Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula
Abstract
:1. Introduction
2. Data and Method
2.1. The Concept of Assessing Agricultural Water Equilibrium
2.2. GEPIC Modeling of Each Variable
2.3. Study Region
2.4. Input Data
2.5. Evaluation of Model Performance
3. Result and Discussion
3.1. Evaluation of Model Performance
3.1.1. Evaluation of Crop Yield
3.1.2. Evaluation of AET
3.2. Estimation of the Virtual Water Content and Water Balance
3.2.1. Estimates of Water Balance-Related Variables
3.2.2. Virtual Water Content in the Past Three Decades
3.2.3. Cropland Water Budget in the Past Three Decades
3.3. Assessing the Agricultural Water Equilibrium in the Past Three Decades
3.4. Agricultural Water Equilibrium at the Main River Basin Level
3.5. Virtual Water Content, Cropland Water Budget, and Agricultural Water Equilibrium Along the Latitude
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ridoutt, B.G.; Pfister, S. A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int. J. Life Cycle Assess. 2013, 18, 204–207. [Google Scholar] [CrossRef]
- Manzardo, A.; Ren, J.; Piantella, A.; Mazzi, A.; Fedele, A.; Scipioni, A. Integration of water footprint accounting and costs for optimal chemical pulp supply mix in paper industry. J. Clean. Prod. 2014, 72, 167–173. [Google Scholar] [CrossRef]
- Gu, A.; Teng, F.; Lv, Z. Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China. Renew. Sustain. Energy Rev. 2016, 59, 28–38. [Google Scholar] [CrossRef]
- Fader, M.; Gerten, D.; Krause, M.; Lucht, W.; Cramer, W. Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 2013, 8, 14046. [Google Scholar] [CrossRef]
- Wang, K.; Deng, Y.; Jiang, X.H. Decoupling economic development and water consumption: An empirical analysis in China between 1997 and 2008. Adv. Mater. Res. 2014, 955, 2979–2982. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover–water yield debate: From demand-to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lutter, S.; Pfister, S.; Giljum, S.; Wieland, H.; Mutel, C. Spatially explicit assessment of water embodied in European trade: A product-level multi-regional input-output analysis. Glob. Environ. Chang. 2016, 38, 171–182. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on stream flow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Henry, W.B.; Krutz, L.J. Water in Agriculture: Improving Corn Production Practices to Minimize Climate Risk and Optimize Profitability. Curr. Clim. Chang. Rep. 2016, 2, 49–54. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granell, C.; Miralles, I.; Rodríguez-Pupo, L.E.; González-Pérez, A.; Casteleyn, S.; Busetto, L.; Pepe, M.; Boschetti, M.; Huerta, J. Conceptual Architecture and Service-Oriented Implementation of a Regional Geoportal for Rice Monitoring. ISPRS Int. J. Geo-Inf. 2017, 6, 191. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Y.; Scanlon, B.R.; Lei, H.; Yang, D.; Yang, F. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agric. For. Meteorol. 2013, 181, 133–142. [Google Scholar] [CrossRef]
- Dalin, C.; Qiu, H.; Hanasaki, N.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Balancing water resource conservation and food security in China. Proc. Natl. Acad. Sci. USA 2015, 112, 4588–4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Shen, Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 1. Model and validation. J. Hydrol. 2015, 528, 206–216. [Google Scholar] [CrossRef]
- Bassil, E.S.; Kaffka, S.R. Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. consumptive water use. Agric. Water Manag. 2002, 54, 67–80. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 2002, 38, 8. [Google Scholar] [CrossRef]
- Liu, J.; Zehnder, A.J.; Yang, H. Global consumptive water use for crop production: The importance of green water and virtual water. Water Resour. Res. 2009, 45, W05428. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Khabarov, N.; Obersteiner, M.; Westphal, M. Impacts of climate change on virtual water content of crops in China. Ecol. Inform. 2014, 19, 26–34. [Google Scholar] [CrossRef]
- Liu, J.; Folberth, C.; Yang, H.; Röckström, J.; Abbaspour, K.; Zehnder, A.J. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS ONE 2013, 8, e57750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izaurralde, R.; Williams, J.R.; McGill, W.B.; Rosenberg, N.J.; Jakas, M.Q. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecol. Model. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Folberth, C.; Yang, H.; Gaiser, T.; Liu, J.; Wang, X.; Williams, J.; Schulin, R. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change. Environ. Res. Lett. 2014, 9, 44004. [Google Scholar] [CrossRef]
- Lim, C.H.; Kim, D.; Shin, Y.; Lee, W.K. Assessment of drought severity on cropland in Korea Peninsula using normalized precipitation evapotranspiration index (NPEI). J. Clim. Chang. Res. 2015, 6, 223–231. [Google Scholar] [CrossRef]
- Song, Y.; Lim, C.H.; Lee, W.K.; Eom, K.C.; Choi, S.E.; Lee, E.J.; Kim, E. Applicability analysis of major crop models on Korea for the adaptation to climate change. J. Clim. Chang. Res. 2014, 5, 109–125. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Williams, J.R.; Izaurralde, R.C.; Atwood, J.D. Sensitivity and uncertainty analyses of crop yields and soil organic carbon simulated with EPIC. Trans. ASAE 2005, 48, 1041–1054. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Mcgill, W.B.; Williams, J.R. Development and Application of the EPIC Model for Carbon Cycle, Greenhouse-Gas Mitigation, and Biofuel Studies (No. PNNL-SA-83721); Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2012.
