Operationalizing Chronic Inflammation: An Endotype-to-Care Framework for Precision and Equity
Abstract
1. Introduction
1.1. Cellular and Molecular Mechanisms
1.1.1. Pattern Recognition and Danger Sensing
1.1.2. Inflammasomes and Pyroptosis
1.1.3. Cytokine and Chemokine Networks
1.1.4. Immunometabolism and Mitochondrial Dysfunction
1.1.5. Epigenetic Reprogramming and Trained Immunity
1.1.6. Barrier Failure and Microbiome Dysbiosis
1.1.7. Senescence, SASP, and Inflammaging
1.1.8. Neuro–Immune–Endocrine Crosstalk
1.2. From Mechanism to Disease
1.2.1. Cardiometabolic Disorders
1.2.2. Cancer
1.2.3. Neurodegeneration
1.2.4. Autoimmunity and Autoinflammation
1.2.5. Fibrosis and Organ Failure
1.2.6. Post-Infectious Sequelae
1.3. Biomarkers and Endotyping
1.4. Therapeutic Strategies
1.4.1. Lifestyle and Environmental Interventions
1.4.2. Anti-Cytokine and Immune-Modulating Therapies
1.4.3. Inflammasome and Danger-Signaling Inhibitors
1.4.4. Immunometabolic Reprogramming
1.4.5. Resolution Pharmacology
1.4.6. Senolytics and Senomorphics
1.4.7. Neuromodulation and Mind–Body Adjuncts
2. Materials and Methods
2.1. Study Design and Objective
2.2. Protocol and Methodology
2.3. Literature Sources and Search Dates
Search Terms
2.4. Eligibility Criteria and Study Selection
2.5. Data Extraction and Endotype-to-Care Framework Construction
2.6. Operationalizing the Endotype-to-Care Framework and Equity in Implementation
2.7. Quality Assurance and Reporting
3. Results
3.1. Implementation: From Endotype to Care Pathway
| Endotype | Key Biomarkers/Drivers | Example Therapies | Monitoring Targets | Evidence Tier |
|---|---|---|---|---|
| Type 2 (T2-high) [54,55,56,57] | IL-4/IL-5/IL-13; eosinophils; IgE; FeNO; periostin | Anti-IL-5/IL-5R; anti-IL-4Rα; anti-TSLP; ICS | ↓ Eosinophils (<150–300/µL), ↓ FeNO, fewer exacerbations | A |
| Type 2–low (neutrophilic/mixed) [58,59,60] | Th1/Th17 signals; sputum/blood neutrophils; low IgE/eos | Macrolides; anti-alarmins; IL-17/23 blockade (select cases) | ↓ Neutrophils; ↓ CRP/IL-6 ↓ | B |
| IL-23/Th17 (Type 3) [61,62,63,64] | IL-23 → IL-17A/F; CXCL1/8; neutrophil-skewed transcriptomics | Anti-IL-23; anti-IL-17A/F | ↓ PASI/DAPSA; ↓ IL-17-linked chemokines | A |
| Type I IFN [65,66,67] | ISG score; IFN-α/β proteins; low complement | IFNAR blockade; B-cell–directed agents | ↓ ISG score; fewer flares; steroid-sparing | A |
| IL-1β/Inflammasome [68,69,70] | NLRP3 activation; IL-1β/IL-18; urate crystals | IL-1 blockade; emerging NLRP3/P2X7 inhibitors | ↓ IL-1β/CRP; ↓ flares; urate-to-target | A/C |
| GM-CSF-driven [71,72,73] | High GM-CSF; inflammatory monocytes/macrophages | Anti-GM-CSF/GM-CSF-R | ↓ Joint counts; ↓ CRP/SAA; ↓ synovitis (imaging) ↓ | B |
| TNF/IL-6 a (metaflammation) [2,18,74] | hs-CRP/SAA high; IL-6/TNF loops; insulin resistance | Anti-TNF; IL-6R blockade; GLP-1RA/SGLT2i/metformin | ↓ hs-CRP ≥ 40%; ↓ IL-6 ≥ 30%; ↓ HOMA-IR; metabolic improvement | A/B |
| Barrier–dysbiosis/endotoxemia [75,76,77,78] | LBP/LPS; EndoCab; dysbiosis; bile acid/Trp shifts | Diet pattern therapy; fiber/pre/probiotics; bile acid modulators | ↓ LBP/EndoCab; ↑ stool diversity; ↓ CRP/IL-6 | B/C |
| Senescence/SASP [79,80,81] | p16; SASP cytokines; frailty markers | Senolytics/senomorphics; SPM analogs; exercise | ↓ IL-6/CRP; ↑ function (grip, gait) | C |
