Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analysis
2.3. Indicator Selection for Soil Quality Assessment and Factor Analysis
2.3.1. Assessment Objectives
2.3.2. Initial Filter for Soil Indicators
2.3.3. Defining a Minimum Data Set with Factor Analysis
2.4. Soil Quality Index Generation Using Fuzzy Set
3. Results and Discussion
3.1. Descriptive Statistics of Soil Properties
3.2. Minimum Data Set for Determining Soil Quality
3.3. Soil Quality Index under Different Soil Types and Land Use Types
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nkonya, E.; Mirzabaev, A.; von Braun, J. Economics of Land Degradation and Improvement: An Introduction and Overview. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–14. [Google Scholar]
- Zika, M.; Erb, K.H. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ. 2009, 69, 310–318. [Google Scholar] [CrossRef]
- Yang, C.; Shen, W.; Wang, T. Spatial-temporal characteristics of cultivated land in Tibet in recent 30 years. Trans. CSAE 2015, 31, 264–271, (In Chinese with English Abstract). [Google Scholar]
- Dai, F.Q.; Su, Z.A.; Liu, S.Z.; Liu, G.C. Temporal variation of soil organic matter content and potential determinants in Tibet, China. Catena 2011, 85, 288–294. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, H.Y.; Yang, L.M.; Ren, Y.X. Assessment of Soil Quality of Croplands in the Corn Belt of Northeast China. Sustainability 2018, 10, 248. [Google Scholar] [CrossRef]
- Andrews, S.S.; Carroll, C.R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 2001, 11, 1573–1585. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Ngo-Mbogba, M.; Yemefack, M.; Nyeck, B. Assessing soil quality under different land cover types within shifting agriculture in South Cameroon. Soil Tillage Res. 2015, 150, 124–131. [Google Scholar] [CrossRef]
- Bastida, F.; Zsolnay, A.; Hernandez, T.; Garcia, C. Past, present and future of soil quality indices: A biological perspective. Geoderma 2008, 147, 159–171. [Google Scholar] [CrossRef]
- Raiesi, F.; Kabiri, V. Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecol. Indic. 2016, 71, 198–207. [Google Scholar] [CrossRef]
- Paudel, B.R.; Udawatta, R.P.; Anderson, S.H. Agroforestry and grass buffer effects on soil quality parameters for grazed pasture and row-crop systems. Appl. Soil Ecol. 2011, 48, 125–132. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B.; Jones, A. Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality; SAAA: Madison, WI, USA, 1996; pp. 25–37. [Google Scholar]
- Rezaei, S.A.; Gilkes, R.J.; Andrews, S.S. A minimum data set for assessing soil quality in rangelands. Geoderma 2006, 136, 229–234. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Mandal, U.K.; Ramachandran, K.; Sharma, K.L.; Satyam, B.; Venkanna, K.; Bhanu, M.U.; Mandal, M.; Masane, R.N.; Narsimlu, B.; Rao, K.V.; et al. Assessing Soil Quality in a Semiarid Tropical Watershed Using a Geographic Information System. Soil Sci. Soc. Am. J. 2011, 75, 1144–1160. [Google Scholar] [CrossRef]
- Nosrati, K. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques. Environ. Monit. Assess. 2013, 185, 2895–2907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Wang, X.D.; Gao, Q.Z.; Hou, T.P.; Shen, Z.X.; Fang, J.P. Research in ecological restoration and reconstruction technology for degraded alpine ecosystem, boosting the protection and construction of ecological security barrier in Tibet. Acta Ecol. Sin. 2016, 36, 7083–7087. [Google Scholar]
