Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores)
Abstract
:1. Introduction
2. Case Study: São Miguel, Azores
2.1. General
2.2. Electricity Production and Consumption
2.3. Role of Pumped-Storage and Site Selection
2.4. Overview of Transportation Sector in São Miguel
3. Methodology
3.1. Energy Systems Modeling Tool
3.2. Reference Energy System (RES) of São Miguel
3.3. Future Trends and Scenarios
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deane, J.P.; Ó Gallachóir, B.P.; McKeogh, E.J. Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sustain. Energy Rev. 2010, 14, 1293–1302. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Teng, F.; Pudjianto, D.; Aunedi, M.; Strbac, G. Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe. Energies 2018, 11, 246. [Google Scholar] [CrossRef]
- Renewable Energy Policy Network for the 21st Century (REN21). Renewables 2017 Global Status Report. Available online: http://www.ren21.net/gsr_2017_full_report_en (accessed on 27 July 2018).
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems. Sustainability 2016, 8, 539. [Google Scholar] [CrossRef]
- Rohit, A.K.; Devi, K.P.; Rangnekar, S. An overview of energy storage and its importance in Indian renewable energy sector: Part I—Technologies and Comparison. J. Energy Storage 2017, 13, 10–23. [Google Scholar] [CrossRef]
- Min, C.-G.; Kim, M.-K. Flexibility-Based Reserve Scheduling of Pumped Hydroelectric Energy Storage in Korea. Energies 2017, 10, 1478. [Google Scholar] [CrossRef]
- Rodrigues, A.; Machado, D.; Dentinho, T. Electrical energy storage systems feasibility; The case of Terceira Island. Sustainability 2017, 9, 1276. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Technology Roadmap—Hydropower. 2012. Available online: http://www.iea.org/publications/freepublications/publication/2012_Hydropower_Roadmap.pdf (accessed on 27 July 2018).
- Merino, J.; Veganzones, C.; Sanchez, J.A.; Martinez, S.; Platero, C.A. Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands. Energies 2012, 5, 2351–2369. [Google Scholar] [CrossRef] [Green Version]
- Katsaprakakis, D.A.; Christakis, D.G.; Stefanakis, I.; Spanos, P.; Stefanakis, N. Technical details regarding the design, the construction and the operation of seawater pumped storage systems. Energy 2013, 55, 619–630. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Christakis, D.G. Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study. Energy 2014, 66, 470–486. [Google Scholar] [CrossRef]
- Manfrida, G.; Secchi, R. Seawater pumping as an electricity storage solution for photovoltaic energy systems. Energy 2014, 69, 470–484. [Google Scholar] [CrossRef]
- Portero, U.; Velázquez, S.; Carta, J.A. Sizing of a wind-hydro system using a reversible hydraulic facility with seawater. A case study in the Canary Islands. Energy Convers. Manag. 2015, 106, 1251–1263. [Google Scholar] [CrossRef]
- Hiratsuka, A.; Arai, T.; Yoshimura, T. Seawater pumped-storage power plant in Okinawa island, Japan. Eng. Geol. 1993, 35, 237–246. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Kim, J.; Suharto, Y.; Daim, T.U. Evaluation of Electrical Energy Storage (EES) technologies for renewable energy: A case from the US Pacific Northwest. J. Energy Storage 2017, 11, 25–54. [Google Scholar] [CrossRef]
- Pina, A.; Ioakimidis, C.S.; Ferrão, P. Economic modeling of a seawater pumped-storage system in the context of São Miguel. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, Singapore, 24–27 November 2008; pp. 707–712. [Google Scholar] [CrossRef]
- Correia, P.F.; Ferreira De Jesus, J.M.; Lemos, J.M. Sizing of a pumped storage power plant in S. Miguel, Azores, using stochastic optimization. Electr. Power Syst. Res. 2014, 112, 20–26. [Google Scholar] [CrossRef]