| Fibrotic TGF-β–dominant [82,83,84] | TGF-β/SMAD; PRO-C3; fibrosis imaging | Approved anti-fibrotics; investigational TGF-β modulators | Stabilize/improve fibrosis; ↓ ECM biomarkers | A/B |
| Complement/immune-complex [85,86,87] | Low C3/C4; C3a/C5a; autoantibodies; IC deposition | C5/C3 inhibitors; B-cell–directed therapy | ↓ Complement fragments; ↓ organ activity; ↓ flares | A |
3.2. Tiered Implementation by Resource Level
3.3. Worked Case Vignette (Operational Example)
4. Evidence Gaps and Controversies
5. Future Directions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACG | American College of Gastroenterology |
| ACR | American College of Rheumatology |
| AGEs | Advanced glycation end-products |
| AMPK | AMP-activated protein kinase |
| ATP | Adenosine triphosphate |
| BCR | B-cell receptor |
| CBC | Complete blood count |
| cGAS | Cyclic GMP–AMP synthase |
| CRISPR | Clustered regularly interspaced short palindromic repeats |
| CRP | C-reactive protein |
| CXCL | C-X-C motif chemokine ligand |
| DAPSA | Disease Activity in Psoriatic Arthritis |
| DAMPs | Damage-associated molecular patterns |
| dsDNA | Double-stranded DNA |
| ECM | Extracellular matrix |
| ELISA | Enzyme-linked immunosorbent assay |
| EndoCab | Endotoxin core antibody |
| EULAR | European Alliance of Associations for Rheumatology |
| FeNO | Fractional exhaled nitric oxide |
| FVC | Forced vital capacity |
| GLP-1RA | Glucagon-like peptide-1 receptor agonist |
| GM-CSF | Granulocyte–macrophage colony-stimulating factor |
| HIF-1α | Hypoxia-inducible factor 1 alpha |
| HOMA-IR | Homeostatic Model Assessment of Insulin Resistance |
| HPA | Hypothalamic–pituitary–adrenal |
| hs-CRP | High-sensitivity C-reactive protein |
| IC | Immune complex |
| ICS | Inhaled corticosteroid |
| IFN | Interferon |
| IFNAR | Type I interferon receptor |
| IgE | Immunoglobulin E |
| IL | Interleukin |
| IRF | Interferon regulatory factor |
| ISG | Interferon-stimulated gene |
| JAK | Janus kinase |
| LBP | LPS-binding protein |
| LDL | Low-density lipoprotein |
| LOX | Lipoxygenase |
| LPS | Lipopolysaccharide |
| mAb | Monoclonal antibody |
| mTOR | Mechanistic target of rapamycin |
| MTX | Methotrexate |
| NADPH | Nicotinamide adenine dinucleotide phosphate |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NLR | Neutrophil-to-lymphocyte ratio |
| NLRs | NOD-like receptors |
| NLRP3 | NOD-, LRR-, and pyrin domain-containing protein 3 |
| NO | Nitric oxide |
| PASI | Psoriasis Area and Severity Index |
| PDGF | Platelet-derived growth factor |
| PLR | Platelet-to-lymphocyte ratio |
| P2X7 | Purinergic receptor P2X7 |
| PRR | Pattern-recognition receptor |
| PRO-C3 | Procollagen type III N-terminal propeptide |
| qPCR | Quantitative polymerase chain reaction |
| ROS | Reactive oxygen species |
| SAA | Serum amyloid A |
| SASP | Senescence-associated secretory phenotype |
| SCFA | Short-chain fatty acids |
| SGLT2i | Sodium–glucose cotransporter-2 inhibitor |
| SMAD | Mothers against decapentaplegic homolog |
| SPM | Specialized pro-resolving mediator |
| SPMs | Specialized pro-resolving mediators |
| STING | Stimulator of interferon genes |
| T2D | Type 2 diabetes |
| TCA cycle | Tricarboxylic acid cycle |
| TGF-β | Transforming growth factor beta |
| Th17 | T helper 17 |
| TLA | Three-letter acronym |
| TLR | Toll-like receptor |
| TNF | Tumor necrosis factor |
| Treg | Regulatory T cell |