- Liu, W.; Yang, H.; Folberth, C.; Wang, X.; Luo, Q.; Schulin, R. Global investigation of impacts of PET methods on simulating crop-water relations for maize. Agric. For. Meteorol. 2016, 221, 164–175. [Google Scholar] [CrossRef]
- Mehta, V.K.; Haden, V.R.; Joyce, B.A.; Purkey, D.R.; Jackson, L.E. Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California. Agric. Water Manag. 2013, 117, 70–82. [Google Scholar] [CrossRef]
- Xu, T.; Qin, X. A Sequential Fuzzy Model with General-Shaped Parameters for Water Supply–Demand Analysis. Water Resour. Manag. 2015, 29, 1431–1446. [Google Scholar] [CrossRef]
- Yu, Z.; Qingshan, Y. Decoupling agricultural water consumption and environmental impact from crop production based on the water footprint method: A case study for the Heilongjiang land reclamation area, China. Ecol. Indic. 2014, 43, 29–35. [Google Scholar] [CrossRef]
- Lim, C.H.; Lee, W.K.; Song, Y.; Eom, K.C. Assessing the EPIC model for estimation of future crops yield in South Korea. J. Clim. Chang. Res. 2015, 6, 21–31. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. A review on monthly water balance models for water resources investigations. Water Resour. Manag. 1998, 12, 20–50. [Google Scholar] [CrossRef]
- Pan, M.; Sahoo, A.K.; Troy, T.J.; Vinukollu, R.K.; Sheffield, J.; Wood, E.F. Multisource estimation of long-term terrestrial water budget for major global river basins. J. Clim. 2012, 25, 3191–3206. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, M.; Wood, E.F. On Creating Global Gridded Terrestrial Water Budget Estimates from Satellite Remote Sensing. Surv. Geophys. 2016, 37, 249–268. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P. Monthly water stress: Spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 2014, 73, 52–62. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC Model, Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 109–1000. [Google Scholar]
- Rinaldi, M. Application of EPIC model for irrigation scheduling of sunflower in Southern Italy. Agric. Water Manag. 2001, 49, 185–196. [Google Scholar] [CrossRef]
- Balkovič, J.; van der Velde, M.; Skalský, R.; Xiong, W.; Folberth, C.; Khabarov, N.; Smirnov, A.; Mueller, N.D.; Obersteiner, M. Global wheat production potentials and management flexibility under the representative concentration pathways. Glob. Planet. Chang. 2014, 122, 107–121. [Google Scholar] [CrossRef]
- Liu, J.; Williams, J.R.; Zehnder, A.J.; Yang, H. GEPIC–modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Liu, J. A GIS based tool for modelling large scale crop water relations. Environ. Model. Softw. 2009, 24, 411–422. [Google Scholar] [CrossRef]
- Folberth, C.; Yang, H.; Gaiser, T.; Abbaspour, K.C.; Schulin, R. Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa. Agric. Syst. 2013, 119, 22–34. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Balkovič, J.; van der Velde, M.; Zhang, X.; Izaurralde, R.C.; Skalský, R.; Lin, E.; Mueller, N.; Obersteiner, M. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 2014, 273, 128–139. [Google Scholar] [CrossRef]