- Dai, F.Q.; Zhou, Q.G.; Lv, Z.Q.; Wang, X.M.; Liu, G.C. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indic. 2014, 45, 184–194. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Yao, Z.; Gong, T.; Wang, H.; Chu, D.; Liu, L.; Zhang, F. The trend on runoff variations in the Lhasa River Basin. J. Geogr. Sci. 2008, 18, 95–106. [Google Scholar] [CrossRef]
- Bai, W.Q.; Yao, L.N.; Zhang, Y.L.; Wang, C.L. Spatial-temporal dynamics of cultivated land in recent 35 years in the Lhasa River basin of Tibet. J. Nat. Resour. 2014, 29, 623–632. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis; Agron. Monogr. 9; ASA and SSSA: Madison, WI, USA, 1986. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density; ASA and SSSA: Madison, WI, USA, 1986; pp. 364–367. [Google Scholar]
- Liu, G.S.; Jiang, N.H.; Zhang, L.D.; Liu, Z.L. Soil Physical and Chemical Analysis & Description of Soil Profiles; Chinese Standard Press: Beijing, China, 1996. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter; ASA-SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus; Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Walmsley, D.; Cornforth, I.S. Methods of measuring available nutrients in West Indian soils. Plant Soil 1973, 39, 93–101. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable Cations; ASA and SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Rhoades, J.D. Cation Exchange Capacity; ASA and SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Meng, Q.F.; Yang, J.S.; Yao, R.J.; Liu, G.M. Soil quality in east coastal region of China as related to different land use types. J. Soils Sediments 2013, 13, 664–676. [Google Scholar] [CrossRef]
- Li, Z.G.; Luo, Y.M.; Teng, Y. Soil and Environmental Microbiology Research Method; Science Press: Beijing, China, 2008. [Google Scholar]
- Hayano, K. A method for the determination of β-glucosidase activity in soil. Soil Sci. Plant Nutr. 1973, 19, 103–108. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Olive, D.J. One Way Anova. In Linear Regression; Springer International Publishing: Cham, Switzerland, 2017; pp. 175–211. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Li, P.; Zhang, T.L.; Wang, X.X.; Yu, D.S. Development of biological soil quality indicator system for subtropical China. Soil Tillage Res. 2013, 126, 112–118. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Statistical Methods in Soil and Land Resource Survey; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Wander, M.M.; Bollero, G.A. Soil quality assessment of tillage impacts in Illinois. Soil Sci. Soc. Am. J. 1999, 63, 961–971. [Google Scholar] [CrossRef]
- Brejda, J.J.; Moorman, T.B.; Karlen, D.L.; Dao, T.H. Identification of regional soil quality factors and indicators: I. Central and southern high plains. Soil Sci. Soc. Am. J. 2000, 64, 2115–2124. [Google Scholar] [CrossRef]
- Bautista-Cruz, A.; del Castillo, R.F.; Etchevers-Barra, J.D.; Gutierrez-Castorena, M.D.; Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 2012, 277, 74–80. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-G.; Yang, L.-Z.; Shan, Y.-H. Application of fuzzy mathematics to soil quality evaluation. Acta Pedol. Sin. 2001, 38, 176–183. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil qualit. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; SSSA Special Publication: Madison, WI, USA, 1994; Volume 35, pp. 3–21. [Google Scholar]
