cost (US$/TEU) | CO2 (kg/TEU) |
---|---|---|---|---|
1 | P1→P2→P1 | (P1, P2) | 18 | 9.75 |
2 | P2→P3→P2 | (P2, P3) | 15 | 3.68 |
3 | P1→P3→P1 | (P1, P3) | 30 | 13.43 |
4 | P1→P2→P3→P2→P1 | (P1, P2) | 17 | 9.75 |
(P2, P3) | 16 | 3.68 |
Demand of Empty Containers (TEUs) | S1 | S2 | S3 | P1 | P2 | P3 |
---|---|---|---|---|---|---|
t = 1 | 424 | 428 | 392 | 490 | 446 | 632 |
t = 2 | 396 | 324 | 414 | 530 | 548 | 454 |
t = 3 | 378 | 292 | 406 | 582 | 532 | 594 |
Supply of Empty Containers (TEUs) | S1 | S2 | S3 | P1 | P2 | P3 |
---|---|---|---|---|---|---|
t = 1 | 366 | 368 | 436 | 464 | 552 | 606 |
t = 2 | 436 | 276 | 316 | 622 | 466 | 550 |
t = 3 | 336 | 328 | 356 | 628 | 586 | 550 |
Time Period t | Distribution Plan | Routing Plan | Leasing Plan |
---|---|---|---|
1 | S3→S1: 10 TEUs | S3→S2→S1 | S1: 48 TEUs |
S3→S2: 34 TEUs | S3→S2 | ||
P2→S2: 26 TEUs | P2→S6→S2 | ||
P2→P1: 26 TEUs | Ship route 4 | ||
P2→P3: 26 TEUs | Ship route 2 | ||
2 | S1→S2: 20 TEUs | S1→S2 | S2: 18 TEUs S3: 22 TEUs |
S1→S3: 20 TEUs | S1→S2→S3 | ||
P1→P2: 24 TEUs | Ship route 4 | ||
P3→S2: 10 TEUs | P3→S7→S6→S2 | ||
P3→S3: 56 TEUs | P3→S7→S3 | ||
P3→P2: 30 TEUs | Ship route 2 | ||
3 | S2→S3: 36 TEUs | S2→S3 | - |
P1→S1: 42 TEUs | P1→S4→S1 | ||
P1→P3: 22 TEUs | Ship route 3 | ||
P2→S3: 14 TEUs | P2→S6→S7→S3 | ||
P2→P3: 22 TEUs | Ship route 2 |
Time Period t | Transportation Cost (US$) | Handling Cost (US$) | Inventory Cost (US$) | Leasing Cost (US$) | CO2 Emission-Related Cost (US$) | Total Cost (US$) |
---|---|---|---|---|---|---|
1 | 6330.7 | 3600 | 156.8 | 9600 | 2264.4 | 22,012 |
2 | 10,684 | 4800 | 380.8 | 8000 | 3229.5 | 27,095 |
3 | 9326.7 | 4080 | 380.8 | 0 | 3097.6 | 16,885 |
Total | 26,342 | 12,540 | 918.4 | 17,600 | 8591.5 | 65,991 |
Time Period t | Distribution Plan | Routing Plan | Leasing Plan |
---|---|---|---|
1 | S3→S1: 16 TEUs | S3→S2→S1 | S1: 48 TEUs S2: 3 TEUs |
S3→S2: 27 TEUs | S3→S2 | ||
P2→S2: 36 TEUs | P2→S6→S2 | ||
P2→P1: 32 TEUs | Ship route 4 | ||
P2→P3: 32 TEUs | Ship route 2 | ||
2 | S1→S2: 24 TEUs | S1→S2 | S2: 22 TEUs S3: 26 TEUs |
S1→S3: 21 TEUs | S1→S2→S3 | ||
P1→P2: 56 TEUs | Ship route 4 | ||
P3→S2: 8 TEUs | P3→S7→S6→S2 | ||
P3→S3: 62 TEUs | P3→S7→S3 | ||
P3→P2: 32 TEUs | Ship route 2 | ||
3 | S2→S1: 16 TEUs | S2→S1 | S1: 2 TEUs S3: 5 TEUs |
S2→S3: 30 TEUs | S2→S3 | ||
P1→S1: 41 TEUs | P1→S4→S1 | ||
P1→P3: 32 TEUs | Ship route 3 | ||
P2→S3: 21 TEUs | P2→S6→S7→S3 | ||
P2→P3: 30 TEUs | Ship route 2 |
Time Period t | Transportation Cost (US$) | Handling Cost (US$) | Inventory Cost (US$) | Leasing Cost (US$) | CO2 Emission-Related Cost (US$) | Total Cost (US$) |
---|---|---|---|---|---|---|
1 | 7716.7 | 4290 | 177.1 | 10,200 | 2725.8 | 25,110 |
2 | 11,873 | 6090 | 459.3 | 9600 | 4039.7 | 32,062 |
3 | 11,172 | 5100 | 503.4 | 1400 | 3799.6 | 21,975 |
Total | 30,762 | 15,480 | 1139.8 | 21200 | 10,565 | 79,147 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xue, Q.; Zhang, X. Stochastic Empty Container Repositioning Problem with CO2 Emission Considerations for an Intermodal Transportation System. Sustainability 2018, 10, 4211. https://doi.org/10.3390/su10114211
Zhao Y, Xue Q, Zhang X. Stochastic Empty Container Repositioning Problem with CO2 Emission Considerations for an Intermodal Transportation System. Sustainability. 2018; 10(11):4211. https://doi.org/10.3390/su10114211
Chicago/Turabian StyleZhao, Yi, Qingwan Xue, and Xi Zhang. 2018. "Stochastic Empty Container Repositioning Problem with CO2 Emission Considerations for an Intermodal Transportation System" Sustainability 10, no. 11: 4211. https://doi.org/10.3390/su10114211
APA StyleZhao, Y., Xue, Q., & Zhang, X. (2018). Stochastic Empty Container Repositioning Problem with CO2 Emission Considerations for an Intermodal Transportation System. Sustainability, 10(11), 4211. https://doi.org/10.3390/su10114211