- Tan, G.; Shibasaki, R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecol. Model. 2003, 168, 357–370. [Google Scholar] [CrossRef]
- Lim, C.-H.; Kim, S.H.; Choi, Y.; Kafatos, M.C.; Lee, W.-K. Estimation of the Virtual Water Content of Main Crops on the Korean Peninsula Using Multiple Regional Climate Models and Evapotranspiration Methods. Sustainability 2017, 9, 1172. [Google Scholar] [CrossRef]
- Leonard, R.A.; Knisel, W.G.; Still, D.A. GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE 1987, 30, 1403–1418. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Cui, G.; Lee, W.K.; Kim, D.; Lee, E.J.; Kwak, H.; Choi, H.A.; Kwak, D.A.; Jeon, S.; Zhu, W. Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. J. Plant Biol. 2014, 57, 225–238. [Google Scholar] [CrossRef]
- Kim, S.; Lee, W.; Shin, K.; Kafatos, M.; Seo, D.J.; Kwak, H. Comparison of spatial interpolation techniques for predicting climate factors in Korea. For. Sci. Technol. 2010, 6, 97–109. [Google Scholar] [CrossRef]
- Liu, J.; Williams, J.R.; Wang, X.; Yang, H. Using MODAWEC to generate daily weather data for the EPIC model. Environ. Model. Softw. 2009, 24, 655–664. [Google Scholar] [CrossRef]
- Blackland Research Center: Potential Heat Unit Program. Available online: http://swatmodel.tamu.edu/software/potential-heat-unit-program (accessed on 14 July 2014).
- Batjes, N.H. ISRIC-WISE Derived Soil Properties on a 5 by 5 Arc-Minutes Global Grid; ISRIC—World Soil Information: Wageningen, The Netherlands, 2006. [Google Scholar]
- FAO (Food Agriculture Organization). FAO Digital Soil Map of the World; FAO: Rome, Italy, 1995. [Google Scholar]
- FAO (Food Agriculture Organization). FertiSTAT—Fertilizer Use Statistics; FAO: Rome, Italy; Available online: http://www.fao.org/ag/agl/fertistat/index_en.htm (accessed on 11 December 2014).
- You, L.; Crespo, S.; Guo, Z.; Koo, J.; Ojo, W.; Sebastian, K.; Tenorio, M.T.; Wood, S.; Wood-Sichra, U. Spatial Production Allocation Model (SPAM) 2000 Version 3 Release 2. Available online: http://mapspam.info (accessed on 22 August 2014).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Niu, X.; Easterling, W.; Hays, C.J.; Jacobs, A.; Mearns, L. Reliability and input-data induced uncertainty of the EPIC model to estimate climate change impact on sorghum yields in the US Great Plains. Agric. Ecosyst. Environ. 2009, 129, 268–276. [Google Scholar] [CrossRef]
- Jeon, Y.; Kim, Y. Land reform, income redistribution, and agricultural production in Korea. Econ. Dev. Cult. Chang. 2000, 48, 253–268. [Google Scholar] [CrossRef]
- KREI (Korea Rural Economic Institute). KREI Quarterly Agriculture Trends in North Korea; KREI: Seoul, Korea, 2014. [Google Scholar]
- Lim, C.-H.; Choi, Y.; Kim, M.; Jeon, S.W.; Lee, W.-K. Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea. Sustainability 2017, 9, 1354. [Google Scholar] [CrossRef]
- An, Z. The history and variability of the East Asian paleomonsoon climate. Quat. Sci. Rev. 2000, 19, 171–187. [Google Scholar] [CrossRef]