- Ismail, S.M.; Ozawa, K. Improvement of crop yield, soil moisture distribution and water use efficiency in sandy soils by clay application. Appl. Clay Sci. 2007, 37, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, C.H.; Hao, S.P.; Zhang, Y.E.; Han, J.F. Effects of subsoil bulk density on late growth stage photosynthetic characteristics and grain yield of maize. Chin. J. Appl. Ecol. 2008, 19, 787–793. [Google Scholar]
- Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 1997, 197, 61–69. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Z.H.; Zhang, B.; Du, S.H.; Liu, G.C. The effects of agricultural management on selected soil properties of the arable soils in Tibet, China. Catena 2012, 93, 1–8. [Google Scholar] [CrossRef]
- Bortoluzzi, E.C.; Tessier, D.; Rheinheimer, D.S.; Julien, J.L. The cation exchange capacity of a sandy soil in southern Brazil: An estimation of permanent and pH-dependent charges. Eur. J. Soil Sci. 2006, 57, 356–364. [Google Scholar] [CrossRef]
- Wei, Y.L.; Zhou, Z.H.; Liu, G.C. Physico-chemical properties and enzyme activities of the arable soils in Lhasa, Tibet, China. J. Mount. Sci. 2012, 9, 558–569. [Google Scholar] [CrossRef]
- Obade, V.D.; Lal, R. Soil quality evaluation under different land management practices. Environ. Earth Sci. 2014, 72, 4531–4549. [Google Scholar] [CrossRef]
- Moebius, B.N.; van Es, H.M.; Schindelbeck, R.R.; Idowu, O.J.; Clune, D.J.; Thies, J.E. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 2007, 172, 895–912. [Google Scholar] [CrossRef]
- Qi, Y.B.; Darilek, J.L.; Huang, B.A.; Zhao, Y.C.; Sun, W.X.; Gu, Z.Q. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Gao, P.; Zhang, J.B.; Jin, W.H. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil Tillage Res. 2013, 128, 137–148. [Google Scholar] [CrossRef]
- Pan, G.; Smith, P.; Pan, W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 2009, 129, 344–348. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhou, W.; Shen, J.B.; Li, S.T.; Liang, G.Q.; Wang, X.B.; Sun, J.W.; Ai, C. Soil Quality Assessment of Acid Sulfate Paddy Soils with Different Productivities in Guangdong Province, China. J. Integr. Agric. 2014, 13, 177–186. [Google Scholar] [CrossRef]
- Chen, Y.D.; Wang, H.Y.; Zhou, J.M.; Xing, L.; Zhu, B.S.; Zhao, Y.C.; Chen, X.Q. Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China. Pedosphere 2013, 23, 564–576. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, H.; Zhang, T.; Wen, H. Change of the Biological Properties of Soil Quality in the Desertification Process. Arid Zone Res. 2002, 19, 64–68. [Google Scholar]
- Zhang, C.; Xue, S.; Liu, G.-B.; Song, Z.-L. A comparison of soil qualities of different revegetation types in the Loess Plateau, China. Plant Soil 2011, 347, 163–178. [Google Scholar] [CrossRef]
- Huang, T.; Yue, X.; Ge, X.; Wang, X. Evaluation of soil quality on gully region of loess plateau based on principal component analysis. Agric. Res. Arid Areas 2010, 28, 141. [Google Scholar]
- The Scientific Expedition to Qing-zang Plateau. In Soils of Tibet; Science Press: Beijing, China, 1985.
