An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability
Abstract
:1. Introduction
2. Methodology
2.1. Theoretical Background
2.2. Computation of the Thermodynamic Efficiencies: Energy (η) and Exergy (ψ)
- (1)
- Only the heating and mechanical sub-processes inside the facilities were considered once they were around 95% of the industrial energy uses.
- (2)
- Since fossil fuels and electricity were considered the sources with highest consumption rates inside the industrial plants (97.65% in MIS, 2015) [54], they were employed as the two main sources of energy carriers. In accordance with Utlu’s methodology [28], standard reference operation conditions of the industrial activities were divided into three different categories of Temperature Heating (TH) in terms of heating processes temperatures (Low (LTH), Medium (MTH), and High (HTH)) to be assessed. Table 2 summarizes the conditions and computing of the main methodological steps.
2.3. Computation of the Exergetic Renewable Share (ERS)
3. Study Case
3.1. Mexico, Economic, Energetic and Environmental Issues of the Industrial Sector
3.2. Data Source
4. Results
4.1. Mexican Industrial Sector (MIS) Exergy Consumption
4.2. Mexican Industrial Sector (MIS): Energy (η) and Exergy (ψ) Efficiencies
4.3. Mexican Industrial Sector (MIS) Exergetic Renewable Share (ERS)
5. Discussion
5.1. Approach to Update the Exergy Analysis Method Applied to the Industrial Sector: Case Study Application
5.2. Mexican Industrial Sector: Energy and Exergy Consumptions and Efficiencies
5.3. Mexican Industrial Sector (MIS): Thermodynamic Efficiencies Comparison to Detect Areas in Need of Improvement
5.4. Mexican Industrial Sector (MIS) Exergetic Renewable Share (RS) Compute and Comparison with Overall Exergy Efficiencies
5.4.1. Mexican Industrial Sector (MIS) Comparison of Exergy Efficiencies (ψ) and Exergetic Renewable Share (ERS) as Sustainable Indicators
5.4.2. Mexican Industrial Sector (MIS) Comparison of Exergy Efficiencies (ψ) and Exergetic Renewable Share (ERS) with Other Countries
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change; United Nations Environment Programme (UNEP). Climate Change 2014, Mitigation on Climate Change. 2016. Available online: http://www.ipcc.ch/report/ar5/wg3/ (accessed on 6 May 2017).
- Green House Gas Emissions Data. 2016. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 15 March 2017).
- Sadorsky, P. Renewable energy consumption and income in emerging economies. Energy Policy 2009, 37, 4021–4028. [Google Scholar] [CrossRef]
- Moran, M.; Sciubba, E. Exergy analysis: Principles and practice. J. Eng. Gas Turbines Power 1994, 116, 285–290. [Google Scholar] [CrossRef]
- Reistad, G. Available energy conversion and utilization in the United States. J. Eng. Power 1975, 97, 429–434. [Google Scholar] [CrossRef]
- Boroumand Jazi, G.; Rismanchi, B.; Saidur, R. A review on exergy analysis of industrial sector. Renew. Sustain. Energy Rev. 2013, 27, 198–203. [Google Scholar] [CrossRef]
- Wall, G. Exergy—A Useful Concept within Resource Accounting; Chalmers Tekniska Högskola, Göteborgs Universitet: Gothenburg, Sweden, 1977. [Google Scholar]
- Rosen, M.A.; Dincer, I. Exergy as the confluence of energy, environment and sustainable development. Exergy 2001, 1, 3–13. [Google Scholar] [CrossRef]
- Rosen, M.A.; Dincer, I. On Exergy and Environmental Impact. Int. J. Energy Res. 1997, 21, 643–654. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Exergy as a driver for achieving sustainability. Int. J. Green Energy 2004, 1, 1–19. [Google Scholar] [CrossRef]
- Sciubba, E.; Wall, G. A brief commented history of exergy from the beginnings to 2004. Int. J. Thermodyn. 2007, 10, 1–26. [Google Scholar]