Year | Reported (t ha−1) | Estimated (t ha−1) | RMSE | E (NSEC) | RE (%) | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Rice Yield | |||||||
1996 | 4.96 | 0.31 | 4.63 | 0.15 | 0.5 | −1.61 | −6.11 |
1997 | 5.01 | 0.37 | 4.95 | 0.6 | 0.39 | −0.11 | −0.67 |
1998 | 4.69 | 0.38 | 4.65 | 0.49 | 0.38 | −0.01 | −0.15 |
1999 | 4.88 | 0.39 | 4.92 | 0.09 | 0.39 | 0 | 1.49 |
2000 | 4.84 | 0.35 | 5.07 | 0.07 | 0.41 | −0.41 | 5.2 |
2001 | 5.07 | 0.29 | 4.92 | 0.11 | 0.35 | −0.44 | −2.56 |
2002 | 4.63 | 0.46 | 4.7 | 0.056 | 0.48 | −0.14 | 2.93 |
2003 | 4.27 | 0.33 | 4.55 | 0.06 | 0.44 | −0.73 | 7.32 |
2004 | 4.92 | 0.29 | 4.92 | 0.18 | 0.32 | −0.24 | 0.16 |
2005 | 4.81 | 0.25 | 4.52 | 0.07 | 0.39 | −1.46 | −5.83 |
2006 | 4.78 | 0.33 | 4.64 | 0.1 | 0.4 | −0.5 | −2.37 |
2007 | 4.57 | 0.27 | 4.74 | 0.06 | 0.32 | −0.48 | 4.17 |
2008 | 5.1 | 0.32 | 4.79 | 0.15 | 0.46 | −1.18 | −5.66 |
2009 | 5.19 | 0.36 | 5.16 | 0.08 | 0.38 | −0.15 | −0.04 |
2010 | 4.69 | 0.36 | 4.89 | 0.12 | 0.37 | −0.07 | 4.63 |
2011 | 4.8 | 0.38 | 5.16 | 0.13 | 0.48 | −0.59 | 8.2 |
2012 | 4.71 | 0.39 | 4.47 | 0.1 | 0.46 | −0.41 | −4.27 |
2013 | 4.92 | 0.4 | 4.69 | 0.04 | 0.44 | −0.24 | −3.95 |
Year | MODIS (mm) | EPIC (mm) | RMSE | E (NSEC) | RE (%) | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
AET | |||||||
2000 | 749 | 89.4 | 672 | 41.2 | 90.8 | −1.86 | −10.4 |
2001 | 815 | 79.9 | 702 | 42.5 | 107.9 | −4.68 | −12.2 |
2002 | 837 | 107.3 | 665 | 39.3 | 139.4 | −5.53 | −17.5 |
2003 | 799 | 89.2 | 648 | 37.2 | 115.2 | −5.79 | −15.7 |
2004 | 822 | 93.3 | 684 | 40.2 | 128.9 | −4.71 | −14.8 |
2005 | 768 | 107.4 | 656 | 42.6 | 116.2 | −2.46 | −13.8 |
2006 | 804 | 98.8 | 664 | 39.4 | 124.1 | −4.58 | −15.5 |
2007 | 783 | 85.8 | 660 | 35.1 | 106.2 | −4.47 | −13.9 |
2008 | 855 | 74.7 | 693 | 36.3 | 127.2 | −8.56 | −15.4 |
2009 | 841 | 89.1 | 685 | 41.9 | 138.4 | −5.74 | −15.6 |
2010 | 748 | 102.6 | 628 | 38.9 | 110.6 | −2.78 | −14.3 |
2011 | 745 | 72.3 | 632 | 34.9 | 92.4 | −5.71 | −12.5 |
2012 | 759 | 81.9 | 658 | 42.5 | 89.1 | −3.32 | −12.0 |
2013 | 758 | 85.3 | 670 | 37.4 | 93.7 | −3.03 | −11.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.-H.; Choi, Y.; Kim, M.; Lee, S.J.; Folberth, C.; Lee, W.-K. Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula. Sustainability 2018, 10, 201. https://doi.org/10.3390/su10010201
Lim C-H, Choi Y, Kim M, Lee SJ, Folberth C, Lee W-K. Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula. Sustainability. 2018; 10(1):201. https://doi.org/10.3390/su10010201
Chicago/Turabian StyleLim, Chul-Hee, Yuyoung Choi, Moonil Kim, Soo Jeong Lee, Christian Folberth, and Woo-Kyun Lee. 2018. "Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula" Sustainability 10, no. 1: 201. https://doi.org/10.3390/su10010201
APA StyleLim, C.-H., Choi, Y., Kim, M., Lee, S. J., Folberth, C., & Lee, W.-K. (2018). Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula. Sustainability, 10(1), 201. https://doi.org/10.3390/su10010201