- Marzaioli, R.; D’Ascoli, R.; De Pascale, R.A.; Rutigliano, F.A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 2010, 44, 205–212. [Google Scholar] [CrossRef]
- Ozgoz, E.; Gunal, H.; Acir, N.; Gokmen, F.; Birol, M.; Budak, M. Soil quality and spatial variability assessment of land use effects in a typic haplustoll. Land Degrad. Dev. 2013, 24, 277–286. [Google Scholar] [CrossRef]
- Dutta, J.; Sharma, S.P.; Sharma, S.K.; Sharma, G.D.; Sankhyan, N.K. Indexing Soil Quality under Long-Term Maize-Wheat Cropping System in an Acidic Alfisol. Commun. Soil Sci. Plant Anal. 2015, 46, 1841–1862. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, X.N.; Ran, Q.Y. Quality assessment of oasis soil in the upper reaches of Tarim River based on minimum data set. Acta Pedol. Sin. 2015, 52, 682–689. [Google Scholar]
- Oliveira, D.M.S.; de Lima, R.P.; Verburg, E.E.J. Physical quality of soil under different systems of tillage and application of pig slurry. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 280–285. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S.; Yang, J.Y. Impacts of 48 years of consistent cropping, fertilization and land management on the physical quality of a clay loam soil. Can. J. Soil Sci. 2014, 94, 403–419. [Google Scholar] [CrossRef]
- Mahler, R.L.; Wilson, S.; Shafii, B.; Price, W. Long-Term Trends of Nitrogen and Phosphorus Use and Soil pH Change in Northern Idaho and Eastern Washington. Commun. Soil Sci. Plant Anal. 2016, 47, 414–424. [Google Scholar] [CrossRef]
- Shao, X.H.; Zheng, J.W. Soil Organic Carbon, Black Carbon, and Enzyme Activity Under Long-Term Fertilization. J. Integr. Agric. 2014, 13, 517–524. [Google Scholar] [CrossRef]
- He, Y.T.; He, X.H.; Xu, M.G.; Zhang, W.J.; Yang, X.Y.; Huang, S.M. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across central and south China. Soil Tillage Res. 2018, 177, 79–87. [Google Scholar] [CrossRef]
- Choudhary, M.; Panday, S.C.; Meena, V.S.; Singh, S.; Yadav, R.P.; Mahanta, D.; Mondal, T.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agric. Ecosyst. Environ. 2018, 257, 38–46. [Google Scholar] [CrossRef]
Soil Property | Reference for Use as Soil Quality Indicator | Analytical Methods |
---|---|---|
Physical | ||
Sand | Brejda et al. (2000), Shukla et al. (2006), Mandal et al. (2011) | hydrometer method |
Silt | Doran and Parkin (1994), Andrews and Carroll (2001) | hydrometer method |
Clay | Govaerts et al. (2006) | hydrometer method |
Bulk density | Shukla et al. (2006), Meng et al. (2013) | core method |
Microaggregates | Shukla et al. (2006) | pipette method |
Total porosity | Govaerts et al. (2006), Shukla et al. (2006), Yao et al. (2013) | calculated by using the measured bulk density, assuming particle density of 2.65 Mg m−3 |
Effective porosity | Govaerts et al. (2006), Obade et al. (2014) | subtract water content at 10 kPa from that at saturation |
Field capacity | Shukla et al. (2006), Merrill et al. (2013) | measured at 30 kPa using a pressure plate |
Permanent wilting point | Govaerts et al. (2006) | measured at 1.5 kPa using a pressure plate |
Available water capacity | Shukla et al. (2006), Merrill et al. (2013) | difference between field capacity and permanent wilting point |
Chemical | ||
pH | Doran and Parkin (1994), Brejda et al. (2000), Andrews and Carroll (2001) | soil past, 1:2.5 soil/water ratio |
