Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study
Abstract
:1. Introduction
Current Issues Regarding Small-Scale Solar Photovoltaic Power Plants
2. Methodology
2.1. Survey Design and Data Collection: A Choice Experiment
2.2. The Model Specifications
3. Results and Discussion
3.1. Estimation Results: Social Preferences for Installing Small-Scale SPV Power Plants
3.2. Simulations: Scenario Analysis of Future Small-Scale SPV Power Plant Installation
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Carbon Dioxide Emissions Embodied in International Trade. OECD. 2015. Available online: http://www.oecd.org/sti/ind/carbondioxideemissionsembodiedininternationaltrade.htm (accessed on 1 August 2018).
- Korea’s CO2 Emissions Increase Rate Is the First in Disgrace. Yonhap News Agency. Available online: http://www.yonhapnews.co.kr/bulletin/2016/04/08/0200000000AKR20160408164600003.HTML (accessed on 1 August 2018).
- OECD Environmental Performance Reviews: Korea 2017. OECD. 2017. Available online: http://www.oecd.org/korea/oecd-environmental-performance-reviews-korea-2017-9789264268265-en.htm (accessed on 5 August 2018).
- Implementation Plan for Renewable Energy 3020. Ministry of Trade, Industry and Energy. 2017. Available online: https://www.gov.kr/portal/ntnadmNews/127962 (accessed on 12 July 2018).
- Yang, H.J.; Lim, S.Y.; Yoo, S.H. The environmental costs of photovoltaic power plants in South Korea: A choice experiment study. Sustainability 2017, 9, 1773. [Google Scholar] [CrossRef]
- Chaurey, A.; Kandpal, T.C. Assessment and evaluation of PV based decentralized rural electrification: An overview. Renew. Sustain. Energy Rev. 2010, 14, 2266–2278. [Google Scholar] [CrossRef]
- Sigarchian, S.G.; Paleta, R.; Malmquist, A.; Pina, A. Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system–Case study. Energy 2015, 90, 1830–1841. [Google Scholar] [CrossRef]
- Energy Saving City. Seoul. Available online: http://energy.seoul.go.kr/seoul/ (accessed on 5 August 2018).
- (Interview) Sang-In Han, The city of Busan, Clean Energy Policy Director. Electrictimes. Available online: http://www.electimes.com/article.php?aid=1518074335153439033 (accessed on 5 August 2018).
- Japan, Easy-To-Install Small Capacitor Market Opens. Kotra News. Available online: https://news.kotra.or.kr/user/globalBbs/kotranews/4/globalBbsDataView.do?setIdx=243&dataIdx=160698 (accessed on 5 August 2018).
- Mandatory Installation of Home Solar Photovoltaic Energy from 2020 in the U.S., California. Korea Energy Agency. Available online: http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol88/pdf/issue_191_03_02.pdf (accessed on 5 August 2018).
- Haas, R. The value of photovoltaic electricity for society. Sol. Energy 1995, 54, 25–31. [Google Scholar] [CrossRef]
- Varho, V. Environmental impact of photovoltaic electrification in rural areas. Energy Environ. 2002, 13, 81–104. [Google Scholar] [CrossRef] [Green Version]
- Syed, A.M.; Fung, A.S.; Ugursal, V.I. Environmental and economic impacts of integrating photovoltaic and wind-turbine energy systems in the Canadian residential sector. Bull. Sci. Technol. Soc. 2008, 28, 210–218. [Google Scholar] [CrossRef]
- Oliva, S.; MacGill, I.; Passey, R. Estimating the net societal value of distributed household PV systems. Sol. Energy 2014, 100, 9–22. [Google Scholar] [CrossRef]
- Rodrigues, S.; Torabikalaki, R.; Faria, F.; Cafôfo, N.; Chen, X.; Ivaki, A.R.; Mata-Lima, H.; Morgado-Dias, F. Economic feasibility analysis of small-scale PV systems in different countries. Sol. Energy 2016, 131, 81–95. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy 2005, 33, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.C.; Wang, H.M.; Huang, H.L.; Ho, C.W. Consumer attitude and purchase intention toward rooftop photovoltaic installation: The roles of personal trait, psychological benefit, and government incentives. Energy Environ. 2018. [Google Scholar] [CrossRef]
- Firouzjah, K.G. Assessment of small-scale solar PV systems in Iran: Regions priority, potentials and financial feasibility. Renew. Sustain. Energy. Rev. 2018, 94, 267–274. [Google Scholar] [CrossRef]
