1. Introduction
Over the last two decades, the importance of analysing social vulnerability has gained major importance, especially in terms of elaborating different methodologies for quantifying the rate of vulnerability, delimiting territories most exposed to risks as well as elaborating effective development strategies. Quantifying the social dimension of vulnerability allows the identification of the most vulnerable regions along with key factors which, once addressed, could increase the resilience of local communities. By analysing a broad set of studies on topics including methodological development [
1,
2,
3], specific hazard research (climate, floods) [
2,
4], scale difference analysis (local, international comparison) [
1,
2], temporal and spatial changes [
5], or uncertainty and sensitivity analysis [
6], we can see that social vulnerability analysis has come a long way in the last decade. However, due to its multidimensionality, neither a common definition nor a universally accepted measurement has been unanimously accepted so far. Social vulnerability is used, defined, and conceptualised in many different ways [
7] and is often linked to associated concepts such as resilience, risk, exposure, sensitivity, and coping capacity [
8]. In this article we first present the concepts and approaches related to social vulnerability in a critical way, debating afterwards on the issue of developing methods for measuring social vulnerability as well as the advantages and weaknesses of the most frequently used variables.
The evolution of research on vulnerability has been considerably influenced by two distinct approaches: namely, the ‘human ecologist school’ or ‘behavioural paradigm’ and the ‘structural paradigm’.
The focus of the behavioural paradigm is the human adaptation to natural hazards. Adaptation can be understood as purposeful actions for disaster mitigation, the behavioural paradigm being thus also viewed as a hazard-based approach [
9,
10,
11]. The structural paradigm—also called a disaster-based approach—focuses on people’s individual socio-economic and demographic characteristics within the specific social, economic, cultural, and political context they live in, emphasizing a range of variables determining vulnerability. The structuralism perspective has also led to important theoretical advancements in the field, resulting in the development of various comprehensive models.
The ‘Pressure and Release Model’ (PAR) reveals the complex interactions between social processes that create vulnerability and the hazards themselves. Within the model, ‘pressure’ can be understood as an increasing level of vulnerability and exposure to hazards, while the ‘release’ aspect encompasses all actions taken to reduce the potential negative impact of a disaster. Although explicitly highlighting vulnerability, the PAR model has been strongly criticized as it does not take into account the role of proximity to the source of the threat and it does not address the physical aspects of the interactions between the social- and natural systems [
12,
13]. The model provides little detail on the hazards’ causal sequence and downplays feedback beyond the system of analysis included in the integrative Risk-Hazard models [
14]. Thus, it represents a specific tool for explaining vulnerability within descriptive analyses, rather than for empirical testing.
An important conceptual development has emerged along with the elaboration of the hazard-of-place approach to vulnerability, which combines the risk/hazard and political ecology perspectives. The model is based on the assumption that people living in a certain area will have an unequal vulnerability to a potential natural hazard due to their social, economic, and political statuses [
15]. In the model, the geographic context and social structure are linked together, having a strong influence on each other. Thus, the interactions between social vulnerability and biophysical vulnerability create place vulnerability, which is then linked to risk and mitigation elements. The most important deficiencies of this model are its weak capability to explain the root causes of social vulnerability, as well as the inability to include the larger context in which social vulnerability exists [
12]. However, this approach can be considered a novel contribution with regard to the introduction of GIS technologies not only in risk, hazard, and vulnerability mapping, but also in emergency planning.
Following the internal-external model, which relies on the double structure of vulnerability (exposure/coping), Turner et al. [
13] proposed a vulnerability/sustainability framework in order to provide a comprehensive analysis on the complexity and interactions involved in vulnerability analyses, highlighting the factors and linkages that affect the intertwined human and environmental systems exposed to hazards. Since vulnerability is strongly influenced by global processes, the conceptual model stresses the importance of analysing the elements of local vulnerability within the wider context, explicitly considering space, time, and scale. This framework is thus able to show how the interactions of social and environmental forces can result in an increased vulnerability in the event of sudden changes. However, the approach could not escape criticism as it lacks clear differentiation between exposure and sensitivity, making it difficult to identify where vulnerability begins and where it ends [
12].