- Szargut, J.; Morris, D.R.; Steward, F.R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes; Hemisphere Publishing Corporation: Washington, DC, USA, 1987. [Google Scholar]
- Van Gool, W. Thermodynamic aspects of energy conservation. Energy 1980, 5, 783–792. [Google Scholar] [CrossRef]
- Lozano, M.; Valero, A. Application of the Exergetic Costs Theory to a Steam Boiler in a Thermal Generating Station; ASME Book: New York, NY, USA, 1987. [Google Scholar]
- Dincer, I.; Rosen, M.A. Exergy: Energy, Environment and Sustainable Development; Newnes: Oxford, UK, 2012. [Google Scholar]
- Rosen, M.A.; Dincer, I.; Kanoglu, M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 2008, 36, 128–137. [Google Scholar] [CrossRef]
- Milia, D.; Sciubba, E. Exergy-based lumped simulation of complex systems: An interactive analysis tool. Energy 2006, 31, 100–111. [Google Scholar] [CrossRef]
- Sciubba, E.; Bastianoni, S.; Tiezzi, E. Exergy and extended exergy accounting of very large complex systems with an application to the province of Siena, Italy. J. Environ. Manag. 2008, 86, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Ayres, R.U.; Ayres, L.W.; Warr, B. Exergy, power and work in the US economy, 1900–1998. Energy 2003, 28, 219–273. [Google Scholar] [CrossRef]
- Wall, G. Exergy conversion in the Japanese society. Energy 1990, 15, 435–444. [Google Scholar] [CrossRef]
- Wall, G.; Sciubba, E.; Naso, V. Exergy use in the Italian society. Energy 1994, 19, 1267–1274. [Google Scholar] [CrossRef]
- Chen, G.; Chen, B. Extended-exergy analysis of the Chinese society. Energy 2009, 34, 1127–1144. [Google Scholar] [CrossRef]
- Rosen, M.A. Evaluation of energy utilization efficiency in Canada using energy and exergy analyses. Energy 1992, 17, 339–350. [Google Scholar] [CrossRef]
- Ertesvåg, I.S. Society exergy analysis: A comparison of different societies. Energy 2001, 26, 253–270. [Google Scholar] [CrossRef]
- Gong, M.; Wall, G. Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society. Energies 2016, 9, 707. [Google Scholar] [CrossRef]
- Utlu, Z.; Hepbasli, A. Exergoeconomic aspects of sectoral energy utilization for Turkish industrial sector and their impact on energy policies. Energy Policy 2009, 37, 577–587. [Google Scholar] [CrossRef]
- Utlu, Z.; Hepbasli, A. A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method. Renew. Sustain. Energy Rev. 2007, 11, 1438–1459. [Google Scholar] [CrossRef]
- Rosen, M.A. Assessing global resource utilization efficiency in the industrial sector. Sci. Total Environ. 2013, 461, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Bligh, D.C.; Ugursal, V.I. Extended exergy analysis of the economy of Nova Scotia, Canada. Energy 2012, 44, 878–890. [Google Scholar] [CrossRef]
- Oladiran, M.T.; Meyer, J.P. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa. Appl. Energy 2007, 84, 1056–1067. [Google Scholar] [CrossRef]
- Gong, M. Exergy analysis of a pulp and paper mill. Int. J. Energy Res. 2005, 29, 79–93. [Google Scholar] [CrossRef]
- Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Michaelis, P.; Jackson, T.; Clift, R. Exergy analysis of the life cycle of steel. Energy 1998, 23, 213–220. [Google Scholar] [CrossRef]
- Saidur, R.; Khaliq, A.A.; Masjuki, H. Analysis of energy and exergy use for process heating in the industrial sector of Malaysia. Int. J. Exergy 2006, 3, 119–149. [Google Scholar] [CrossRef]
- Sanaei, S.M.; Furubayashi, T.; Nakata, T. Assessment of energy utilization in Iran’s industrial sector using energy and exergy analysis method. Appl. Therm. Eng. 2012, 36, 472–481. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, G.; Xia, X.-H.; Li, S.; Chen, Z.; Ji, X. Environmental emissions by Chinese industry: Exergy-based unifying assessment. Energy Policy 2012, 45, 490–501. [Google Scholar] [CrossRef]