- Seme, S.; Sredenšek, K.; Praunseis, Z.; Štumberger, B.; Hadžiselimović, M. Optimal price of electricity of solar power plants and small hydro power plants–Technical and economical part of investments. Energy 2018, 157, 87–95. [Google Scholar] [CrossRef]
- Saranya, A.; Swarup, K.S. Offering strategy for a photovoltaic power plant in electricity market. In Proceedings of the Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 22–23 February 2018; pp. 1–6. [Google Scholar]
- McKenna, E.; Pless, J.; Darby, S.J. Solar photovoltaic self-consumption in the UK residential sector: New estimates from a smart grid demonstration project. Energy Policy 2018, 118, 482–491. [Google Scholar] [CrossRef]
- Ntanos, S.; Skordoulis, M.; Kyriakopoulos, G.; Arabatzis, G.; Chalikias, M.; Galatsidas, S.; Batzios, A.; Katsarou, A. Renewable energy and economic growth: Evidence from european countries. Sustainability 2018, 10, 2626. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.; Chalikias, M.; Arabatzis, G.; Skordoulis, M.; Galatsidas, S.; Drosos, D. Social assessment of renewable energy sources usage and contribution to life quality: The case of an Attica urban area in Greece. Sustainability 2018, 10, 1414. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Mao, X.; Jin, J.; Chen, D.; Cheng, S. Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China. Energy Policy 2014, 68, 340–347. [Google Scholar] [CrossRef]
- Lee, C.Y.; Heo, H. Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method. Energy Policy 2016, 94, 150–156. [Google Scholar] [CrossRef]
- Lee, M.K.; Kim, J.H.; Yoo, S.H. Public willingness to pay for increasing photovoltaic power generation: The case of Korea. Sustainability 2018, 10, 1196. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.; Chalikias, M.; Arabatzis, G.; Skordoulis, M. Public perceptions and willingness to pay for renewable energy: A case study from Greece. Sustainability 2018, 10, 687. [Google Scholar] [CrossRef]
- Cho, Y.C.; Lim, S.Y.; Yoo, S.H. The external benefits of expanding the micro photovoltaic power generation in Korea: A contingent valuation study. Sol. Energy 2017, 158, 898–904. [Google Scholar] [CrossRef]
- Ku, S.J.; Yoo, S.H. Willingness to pay for renewable energy investment in Korea: A choice experiment study. Renew. Sustain. Energy. Rev. 2010, 14, 2196–2201. [Google Scholar] [CrossRef]
- Scarpa, R.; Willis, K. Willingness-to-pay for renewable energy: Primary and discretionary choice of British households’ for micro-generation technologies. Energy Econ. 2010, 32, 129–136. [Google Scholar] [CrossRef]
- Lim, S.Y.; Lim, K.M.; Yoo, S.H. External benefits of waste-to-energy in Korea: A choice experiment study. Renew. Sustain. Energy. Rev. 2014, 34, 588–595. [Google Scholar] [CrossRef]
- Muuls, M.; Colmer, J.; Martin, R.; Wagner, U.J. Evaluating the EU Emissions Trading System: Take It or Leave It? An Assessment of the Data after Ten Years; Grantham Institute Briefing Paper; Imperial College: London, UK, 2016. [Google Scholar]
- U.S. Department of Energy. United States Intended Nationally Determined Contribution (INDC). Available online: https://www.iea.org/media/workshops/2015/15thghgtradingworkshop/1.2Greenwald.pdf (accessed on 17 September 2018).
- Climate Action Tracker. Available online: https://climateactiontracker.org/countries/china/ (accessed on 17 September 2018).
- Ministry of Foreign Affairs of Japan. Available online: https://www.mofa.go.jp/ic/ch/page1we_000104.html (accessed on 17 September 2018).
- International Carbon Action Partnership (ICAP). Available online: https://icapcarbonaction.com/en/status-report-2015 (accessed on 17 September 2018).
- REN21. Renewables 2017 Global Status Report; REN21 Secretariat: Paris, France, 2017; ISBN 978-3-9818107-6-9. [Google Scholar]
- 2017 German Renewable Energy Law (EEG). 2017. Available online: https://www.bmwi.de/Redaktion/EN/Downloads/renewable-energy-sources-act-2017.pdf%3F__blob%3DpublicationFile%26v%3D3 (accessed on 17 September 2018).
- Embassy of the Republic of Korea to the Hellenic Republic. Greek Renewable Energy Status and policy. Available online: http://overseas.mofa.go.kr/gr-ko/index.do (accessed on 18 September 2018).