| Trp | Tryptophane |
| TSLP | Thymic stromal lymphopoietin |
| VEGF | Vascular endothelial growth factor |
References
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, Metaflammation and Immunometabolic Disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Maddipati, K.R. Distinct Etiology of Chronic Inflammation—Implications on Degenerative Diseases and Cancer Therapy. Front. Immunol. 2024, 15, 1460302. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. The Spectrum of Inflammatory Responses. Science 2021, 374, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic Inflammation and the Hallmarks of Aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Olivieri, F.; Moskalev, A.; Ivanchenko, M.; Santoro, A. Toward Precision Interventions and Metrics of Inflammaging. Nat. Aging 2025, 5, 1441–1454. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity 2011, 34, 637–650. [Google Scholar] [CrossRef]
- Hopfner, K.-P.; Hornung, V. Molecular Mechanisms and Cellular Functions of cGAS–STING Signalling. Nat. Rev. Mol. Cell Biol. 2020, 21, 501–521. [Google Scholar] [CrossRef]
- Gulen, M.F.; Samson, N.; Keller, A.; Schwabenland, M.; Liu, C.; Glück, S.; Thacker, V.V.; Favre, L.; Mangeat, B.; Kroese, L.J.; et al. cGAS–STING Drives Ageing-Related Inflammation and Neurodegeneration. Nature 2023, 620, 374–380. [Google Scholar] [CrossRef]
- Chauvin, S.D.; Stinson, W.A.; Platt, D.J.; Poddar, S.; Miner, J.J. Regulation of cGAS and STING Signaling during Inflammation and Infection. J. Biol. Chem. 2023, 299, 104866. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, B.; Sinha, S.C.; Amin, S.; Gan, L. Mechanism and Therapeutic Potential of Targeting cGAS-STING Signaling in Neurological Disorders. Mol. Neurodegener. 2023, 18, 79. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.V.; Deng, M.; Ting, J.P.-Y. The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pan, R.; Ouyang, Y.; Gu, W.; Xiao, T.; Yang, H.; Tang, L.; Wang, H.; Xiang, B.; Chen, P. Pyroptosis in Health and Disease: Mechanisms, Regulation and Clinical Perspective. Sig. Transduct. Target. Ther. 2024, 9, 245. [Google Scholar] [CrossRef]
- Tengesdal, I.W.; Banks, M.; Dinarello, C.A.; Marchetti, C. Screening NLRP3 Drug Candidates in Clinical Development: Lessons from Existing and Emerging Technologies. Front. Immunol. 2024, 15, 1422249. [Google Scholar] [CrossRef]
- Gatlik, E.; Mehes, B.; Voltz, E.; Sommer, U.; Tritto, E.; Lestini, G.; Liu, X.; Pal, P.; Velinova, M.; Denney, W.S.; et al. First-in-human Safety, Tolerability, and Pharmacokinetic Results of DFV890, an Oral Low-molecular-weight NLRP3 Inhibitor. Clin. Transl. Sci. 2024, 17, e13789. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, P.; Zhang, Y.; Wei, M.; Tian, T.; Zhu, D.; Guan, Y.; Wei, W.; Ma, Y. The Research Progression of Direct NLRP3 Inhibitors to Treat Inflammatory Disorders. Cell. Immunol. 2024, 397–398, 104810. [Google Scholar] [CrossRef]
- Wilhelmsen, K.; Deshpande, A.; Tronnes, S.; Mahanta, M.; Banicki, M.; Cochran, M.; Cowdin, S.; Fortney, K.; Hartman, G.; Hughes, R.E.; et al. Discovery of Potent and Selective Inhibitors of Human NLRP3 with a Novel Mechanism of Action. J. Exp. Med. 2025, 222, e20242403. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid Arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Mehta, N.N.; de Goma, E.; Shapiro, M.D. IL-6 and Cardiovascular Risk: A Narrative Review. Curr. Atheroscler. Rep. 2025, 27, 12. [Google Scholar] [CrossRef]