- Kerdan, I.G.; Gálvez, D.M.; Raslan, R.; Ruyssevelt, P. Modelling the energy and exergy utilisation of the Mexican non-domestic sector: A study by climatic regions. Energy Policy 2015, 77, 191–206. [Google Scholar] [CrossRef]
- Guevara, Z.; Sousa, T.; Domingos, T. Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009. Energies 2016, 9, 488. [Google Scholar] [CrossRef]
- Rivero, R. Application of the exergy concept in the petroleum refining and petrochemical industry. Energy Convers. Manag. 2002, 43, 1199–1220. [Google Scholar] [CrossRef]
- Rivero, R.; Rendón, C.; Gallegos, S. Exergy and exergoeconomic analysis of a crude oil combined distillation unit. Energy 2004, 29, 1909–1927. [Google Scholar] [CrossRef]
- Hammond, G.; Stapleton, A. Exergy analysis of the United Kingdom energy system. J. Power Energy 2001, 215, 141–162. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Sectoral energy and exergy modeling of Turkey. J. Energy Resource. Technol. 1997, 119, 200–204. [Google Scholar]
- Dincer, I.; Rosen, M. Nomenclature. In Exergy, 2nd ed.; Dincer, I., Rosen, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 519–523. [Google Scholar]
- Rosen, M.A. Using exergy to assess regional and national energy utilization: A comparative review. Arab. J. Sci. Eng. 2013, 38, 251–261. [Google Scholar] [CrossRef]
- Rivero, R.; Rendon, C.; Monroy, L. The exergy of crude oil mixtures and petroleum fractions: Calculation and application. Int. J. Thermodyn. 1999, 2, 115–123. [Google Scholar]
- Aljundi, I.H. Energy and exergy analysis of a steam power plant in Jordan. Appl. Therm. Eng. 2009, 29, 324–328. [Google Scholar] [CrossRef]
- Tsatsaronis, G. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy 2007, 32, 249–253. [Google Scholar] [CrossRef]
- Utlu, Z.; Hepbasli, A. A review on analyzing and evaluating the energy utilization efficiency of countries. Renew. Sustain. Energy Rev. 2007, 11, 1–29. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Quadrennial Technology Review 2015; U.S. Department of Energy: Washington, DC, USA, 2015; Chapter 6; p. 35.
- Banerjee, R.; Gong, Y.; Gielen, D.J.; Januzzi, G.; Marechal, F.; McKane, A.T.; Rosen, M.A.; van Es, D.; Worrell, E. Energy End-Use: Industry. In Gobal Energy Assessment—Toward a Sustainable Future; Cambridge University Press: Cambridge, UK, 2012; pp. 513–574. [Google Scholar]
- Bühler, F.; Nguyen, T.-V.; Elmegaard, B. Energy and exergy analyses of the Danish industry sector. Appl. Energy 2016, 184, 1447–1459. [Google Scholar] [CrossRef]
- Vannoni, C.; Battisti, R.; Drigo, S. Potential for Solar Heat in Industrial Processes; IEA SHC Task 33; Sapienza University of Rome: Rome, Italy, 2008; p. 174. [Google Scholar]
- SENER. Balance Nacional de Energia 2015; SENER: Getxo, Spain, 2016. [Google Scholar]
- Gong, M.; Wall, G. On exergy and sustainable development—Part 2: Indicators and methods. Exergy 2001, 1, 217–233. [Google Scholar] [CrossRef]
- Koroneos, C.J.; Nanaki, E.A.; Xydis, G.A. Sustainability Indicators for the Use of Resources—The Exergy Approach. Sustainability 2012, 4, 1867. [Google Scholar] [CrossRef] [Green Version]
- Haseli, Y.; Dincer, I.; Naterer, G. Unified approach to exergy efficiency, environmental impact and sustainable development for standard thermodynamic cycles. Int. J. Green Energy 2008, 5, 105–119. [Google Scholar] [CrossRef]
- Dincer, I. Thermodynamics, exergy and environmental impact. Energy Sources 2000, 22, 723–732. [Google Scholar] [CrossRef]
- Ao, Y.; Gunnewiek, L.; Rosen, M.A. Critical review of exergy-based indicators for the environmental impact of emissions. Int. J. Green Energy 2008, 5, 87–104. [Google Scholar] [CrossRef]
- Data, I. World Bank Opend Data. Available online: https://data.worldbank.org/country/mexico (accessed on 28 September 2017).