- Im, J.Y. Background and contents of improvement of Japan’s Feed-in Tariff. World Energy Market Insight 2016, 16, 15–56. [Google Scholar]
- Kim, M.K.; Lee, Y.H. Energy Frostmer, a New Power Supply and Demand, Needs to Be Activated Using Distributed Resource Brokerage Market; The Seoul Institute: Seoul, Korea, 2018. [Google Scholar]
- International Energy Agency (IEA) 2016. Energy, Climate Change and Environment, 2016 Insights. 2016. Available online: www.iea.org/publications/freepublications/publication/ECCE2016.pdf (accessed on 17 September 2018).
- Statistics Korea. Available online: http://kosis.kr (accessed on 10 August 2018).
- Eggers, F.; Sattler, H.; Teichert, T.; Völckner, F. Choice-Based Conjoint Analysis; Springer: Berlin, Germany, 2018; pp. 1–39. [Google Scholar]
- Green, P.E.; Krieger, A.M.; Wind, Y. Thirty years of conjoint analysis: Reflections and prospects. In Marketing Research and Modeling: Progress and Prospects; Springer: Boston, MA, USA, 2004; pp. 117–139. [Google Scholar]
- Alriksson, S.; Öberg, T. Conjoint analysis for environmental evaluation. Environ. Sci. Pollut. Res. 2008, 15, 244–257. [Google Scholar] [CrossRef]
- Lüthi, S.; Wüstenhagen, R. The price of policy risk—Empirical insights from choice experiments with European photovoltaic project developers. Energy Econ. 2012, 34, 1001–1011. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers of Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Bergmann, A.; Colombo, S.; Hanley, N. Rural versus urban preferences for renewable energy developments. Ecol. Econ. 2008, 65, 616–625. [Google Scholar] [CrossRef]
- Willis, K.; Scarpa, R.; Gilroy, R.; Hamza, N. Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption. Energy Policy 2011, 39, 6021–6029. [Google Scholar] [CrossRef]
- Yoo, J.; Ready, R.C. Preference heterogeneity for renewable energy technology. Energy Econ. 2014, 42, 101–114. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Edwards, Y.D.; Allenby, G.M. Multivariate analysis of multiple response data. J. Mark. Res. 2003, 40, 321–334. [Google Scholar] [CrossRef]
- Allenby, G.M.; Rossi, P.E. Marketing models of consumer heterogeneity. J. Econom. 1999, 89, 57–78. [Google Scholar] [CrossRef]
- Huber, J.; Train, K. On the similarity of classical and Bayesian estimates of individual mean partworths. Mark. Lett. 2001, 12, 259–269. [Google Scholar] [CrossRef]
- Korea Energy Corporation, Renewable Energy Center. Available online: https://www.knrec.or.kr/ (accessed on 10 August 2018).
- Kumar Sharma, N.; Raj Sood, Y. Reduction in subsidy for solar power as distributed electricity generation in Indian future competitive power market. J. Renew. Sustain. Energy 2012, 4, 053120. [Google Scholar] [CrossRef]
- del Río, P.; Peñasco, C.; Mir-Artigues, P. An overview of drivers and barriers to concentrated solar power in the European Union. Renew. Sustain. Energy. Rev. 2018, 81, 1019–1029. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Zuo, J.; Ma, C. Social acceptance of solar energy technologies in China—End users’ perspective. Energy Policy 2011, 39, 1031–1036. [Google Scholar] [CrossRef]
Attributes | Descriptions | Levels |
---|---|---|
Installation location | Installation location of small-scale photovoltaic power plants | Level 1: Not selected 1 Level 2: Residence Level 3: City Level 4: Suburb |
Installation scale | Installation scale of small-scale photovoltaic power plants (limit installation scale to 150 kW) | Level 1: Not selected 1 Level 2: 30 kW Level 3: 80 kW Level 4: 150 kW |
Operation | Small-scale photovoltaic power plants can be operated by an individual, corporation or government, and ownership of the electricity generated from small-scale photovoltaic power plants belongs to the operating entity | Level 1: Not selected 1 Level 2: Individual Level 3: Corporation Level 4: Government |