- Osório, G.J.; Shafie-khah, M.; Lujano-Rojas, J.M.; Catalão, J.P.S. Scheduling Model for Renewable Energy Sources Integration in an Insular Power System. Energies 2018, 11, 144. [Google Scholar] [CrossRef]
- Kadurek, P.; Ioakimidis, C.; Ferräo, P. Electric vehicles and their impact to the electric grid in isolated systems. In Proceedings of the 2009 International Conference on Power Engineering, Energy and Electrical Drives, POWERENG ‘09, Lisbon, Portugal, 18–20 March 2009; pp. 49–54. [Google Scholar] [CrossRef]
- Kadurek, P.; Ioakimidis, C. São Miguel Island as a case study on a possible usage of electric vehicle to store energy. In Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition 2009, EVS 24, Stavanger, Norway, 13–16 May 2009; pp. 2442–2448. [Google Scholar]
- Camus, C.; Farias, T. The electric vehicles as a mean to reduce CO2 emissions and energy costs in isolated regions. The São Miguel (Azores) case study. Energy Policy 2012, 43, 153–165. [Google Scholar] [CrossRef]
- Ioakimidis, C.S.; Genikomsakis, K.N. Introduction of plug-in hybrid electric vehicles in an isolated island system. Adv. Build. Energy Res. 2018, 12, 66–83. [Google Scholar] [CrossRef]
- Serviço Regional de Estatística dos Açores (SREA). Azores in Figures 2005; SREA: Lisbon, Portugal, 2006.
- Directorate-General of Energy and Geology (DGEG). Fuel Consumption 2005; DGEG: Lisbon, Portugal, 2006.
- Electricidade dos Açores (EDA). Statistical Information–December 2007; EDA: Lisbon, Portugal, 2008.
- Electricidade dos Açores (EDA). Characterization of the Electricity Transport and Distribution Networks of the Azores; EDA: Lisbon, Portugal, 2006.
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems-Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Hino, T.; Lejeune, A. Pumped Storage Hydropower Developments. Compr. Renew. Energy 2012, 6, 405–434. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Christakis, D.G.; Zervos, A.; Papantonis, D.; Voutsinas, S. Pumped storage systems introduction in isolated power production systems. Renew. Energy 2008, 33, 467–490. [Google Scholar] [CrossRef]
- Pinner, D. Economics/Emerging Business Opportunities in Energy Storage; McKinsey & Company: New York, NY, USA, 2008. [Google Scholar]
- Ter-Gazarian, A.G. Energy Storage for Power Systems, 2nd ed.; Institution of Engineering and Technology: London, UK, 2011; pp. 1–277. [Google Scholar]
- Martifer Renewables. Green Islands Project Report, Portugal. 2009. Available online: http://www.martifer.pt/en/group/institutional/contact-us/ (accessed on 27 September 2018).
- Gagnon, L.; Bélanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- Fujihara, T.; Imano, H.; Oshima, K. Development of pump turbine for seawater pumped-storage power plant. Hitachi Rev. 1998, 47, 199–202. [Google Scholar]
- Tanaka, K. Pumped-storage power plant using sea water. J. Inst. Electr. Eng. Jpn. 2004, 124, 583–586. [Google Scholar] [CrossRef]
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy efficiency, demand side management and energy storage technologies—A critical analysis of possible paths of integration in the built environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Loulou, R.; Remne, U.; Kanudia, A.; Lehtila, A.; Goldstein, G. Documentation for the TIMES—PART I. Energy Technology Systems Analysis Programme. 2005. Available online: http://iea-etsap.org/docs/TIMESDoc-Intro.pdf (accessed on 27 July 2018).
- Howells, M.I.; Alfstad, T.; Victor, D.G.; Goldstein, G.; Remme, U. A model of household energy services in a low-income rural African village. Energy Policy 2005, 33, 1833–1851. [Google Scholar] [CrossRef]
- Alfstad, T. Development of a Least Cost Energy Supply Model for the SADC Region. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2005. [Google Scholar]
- Agencia Regional da Energia da Regiao Autonoma dos Açores (ARENA). Projecto ERAMAC Recursos Energéticos Endógenos Energia para os Açores; ARENA: Lisbon, Portugal, 2005.