- OECD Data. Real GDP forecast. Available online: https://stats.oecd.org (accessed on 5 March 2017).
- Agency, I.E. World Energy Outlook 2008; International Energy Agency/OECD: Paris, France, 2008. [Google Scholar]
- Service, C.R. Mexico’s Oil and Gas Sector: Background, Reform Reports and Implications for the U.S.; Congressional Report; Congressional Research Service: Washington, DC, USA, 2015.
- Sheinbaum-Pardo, C.; Mora-Pérez, S.; Robles-Morales, G. Decomposition of energy consumption and CO2 emissions in Mexican manufacturing industries: Trends between 1990 and 2008. Energy Sustain. Dev. 2012, 16, 57–67. [Google Scholar] [CrossRef]
- Stern, D.I. The effect of NAFTA on energy and environmental efficiency in Mexico. Policy Stud. J. 2007, 35, 291–322. [Google Scholar] [CrossRef]
- Tracker, C.A. Effect of Current Pledges and Policies on Global Temperature. 2015. Available online: http://climateactiontracker.org/global.html (accessed on 6 November 2016).
- Inventario Nacional de Gases de Efecto Invernadero 1990–2010, INE-SENARNAT; INE: Mexico City, Mexico, 2013. Available online: http://www.inecc.gob.mx/descargas/cclimatico/inf_inegei_public_2010.pdf (accessed on 12 March 2017).
- Mexico. Industrial Corridors. 2017. Available online: http://dgeiawf.semarnat.gob.mx:8080/ibi_apps/WFServlet?IBIF_ex=D4_R_PROFEPA02_01&IBIC_user=dgeia_mce&IBIC_pass=dgeia_mce (accessed on 21 October 2017).
- ENCC 2013. Estrategia Nacional de Cambio Climático. Visión 10-20-40. Gobierno de la Republica. México, 2013. Available online: http://www.inecc.gob.mx/descargas/cclimatico/2012_est_nal_cc.pdf (accessed on 6 January 2018).
- International Energy Agency (IEA) Outlook, (2016). Mexico Energy Outlook. Special Report. International Energy Agency (IEA). Available online: https://www.iea.org/search/?q=MEXICO+OUTLOOK+2016#gsc.tab=0&gsc.q=MEXICO%20OUTLOOK%202016&gsc.page=1 (accessed on 12 November 2017).
- Secretaría de Energía. Balance Nacional de Energia 2014; Secretaria de Energia (SENER): Mexico City, Mexico, 2015; Volume 1, p. 136. [Google Scholar]
- Secretaría de Energía. Balance Nacional de Energia 2011; Secretaría de Energía: Mexico City, Mexico, 2012; p. 159. [Google Scholar]
- Secretaría de Energía (SENER). Balance Nacional de Energıa, 2000; Secretaria de Energia (SENER): Mexico City, Mexico, 2001; Volume 1, p. 138. [Google Scholar]
- Instituto Nacional de Estadística y Geografía. XII Censo General de Población y Vivienda, 2000; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2001; Volume 1.
- Instituto Nacional de Estadística y Geografía (INEGI). Estadisticas Historicas de Mexico 2009; Instituto Nacional de Estadística y Geografia: Agusacalientes, Mexico, 2010.
- International Energy Agency (IEA). 2016. Available online: https://www.iea.org/statistics/statisticssearch/report/?year=2015&country=MEXICO&product=Balances (accessed on 25 September 2016).