Total organic C | Doran and Parkin (1994), Brejda et al. (2000), Andrews and Carroll (2001) | dichromate wet combustion |
Total N | Doran and Parkin (1994), Brejda et al. (2000), Andrews and Carroll (2001) | Kjeldahl method |
Total P | Qi et al. (2009), Chen et al. (2013), Li et al. (2013) | digestion, spectrophotometer detection |
Total K | Li et al. (2013) | digestion, flame photometer detection |
Available N | Mandal et al. (2011), Li et al. (2013), Meng et al. (2013) | alkaline hydrolysis diffusion |
Available P | Marinari et al. (2006), Mandal et al. (2011), Dutta et al. (2015) | NaHCO3 extraction, colorimetric estimation |
Available K | Marzaioli et al. (2010), Mandal et al. (2011) | NH4OAc extraction, flame photometer detection |
Cation exchange capacity | Brejda et al. (2000), Andrews and Carroll (2001), Rezaei et al. (2006) | ammonium acetate solution, pH = 7.0 |
Biological | ||
Urease | Meng et al. (2013), Nosrati (2013), Liu et al. (2014) | spectrophotometer detection |
Catalase | Meng et al. (2013), Gong et al. (2015) | back-titrating residual H2O2 with KMnO4 |
Alkaline phosphatase | Andrews and Carroll (2001), Nosrati (2013) | spectrophotometer detection |
β-glucosidase | Stott et al. (2011), Nosrati (2013), Liu et al. (2014) | colorimetric estimation |
Soil Property | Min. | Max. | Mean | S.D. | C.V. (%) | Skewness | Kurtosis | Asymp. sig. (2-Tailed) |
---|---|---|---|---|---|---|---|---|
Sand, % | 48.8 | 97 | 71.92 | 10.74 | 14.94 | −0.01 | −0.52 | 0.883 |
Silt, % | 2.1 | 37.47 | 18.42 | 7.56 | 41.04 | 0.12 | −0.26 | 0.985 |
Clay, % | 0.4 | 20.68 | 9.32 | 4.14 | 44.42 | 0.17 | −0.43 | 0.552 |
Bulk density, g cm−3 | 1.11 | 1.59 | 1.34 | 0.11 | 8.47 | 0.08 | −0.62 | 0.971 |
Microaggregates, % | 58.79 | 95.45 | 85.77 | 7.42 | 8.65 | −1.35 | 1.89 | 0.045 * |
Total porosity, m3 m−3 | 0.4 | 0.581 | 0.49 | 0.04 | 8.65 | −0.08 | −0.62 | 0.974 |
Effective porosity, m3 m−3 | 0.119 | 0.274 | 0.17 | 0.03 | 17.71 | 2.12 | 5.06 | 0.000 * |
Field capacity, m3 m−3 | 0.188 | 0.425 | 0.32 | 0.03 | 10.07 | −2.21 | 8.01 | 0.000 * |
Permanent wilting point, m3 m−3 | 0.134 | 0.387 | 0.22 | 0.03 | 16.13 | 1.34 | 7.18 | 0.000 * |
Available water capacity, m3 m−3 | 0.069 | 0.287 | 0.14 | 0.03 | 23.97 | 0.49 | 2.27 | 0.627 |
pH | 4.5 | 8.65 | 7.15 | 0.82 | 11.41 | −0.77 | 0.91 | 0.386 |
Total organic C, g kg−1 | 9.77 | 56.08 | 25.44 | 8.58 | 33.71 | 1.14 | 1.56 | 0.044 |
Total N, g kg−1 | 0.58 | 3.02 | 1.56 | 0.45 | 29.05 | 0.67 | 0.53 | 0.238 |
Total P, g kg−1 | 0.44 | 2.88 | 0.89 | 0.36 | 40.34 | 2.61 | 10.41 | 0.009 * |
Total K, g kg−1 | 12.75 | 29.55 | 23.39 | 2.66 | 11.36 | −0.65 | 1.88 | 0.843 |
Available N, mg kg−1 | 28.958 | 317.074 | 144.94 | 56.03 | 38.66 | 0.91 | 0.59 | 0.140 |
Available P, mg kg−1 | 6.445 | 246.095 | 41.16 | 45.94 | 111.61 | 2.84 | 8.60 | 0.000 * |
Available K, mg kg−1 | 39.04 | 493.882 | 92.13 | 52.42 | 56.90 | 5.44 | 38.56 | 0.001 * |
Cation exchange capacity, cmol kg−1 | 3.89 | 19.89 | 10.74 | 3.72 | 34.64 | 0.70 | 0.00 | 0.292 |
Urease, mg g−1 | 0.11 | 1.36 | 0.56 | 0.24 | 43.90 | 1.48 | 2.29 | 0.000 * |
Catalase, mg g−1 | 15.01 | 59.25 | 39.00 | 8.11 | 20.79 | −0.44 | 0.41 | 0.632 |
Alkaline phosphatase, mg g−1 | 1.36 | 47.28 | 17.75 | 8.77 | 49.40 | 0.58 | 0.36 | 0.360 |