The concept of vulnerability has continuously evolved by including susceptibility, exposure, the capacity to cope and adapt, and by incorporating different thematic areas such as physical, social, economic, environmental and institutional vulnerability [
16]. Along with the extensive debate on the conceptualisation of social vulnerability, there are also debates on the issue of developing methods for measuring it. The difficulties have mainly been related to two specific aspects: the availability of databases at different territorial levels and the development of the most appropriate methodology which considers all factors of interest, providing necessary information upon which political decisions can be based. Even though there is still no universally agreed-upon set of indicators, methodology or uniquely developed indices for measuring social vulnerability, a series of successful attempts have been published on the topic in recent years. One of the most important pioneering works belongs to Cutter et al. [
1] who—by examining social vulnerability in US states—have developed the SoVI
® index. This method has largely been accepted due to its continuous evolution [
4,
17,
18,
19,
20], pertinence, and adaptability. The only limitation of the method is that it attributes equal weights to all factors influencing social vulnerability, although there are always certain processes—depending on the analysed region—which can have a stronger impact on shaping social vulnerability. In order to avoid this limitation, most of the research results which have seen the light of day in the last years have focused either on applying different weighting methods [
21,
22] or on developing completely new methodologies [
23,
24].
When it comes to assessing social vulnerability, the most frequently used associations of the term are with social processes, economic systems, and relations of power, using variables such as class, ethnicity, gender, age, disability, and health status [
25]. However, vulnerability is also linked to the lack of access to resources, building stock, and age, type, and density of infrastructure and lifelines [
1]. The approach of measuring social vulnerability through the use of such variables has certain advantages, but it also has weak points [
26]. First, by taking into account the demographic characteristics of a society, some authors have argued that women and the elderly are among the most vulnerable, yet information about flood-caused deaths reveals that young and middle-aged men are also vulnerable due to a more risk-taking behaviour [
27,
28,
29]. Besides this, not all elderly people are equally vulnerable throughout the entire disaster period [
26] as old age itself is relative and depends on several factors (illness, fitness). It has also been proven that gender alone is not an explaining factor of vulnerability, as women’s living conditions are greatly influenced by socio-economic status, household structures, and geographic location [
30]. Education, on the other hand, is a double-faceted variable of social vulnerability. Although well-educated people usually have a higher income and better-positioned properties, the occurrence of natural disasters can potentially result in higher damages. Albeit, the coping capacity of wealthier households is much higher than that of poorer households (having a home insurance can significantly reduce the burden of damages).
The political, environmental and socio-economic context that it is being applied to should be considered.
The most important strength of assessing social vulnerability by using an indicator- and place-based approach is represented by its practical applicability. Thus, once embedded into the wider/national context, it can assess the communities’ preparedness for diminishing the negative effects of natural hazards, representing at the same time a valuable input for policy-makers and disaster planners.
In spite of the fact that over the last decades a series of studies have dealt with the issue of social vulnerability in Romania, there is still a strong need to improve the methodology in order to increase its reliability in the context of disaster risk reduction. The most relevant research papers belong to Stângă and Grozavu [
31], Armaş and Gavriş [
32], Bănică and Muntele [
33], Constantin et al. [
34], although it is worth mentioning that these studies focus mainly on smaller spatial scales, applying comparative case studies for various parts of regions or for different territorial administrative units (i.e., the Municipality of Bucharest, rural mining settlements in the Apuseni Mountains, Iaşi and Bacău cities and metropolitan areas). Török [
35] has applied a modified version of the original SoVI in the Romanian context, proving the workability of the algorithm in a different context of development, using place-specific indicators.
The first and most important result of the study, following the hazard-of-place approach, is the elaboration of place-based indicators along with a specific weighting scheme for measuring local social vulnerability in regions where floods and flood-related hazards are important causes of disasters. The indicators can be well incorporated into other vulnerability models, being relevant and most useful in the vulnerability assessment of other regions characterized by demographic ageing and low to average levels of income as well. Nevertheless, different case studies across countries and regions along with methodological advancements can further enhance the international applicability of the model and the comparison methods of social vulnerability across different areas. Second, analysing social vulnerability across different territories gives emergency managers a meaningful and practical overview of the state of the art, offering the possibility of a much more precise planning and management for emergency situations. The present study found that social status is the most important indicator of vulnerability to disasters in Romanian settlements. Therefore, emergency managers should concentrate their efforts on offering support, advice, and counselling to those specific segments of the population which lack access to basic information on emergency situations and information on emergency management. Third, the present study also reveals the importance of integrating social vulnerability and disaster risk mitigation with the concept of sustainable development. How people live and how society develops has a direct effect on the overall value of potential losses due to disasters. Therefore, the specific results of the study can serve as a starting point for central and local public authorities for drafting and including measures for mitigating existing disaster risks in future development plans and policies, while also striving to develop sustainable communities.
Therefore, the main purpose of the paper is to quantify social vulnerability to natural hazards in Romanian settlements by using a large set of indicators, by applying a new weighting method and by elaborating the Local Social Vulnerability Index (LoSoVI). The results will be used to explore and analyse the spatial relationship between flood hazards and communities with a high degree of social vulnerability, using geographically weighted regression, comparing the results of OLS and GWR modelling at the same time.