- Dincer, I.; Hussain, M.; Al-Zaharnah, I. Energy and exergy use in the industrial sector of Saudi Arabia. J. Power Energy 2003, 217, 481–492. [Google Scholar] [CrossRef]
- Abdelaziz, E.A.; Saidur, R.; Mekhilef, S. A review on energy saving strategies in industrial sector. Renew. Sustain. Energy Rev. 2011, 15, 150–168. [Google Scholar] [CrossRef]
- Kondo, K. Energy and exergy utilization efficiencies in the Japanese residential/commercial sectors. Energy Policy 2009, 37, 3475–3483. [Google Scholar] [CrossRef]
- International Energy Agency. Website, Energy Balances. In Energy Balances by Year, Country or Region; International Energy Agency: Paris, France, 2017. [Google Scholar]
Energy Carrier | High Heating Value (HHV) | Chemical Exergy | Quality Factor (Dimensional) γ |
---|---|---|---|
(kJ/kg) | (kJ/kg) | ||
Coal | 32,733 | 34,090 | 1.04 |
Gasoline | 47,849 | 47,394 | 0.99 |
Fuel Oil | 47,405 | 47,101 | 0.99 |
Natural Gas | 55,448 | 51,702 | 0.93 |
Crude oil (Mexican Mixture) | 42,414 | 44,800 | 0.94 |
LPG | 45,460 | 45,005 | 0.99 |
Electricity | 3600.6 | 3600.6 | 1.00 |
Process Heating Data (Tp Range, Energy and Exergy Efficiencies) | Breakdown of Energy and Exergy Efficiencies for Each Tp Category | ||||||||
---|---|---|---|---|---|---|---|---|---|
Electrical Heating | Fuel Heating | ||||||||
Industrial Subsectors | Manufacturing Operation Applications | Tp Range | Mean Tp (°C) | Electricity (%) | Fuel (%) | ɳe,h (%) | ψe,h (%) | ɳf,h (%) | ψf,h (%) |
Iron-Steel | Coking | Low | 190 | 4.2 | 0 | 100 | 6.3 | 100 | 4.1 |
Calcining | Med | 300 | 0 | 0 | 90 | - | 85 | - | |
Smelting & metal melting | High | 1650 | 95.8 | 100 | 75 | 53.4 | 70 | 38.1 | |
Chemical | Driying | Low | 60 | 62.5 | 0 | 100 | 5.4 | 100 | 3.5 |
Other heating | Med | 300 | 37.5 | 100 | 90 | 25.2 | 85 | 16.8 | |
Fluid heating | High | 600 | 0 | 0 | 75 | 42.8 | 70 | 30.6 | |
Cement | Pre-heating | Low | 60 | 91.7 | 0.9 | 100 | 5.4 | 100 | 3.5 |
Calcining | Med | 500 | 0 | 9.0 | 90 | 25.2 | 85 | 16.8 | |
Sintering | High | 1500 | 8.3 | 90.1 | 75 | 45.7 | 70 | 32.7 | |
Sugar | Mingling- centrifuging | Low | 65 | 100 | 59.0 | 100 | 16.3 | 100 | 10.6 |
Filtering | Med | 315 | 0 | 9.0 | 90 | 44.4 | 85 | 29.6 | |
Evaporation | High | 400 | 0 | 32.0 | 75 | 39.0 | 70 | 27.9 | |
Mining and non-iron metals | Crushing | Low | 60 | 10 | 13.8 | 100 | 10.8 | 100 | 7.0 |
Grinding | Med | 150 | 9.4 | 22.6 | 90 | 23.8 | 85 | 15.9 | |
Separation; tickening; refining | High | 500 | 80.4 | 63.6 | 75 | 39.1 | 70 | 27.9 | |
Other manufacturing | Pre-heating | Low | 60 | 10.6 | 13.8 | 100 | 9.7 | 100 | 6.3 |
Fluid Heating | Med | 460 | 89.4 | 86.2 | 90 | 23.8 | 85 | 15.9 | |
Other heating | High | 600 | 0.1 | 0.1 | 75 | 39.0 | 70 | 27.9 |
Process Heating Data (Tp Range, Energy and Exergy Efficiencies) | Breakdown of Energy and Exergy Efficiencies for Each Tp Category | Energy-Exergy Efficiencies | Energy-Exergy Efficiencies | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrical Heating | Fuel Heating | Electrical Heating | Fuel Heating | ||||||||||