Electricity use | Choose to consume or sell electricity generated by small-scale photovoltaic power plants | Level 1: Not selected 1 Level 2: Self-consumption Level 3: Sales |
Price | Monthly additional electricity bill per household for installation of small-scale photovoltaic power plants (unit: South Korean won) | Level 1: KRW 0 1 Level 2: KRW 1000 Level 3: KRW 3000 Level 4: KRW 6000 Level 5: KRW 10,000 |
Variables | Number of Sample (Ratio %) | |
---|---|---|
Gender | Male | 300 (50.0%) |
Female | 300 (50.0%) | |
Family size | 1–2 | 151 (25.2%) |
3–4 | 399 (66.5%) | |
5–6 | 50 (8.3%) | |
Age (years) | 20–29 | 23 (3.8%) |
30–39 | 124 (20.7%) | |
40–49 | 208 (34.7%) | |
50–59 | 180 (30.0%) | |
60–69 | 65 (10.8%) | |
Monthly household income | Less than KRW 3 million | 112 (18.7%) |
KRW 3–4 million | 148 (24.7%) | |
KRW 4–5 million | 137 (22.8%) | |
KRW 5–6 million | 83 (13.8%) | |
More than KRW 6 million | 120 (20.0%) | |
Total | 600 (100%) |
Variables 1 | Assumed Distribution | Mean of the Estimate, b | Standard Deviation of Estimate, | Median MWTP 3 | Average RI (%) 4 | |
---|---|---|---|---|---|---|
ASC 2 | Normal | 4.8036 | 19.7203 | - | - | |
Installation location | Residence | Normal | 3.2706 ** | 48.6588 ** | 4286 KRW/month | 9.72 |
City | Normal | 2.7939 ** | 51.5031 ** | 4171 KRW/month | 10.16 | |
Suburb | Normal | −3.4755 ** | 19.1387 ** | −2714 KRW/month | 7.39 | |
Installation scale | Installation scale (unit: kW) | Normal | 5.3991 ** | 27.4433 ** | 3712 KRW/kW | 11.88 |
Operation | Individual | Normal | 3.1616 ** | 22.5141 ** | 2811 KRW/month | 7.70 |
Corporation | Normal | 5.4051 ** | 32.1585 ** | 2885 KRW/month | 10.71 | |
Government | Normal | 3.3647 ** | 39.4655 ** | 1344 KRW/month | 9.77 | |
Electricity use | Self-consumption | Normal | 5.5952 ** | 32.0638 ** | 3731 KRW/month | 10.43 |
Sales | Normal | 1.0202 * | 16.4477 ** | 2070 KRW/month | 5.63 | |
Additional electricity bill (unit: KRW/month) | Normal | −0.6751 ** | 1.4623 ** | - | 16.61 |
Attributes | Base Scenario | Scenario A | Scenario B | Scenario C |
---|---|---|---|---|
Installation location | Suburb | Residence | City | Suburb |
Installation scale | 80 kW | 80 kW | 80 kW | 80 kW |
Operation | Corporation | Corporation | Corporation | Corporation |
Electricity use | Self-consumption | Self-consumption | Self-consumption | Self-consumption |
Price | KRW 1000 | KRW 1000~10,000 | KRW 1000~10,000 | KRW 1000~10,000 |
Additional Electricity Bill | KRW/Month | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10,000 |
---|---|---|---|---|---|---|---|---|---|---|---|
Scenario A | South Koreans’ acceptance (%) | 72.36 | 71.83 | 71.37 | 70.73 | 69.40 | 67.06 | 63.42 | 59.80 | 56.71 | 54.32 |
Scenario B | South Koreans’ acceptance (%) | 73.01 | 72.60 | 72.05 | 71.19 | 69.63 | 66.90 | 64.01 | 60.82 | 57.09 | 53.74 |
Scenario C | South Koreans’ acceptance (%) | 50.00 | 38.25 | 34.34 | 32.97 | 32.37 | 32.07 | 31.90 | 31.80 | 31.73 | 31.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-J.; Huh, S.-Y.; Yoo, S.-H. Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study. Sustainability 2018, 10, 3589. https://doi.org/10.3390/su10103589
Lee H-J, Huh S-Y, Yoo S-H. Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study. Sustainability. 2018; 10(10):3589. https://doi.org/10.3390/su10103589
Chicago/Turabian StyleLee, Hye-Jeong, Sung-Yoon Huh, and Seung-Hoon Yoo. 2018. "Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study" Sustainability 10, no. 10: 3589. https://doi.org/10.3390/su10103589
APA StyleLee, H.-J., Huh, S.-Y., & Yoo, S.-H. (2018). Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study. Sustainability, 10(10), 3589. https://doi.org/10.3390/su10103589