- Peças Lopes, J.A.; Mendonça, A.; Matos, M. Capacity Evaluation of the Introduction of Renewable Energy in the Networks of the Azores Islands; INESC-Porto: Porto, Portugal, 2004. [Google Scholar]
- Instituto de Engenharia Mecânica e Gestão Industrial (INEGI). Potential of Wind Energy in the Azores; INEGI: Aguascalientes, Mexico, 2004. [Google Scholar]
- Vaillancourt, K.; Labriet, M.; Loulou, R.; Waaub, J.-P. The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model. Energy Policy 2008, 36, 2296–2307. [Google Scholar] [CrossRef]
Energy Source | Power Plant | Capacity (MW) |
---|---|---|
Fuel oil | Caldeirão | 115 |
Geothermal | Pico Vermelho | 10 |
Ribeira Grande | 14 | |
Hydro | Several plants | 5 |
Technology | Investment Costs (€/kW) | Fixed Costs (€/kW) | Variable Costs (€/GJ) | Efficiency |
---|---|---|---|---|
SPS | 2000 | 46 | 0.1 | 72% |
Energy Source | Investment Cost (€/kW) | Capacity Factor | Maximum Capacity (MW) |
---|---|---|---|
Fuel oil | 1000 | 90% | - |
Geothermal | 2500 | 85% | 23 |
Small hydro | 2000 | 32% | 8 |
Wind | 1600 | 35% | 178 |
Solar | 5500 | 20% | - |
Energy Source | Fixed Costs (€/kW) | Variable Costs (€/GJ) |
---|---|---|
Fuel oil | 9 | 0.32 |
Geothermal | 63 | 0.10 |
Small hydro | 23 | 0.10 |
Wind | 28 | 0.10 |
Solar | 41 | 0.10 |
Scenario | Consumption Growth Rate | Storage Availability | Fuel Price in 2008 (€/kg) | Capacity of Renewable Energy Sources (MW) |
---|---|---|---|---|
1 | 4.0% | No | 0.362 | 29 |
2 | 4.0% | No | 0.362 | 51 + 32% EDVs in 2013 |
3 | 4.0% | No | 0.362 | 51 + 4% EDVs in 2013 |
4 | 4.0% | Yes | 0.362 | 51 + No EDVs |
5 | 4.0% | Yes | 0.362 | 51 + 32% EDVs in 2020 |
6 | 4.0% | Yes | 0.362 | 51 + 32% EDVs gradually until 2020 |
Scenario Phase | Year of Investment | |||||
---|---|---|---|---|---|---|
2007 | 2010 | 2011 | 2013 | 2013 | 2013 | |
BAU | 29 MW | |||||
+Geo | (1)–3 MW | (2)–10 MW | (3)–10 MW | |||
+Wind | 9 MW | |||||
+EDVs | −/4%/32% | |||||
+SPS | 10 MW | |||||
Total capacity of renewable energy sources | 29 MW | 32 MW | 41 MW | 51 MW | 51 MW | 61 MW |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioakimidis, C.S.; Genikomsakis, K.N. Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores). Sustainability 2018, 10, 3438. https://doi.org/10.3390/su10103438
Ioakimidis CS, Genikomsakis KN. Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores). Sustainability. 2018; 10(10):3438. https://doi.org/10.3390/su10103438
Chicago/Turabian StyleIoakimidis, Christos S., and Konstantinos N. Genikomsakis. 2018. "Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores)" Sustainability 10, no. 10: 3438. https://doi.org/10.3390/su10103438
APA StyleIoakimidis, C. S., & Genikomsakis, K. N. (2018). Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores). Sustainability, 10(10), 3438. https://doi.org/10.3390/su10103438