Industrial Subsectors | Manufac-Turing Operation Applications | Tp Range | Mean Tp (°C) | Electricity | Fuel | ɳe,h | ψe,h | ɳf,h | ψf,h | ɳe,h | ψe,h | ɳf,h | ψf,h |
(%) | (%) | (%) | (%) | (%) | (%) | ||||||||
Iron-Steel | Coking | Low | 190 | 4.2 | 0 | 100 | 6.3 | 100 | 4.1 | ||||
Calcining | Med | 300 | 0 | 0 | 90 | 85 | - | 75.3 | 51.4 | 70 | 38.1 | ||
Smelting and metal melting | High | 1650 | 95.8 | 100 | 75 | 53.4 | 70 | 38.1 | |||||
Chemical | Driying | Low | 60 | 62.5 | 0 | 100 | 5.4 | 100 | 3.5 | ||||
Other heating | Med | 300 | 37.5 | 100 | 90 | 25.2 | 85 | 16.8 | 62.8 | 3.4 | 85 | 16.8 | |
Fluid heating | High | 600 | 0.0 | 0 | 75 | 42.8 | 70 | 30.6 | |||||
Cement | Pre-heating | Low | 60 | 91.7 | 0.9 | 100 | 5.4 | 100 | 3.5 | ||||
Calcining | Med | 500 | 0 | 9.0 | 90 | 25.2 | 85 | 16.8 | 97.0 | 8.7 | 71.6 | 31 | |
Sintering | High | 1500 | 8.3 | 90.1 | 75 | 45.7 | 70 | 32.7 | |||||
Sugar | Mingling; centrifuging | Low | 65 | 100 | 59.0 | 100 | 16.3 | 100 | 10.6 | ||||
Filtering | Med | 315 | 0 | 9.0 | 90 | 44.4 | 85 | 29.6 | 93.8 | 16.3 | 89.1 | 17.8 | |
Evaporation | High | 400 | 0 | 32.0 | 75 | 39.0 | 70 | 27.9 | |||||
Mining and non-iron metals | Crushing | Low | 60 | 10.0 | 13.8 | 100 | 10.8 | 100 | 7.0 | ||||
Grinding | Med | 150 | 9.4 | 22.6 | 90 | 23.8 | 85 | 15.9 | 70.3 | 32.5 | 77.5 | 22.3 | |
Separation; refining, etc. | High | 500 | 80.4 | 63.6 | 75 | 39.1 | 70 | 27.9 | |||||
Other manufacturing | Pre-heating | Low | 60 | 10.6 | 13.8 | 100 | 9.7 | 100 | 6.3 | ||||
Fluid Heating | Med | 460 | 89.4 | 86.2 | 90 | 23.8 | 85 | 15.9 | 10.7 | 1.1 | 87.1 | 14.6 | |
Other heating | High | 600 | 0.1 | 0.1 | 75 | 39.0 | 70 | 27.9 |
Time (Years) | Exergetic Ren. Resources MIS (PsJ) (Average) | Exergetic Ren. Share (%) | Time (Years) | Exergetic Ren. Resources MIS (PJ) (Average) | Exergetic Ren. Share (%) |
---|---|---|---|---|---|
2000 | 62.0 | 4.6 | 2008 | 63.8 | 4.5 |
2001 | 72.2 | 5.9 | 2009 | 54.3 | 4.2 |
2002 | 70.4 | 5.6 | 2010 | 50.6 | 3.6 |
2003 | 57.1 | 4.5 | 2011 | 45.7 | 3.0 |
2004 | 56.9 | 4.3 | 2012 | 44.9 | 3.0 |
2005 | 69.9 | 5.2 | 2013 | 64.8 | 4.1 |
2006 | 62.3 | 4.3 | 2014 | 38.8 | 2.5 |
2007 | 64.0 | 4.5 | 2015 | 37.4 | 2.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arango-Miranda, R.; Hausler, R.; Romero-López, R.; Glaus, M.; Ibarra-Zavaleta, S.P. An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability. Sustainability 2018, 10, 153. https://doi.org/10.3390/su10010153
Arango-Miranda R, Hausler R, Romero-López R, Glaus M, Ibarra-Zavaleta SP. An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability. Sustainability. 2018; 10(1):153. https://doi.org/10.3390/su10010153
Chicago/Turabian StyleArango-Miranda, Raúl, Robert Hausler, Rabindranarth Romero-López, Mathias Glaus, and Sara Patricia Ibarra-Zavaleta. 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability" Sustainability 10, no. 1: 153. https://doi.org/10.3390/su10010153
APA StyleArango-Miranda, R., Hausler, R., Romero-López, R., Glaus, M., & Ibarra-Zavaleta, S. P. (2018). An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability. Sustainability, 10(1), 153. https://doi.org/10.3390/su10010153