β-glucosidase, mg g−1 | 0.27 | 2.71 | 1.70 | 0.42 | 24.88 | −0.11 | 1.62 | 0.365 |
PC1 | PC2 | PC3 | Communalities | |
---|---|---|---|---|
Statistic | ||||
Eigenvalue | 3.759 | 3.433 | 1.065 | |
Proportion of variance, % | 31.323 | 28.608 | 8.879 | |
Cumulative proportion, % | 31.323 | 59.931 | 68.81 | |
Eigenvector variables | ||||
Effective porosity | 0.006 | 0.031 | 0.947 | 0.897 |
pH | 0.845 | −0.243 | −0.24 | 0.831 |
Total organic C | −0.21 | 0.888 | 0.133 | 0.851 |
Total N | −0.269 | 0.936 | 0.042 | 0.949 |
Total P | −0.508 | 0.250 | −0.223 | 0.370 |
Available N | −0.404 | 0.871 | −0.058 | 0.925 |
Available P | −0.795 | 0.153 | −0.085 | 0.663 |
Available K | −0.297 | 0.501 | −0.069 | 0.343 |
Cation exchange capacity | 0.232 | 0.766 | −0.028 | 0.641 |
Catalase | 0.846 | −0.113 | −0.033 | 0.729 |
Alkaline phosphatase | 0.824 | −0.105 | −0.118 | 0.705 |
β-glucosidase | 0.581 | −0.066 | 0.105 | 0.353 |
Effective Porosity | pH | Total Organic C | Total N | Available N | Available P | Catalase | Alkaline Phosphatase | |
---|---|---|---|---|---|---|---|---|
Effective porosity | 1.000 | |||||||
pH | −0.138 | 1.000 | ||||||
Total organic C | 0.107 | −0.430 ** | 1.000 | |||||
Total N | 0.047 | −0.470 ** | 0.925 ** | 1.000 | ||||
Available N | −0.029 | −0.513 ** | 0.852 ** | 0.956 ** | 1.000 | |||
Available P | −0.016 | −0.678 ** | 0.265 * | 0.328 ** | 0.414 ** | 1.000 | ||
Catalase | 0.014 | 0.771 ** | −0.274 ** | −0.331 ** | −0.413 ** | −0.578 ** | 1.000 | |
Alkaline phosphatase | −0.037 | 0.751 ** | −0.287 ** | −0.311 ** | −0.429 ** | −0.537 ** | 0.649 ** | 1.000 |
Soil Property | Model Type | Membership Function Parameters | Weight | |||
---|---|---|---|---|---|---|
a | b | |||||
Effective porosity | Upper half trapezoid curve | 0.08 | 0.2 | 0.182 | ||
Total organic C | Upper half trapezoid curve | 6 | 30 | 0.173 | ||
Total N | Upper half trapezoid curve | 0.6 | 3 | 0.193 | ||
Available P | Upper half trapezoid curve | 3 | 45 | 0.135 | ||
Catalase | Upper half trapezoid curve | 10 | 60 | 0.148 | ||
pH | Trapezoid curve | 5 | 6.9 | 7.1 | 8.5 | 0.169 |
Soil Quality Indicator | Soil Type | ||||
---|---|---|---|---|---|
Fluvo-Aquic Soils | Meadow Soils | Steppe Soils | |||
Land Use Type | |||||
Grain Land | Conventional Vegetable Land | Greenhouse Vegetable Land | Grain Land | Grain Land | |
Effective porosity | 0.621 | 0.749 | 0.769 | 0.602 | 0.631 |
pH | 0.615 | 0.778 | 0.740 | 0.541 | 0.491 |
Total organic C | 0.644 | 0.913 | 0.733 | 0.714 | 0.791 |
Total N | 0.308 | 0.559 | 0.390 | 0.403 | 0.527 |
Available P | 0.476 | 0.639 | 0.507 | 0.760 | 0.912 |
Catalase | 0.626 | 0.619 | 0.606 | 0.485 | 0.371 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, F.; Lv, Z.; Liu, G. Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau. Sustainability 2018, 10, 3477. https://doi.org/10.3390/su10103477
Dai F, Lv Z, Liu G. Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau. Sustainability. 2018; 10(10):3477. https://doi.org/10.3390/su10103477
Chicago/Turabian StyleDai, Fuqiang, Zhiqiang Lv, and Gangcai Liu. 2018. "Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau" Sustainability 10, no. 10: 3477. https://doi.org/10.3390/su10103477
APA StyleDai, F., Lv, Z., & Liu, G. (2018). Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau. Sustainability, 10(10), 3477. https://doi.org/10.3390/su10103477