4. Discussion
Addressing social vulnerability to disaster risks requires the understanding that the social context itself can increase both vulnerability (socio-economic variables), as well as the building of capacities to deal effectively with flood hazards [
56]. Eliminating variables which lead to vulnerability (such as a low level of education, high poverty rate and low accessibility to basic infrastructure as well as the imbalanced family structure) and capacity building which include those activities that help people mitigate the impact of a disaster, should represent the most important policy implications. Disaster risk prevention and reduction are crucial to enhance the socio-economic resilience of communities. In the context of climate change, where floods are expected to become more frequent, flood risk mitigation is a major concern of water policies and sustainable development strategies at different spatial scales.
Managing climate change-related risks requires decisions and strategies for adaptation, with implications for future generations, economies, and environments [
57]. The most important national document regulating flood risk management in Romania is the
National Strategy for Flood Risk Management for the medium and long-term, which was adopted in 2010. This strategy defines the technical, institutional and legal framework for diminishing the negative consequences of floods on socio-economic activities, life and population health, as well as on the environment, for the 2010–2035 period [
58]. Romania has a central water management authority, the
Romanian Waters National Administration (RWNA) which is responsible for the implementation of the national water management strategy and policies, aspects related to quantitative and qualitative water management as well as the operation of the different management structures. This Authority has 11 regional branches (see
Figure 1) organized according to the hydrographic basins of Romania, each with its own
Flood Risk Management Plan. These plans address all aspects of flood risk management focusing on prevention, protection, preparedness, including flood forecasts and early warning systems, considering the characteristics of the particular river basin or sub-basin. Flood risk management plans also include actions to promote sustainable land use practices, the improvement of water retention as well as the controlled flooding of certain areas in the case of a flood event [
59].
As it could be observed, government agencies—at least on paper—have elaborated and implemented all necessary measures associated with flood risks (prevention). Related to our analysis, the central question is related to policy or planning mechanisms aiming to cope with existing social vulnerabilities, increasing public participation, public relations/communication, and education on flood risk. According to the results of local surveys conducted in Niraj Walley, local authorities are generally aware of their settlements being exposed to a flood event, but usually have no information on multiple problems involved which can be related to social and economic aspects of the built infrastructure, as they have been revealed by the present analysis. As this is the first attempt ever to measure social vulnerability for all settlements in Romania, inserting the main findings into the revised
National Strategy for Flood Risk Management, followed by an update of the Flood Risk Management Plans for all the 11 hydrographic districts would have a great added value in increasing the effectiveness of the mentioned documents in diminishing the impact of future floods. Even so, the most important activities for flood risk prevention depend on the affected population, as the responsibilities of local authorities are mainly related to transmitting relevant information in due time and to as many people as possible. With this regard, it must be mentioned that Romania has introduced a compulsory insurance system enforced by law no. 260/2008 and law 191/2015, making it compulsory for all Romanian real-estate owners to purchase multi-hazard insurance. The amount of insurance depends on the quality of the building—mostly reflected by the construction type—and not on the probability of exposure to the specific hazard. The mentioned legislation also states that no compensation will be paid from the State Budget to uninsured households. Even though this provision is compulsory for all Romanian real-estate owners, according to the latest available statistics (31 August 2018), the rate of ensured households has barely reached 20%, with higher rates in urban than in rural areas [
60]. The low penetration in rural areas is mostly due to a lack of trust regarding insurers, missing information on how to buy insurance, difficulties proving the ownership of properties but also due to the self-assurance of people believing that such a hazard event could not happen to them. According to the survey performed in July 2015, when 741 households were queried in the Niraj Walley (Central Romania) about their perception on natural hazards, only 8.1 percent of the respondents mentioned that they are prepared for all hazardous events, 36.6 percent claimed they can only take the most basic measures, 43.2 percent considered themselves unable to take any action, while 8.5 percent believed that their household could not suffer any hazardous event. These values are all the more surprising when we consider that most settlements have strategic documents elaborated like Defence Plans in case of emergencies, including information on the Local Committee for Emergency Situations, schemes for transmitting information in case of emergency situations at the local scale, defence measures against floods, limits of flooded areas, etc. This makes us realize that it is not enough to publish or disseminate such information on the City Hall website or on posters with textual information or maps regarding flood risk in buildings of the local council, since in this way information does not reach the elderly or people from isolated households which are in the greatest need of help. In this case, the most important task should be overtaken not only by local authorities, but also by other public figures like religious leaders or teachers, by informing people and raising awareness regarding the flood risk. According to the results of the above-mentioned survey, we consider that the best solutions are actions which are held in schools in order to raise awareness and educate the children at an early age. In the case of the elderly, personal contact and giving help in increasing the level of preparedness are of utmost importance. Flood risk adaptation is key for the existence of people in certain areas, enabling them to survive in extreme conditions, such as floods. Therefore, exercises and simulations of flood crises should be organised at regular time intervals in order to train the population at risk. As it could be observed, adaptation to flood risk can be achieved by various hard and soft measures, all contributing to flood risk mitigation. At the same time, LoSoVI can provide the basis for discussing the main causes of risk and vulnerability, mitigation measures, preparedness, response planning as well as recovery.
5. Conclusions
In recent years, there has been an increased interest towards initiatives aiming to reduce the impact of hazards, not just from a physical perspective, but also from a social perspective. Despite the absence of a generally accepted definition and an agreed-upon methodology for the measurement of social vulnerability, we can conclude that an important number of initiatives providing different methodological approaches and indicators offer a valuable contribution to its assessment. It is a universally accepted fact that there is neither a single common approach nor a universal catalogue of vulnerability indicators: vulnerability is highly context-specific in terms of the socio-economic, demographic, political, and cultural contexts. Furthermore, considering the temporal and spatial variations of social vulnerability, a one-size-fits-all approach for increasing preparedness, improving response, and facilitating recovery may be the least effective for reducing it [
61].
This paper was aimed to provide an assessment of social vulnerability in Romanian settlements by applying the SoVI method in a local context. Using GIS-based local models and global statistics to explore the relationship between populations exposed to flood hazards and settlements characterized by high vulnerability scores, we were able to detect and extract certain key information pieces concerning non-stationarity in spatial data. By comparing the results regarding the adequacy of global OLS and local GWR models with certain parameter estimates, this paper has managed to explicitly demonstrate that within spatial data, the relationship is non-static across geographic space. The results from our analysis complement the main findings and existing debates in contemporary literature in many ways.
First, the conducted research represents the first in-depth attempt to quantify community-level vulnerability to flood hazards in Romania. The path dependency of some localities, the specific historical, social and economic factors have put their mark on the evolution of social vulnerability, especially on variables like the ageing of the population, occupation and income levels. These factors also represent the main origin of socio-spatial inequalities which have now been reflected in the territorial distribution of the LoSoVI model. In general, a high level of vulnerability associated with a low level of resilience characterizes peripheral rural areas, which are further affected by natural hazards, especially floods (eastern and north-western parts of rural Romania). What is more, due to the high rate of poverty and limited access to resources and services, these areas are often associated with low levels of education and lack of sanitation facilities, decreasing the ability to cope with the impact of natural hazards. In this sense, their present status may very well give serious reason for concern. As the study has confirmed, even the most developed urban areas can be vulnerable in the face of natural disasters (generally due to the high population density), indicating that large urban agglomerations do not necessarily have low levels of social vulnerability and that economic development is not always inversely proportional to vulnerability, although as mentioned earlier, the respective communities have much better capabilities to cope with-, to resist-, and to recover from losses.
Second, the developed GWR model can be used to carry out predictions for flood hazard damages among highly vulnerable population groups in Romania.
Third, from the point of view of sustainable spatial planning, the present study is particularly important because by capturing the spatial characteristics of social vulnerability, the above in-depth analysis may offer a viable and integrative practical guide to authorities and policy-makers for taking the necessary measures in order to diminish social vulnerability in specific areas. Thus, the analysis of vulnerability at the local level enables the identification of settlements in need of financial resources in order to diminish the negative impact of natural hazards. By assessing the social vulnerability of a certain area we can determine its unique position in relation to flood hazards. This, in turn, can serve as the starting point for local planners and decision-makers in identifying weak points to be included into future development strategies, thus, improving the communities’ own ability to cope with the effects of flood hazards. Further on, the collaboration between researchers of flood hazards and local practitioners regarding the effective vulnerability assessment can contribute not only to the sharing of knowledge, but can also help facilitate the insertion of specific local needs into local policy decisions.
Although the analysis provides the possibility to explore fundamental social-, environmental- and economic phenomena using an innovative approach, due to the limited access to reliable and up-to-date economic and environmental data at the local level, it is still not able to provide us with an overall assessment on social vulnerability. At the same time, the final results of such analyses are also very much dependent not only on the used variables, selected methods and weighting schemes, but also on the different interpretations of the concept of vulnerability. The present analysis has managed to capture some of the social aspects which can be considered essential building blocks in the overall assessment of physical vulnerability, therefore—as Holand et al. mentioned [
18]—differing results should be seen as complementarities rather than contradictions in applying the different models.