- Zhang, L.; Omarov, M.; Xu, L.; de Goma, E.; Natarajan, P.; Georgakis, M.K. IL6 Genetic Perturbation Mimicking IL-6 Inhibition Is Associated with Lower Cardiometabolic Risk. Nat. Cardiovasc. Res. 2025, 4, 1172–1186. [Google Scholar] [CrossRef]
- Aletaha, D.; Kerschbaumer, A.; Kastrati, K.; Dejaco, C.; Dougados, M.; McInnes, I.B.; Sattar, N.; Stamm, T.A.; Takeuchi, T.; Trauner, M.; et al. Consensus Statement on Blocking Interleukin-6 Receptor and Interleukin-6 in Inflammatory Conditions: An Update. Ann. Rheum. Dis. 2023, 82, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Mapuskar, K.A.; London, B.; Zacharias, Z.R.; Houtman, J.C.D.; Allen, B.G. Immunometabolism in the Aging Heart. J. Am. Heart Assoc. 2025, 14, e039216. [Google Scholar] [CrossRef]
- Schlüter, T.; Van Elsas, Y.; Priem, B.; Ziogas, A.; Netea, M.G. Trained Immunity: Induction of an Inflammatory Memory in Disease. Cell Res. 2025, 35, 792–802. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, W.-W. Trained Immunity Induced by DAMPs and LAMPs in Chronic Inflammatory Diseases. Exp. Mol. Med. 2025, 57, 2137–2147. [Google Scholar] [CrossRef]
- Michalak, K.P.; Michalak, A.Z. Understanding Chronic Inflammation: Couplings between Cytokines, ROS, NO, Cai2+, HIF-1α, Nrf2 and Autophagy. Front. Immunol. 2025, 16, 1558263. [Google Scholar] [CrossRef]
- Essex, M.; Millet Pascual-Leone, B.; Löber, U.; Kuhring, M.; Zhang, B.; Brüning, U.; Fritsche-Guenther, R.; Krzanowski, M.; Fiocca Vernengo, F.; Brumhard, S.; et al. Gut Microbiota Dysbiosis Is Associated with Altered Tryptophan Metabolism and Dysregulated Inflammatory Response in COVID-19. npj Biofilms Microbiomes 2024, 10, 66. [Google Scholar] [CrossRef]
- Ganesan, R.; Thirumurugan, D.; Vinayagam, S.; Kim, D.J.; Suk, K.T.; Iyer, M.; Yadav, M.K.; HariKrishnaReddy, D.; Parkash, J.; Wander, A.; et al. A Critical Review of Microbiome-Derived Metabolic Functions and Translational Research in Liver Diseases. Front. Cell Infect. Microbiol. 2025, 15, 1488874. [Google Scholar] [CrossRef]
- Shen, Y.; Fan, N.; Ma, S.; Cheng, X.; Yang, X.; Wang, G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm 2025, 6, e70168. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Mu, W.-C.; Markov, N.T.; Fuentealba, M.; Halaweh, H.; Senchyna, F.; Manwaring-Mueller, M.N.; Winer, D.A.; Furman, D. Immunological Biomarkers of Aging. J. Immunol. 2025, 214, 889–902. [Google Scholar] [CrossRef]
- Jiang, B.; Dong, Y.-N.; Xiong, Y.; Jiang, C.-X.; Ping, J.; Wu, Q.; Xu, L.-J.; Shu, R.-Z.; Gao, D.-D.; Zhu, S.-M.; et al. Global Research Trends in Inflammaging from 2005 to 2024: A Bibliometric Analysis. Front. Aging 2025, 6, 1554186. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.Q.T.; Cho, K.A. Targeting Immunosenescence and Inflammaging: Advancing Longevity Research. Exp. Mol. Med. 2025, 57, 1881–1892. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Tracey, K.J. Neural Regulation of Immunity: Molecular Mechanisms and Clinical Translation. Nat. Neurosci. 2017, 20, 156–166. [Google Scholar] [CrossRef]
- Liu, F.-J.; Wu, J.; Gong, L.-J.; Yang, H.-S.; Chen, H. Non-Invasive Vagus Nerve Stimulation in Anti-Inflammatory Therapy: Mechanistic Insights and Future Perspectives. Front. Neurosci. 2024, 18, 1490300. [Google Scholar] [CrossRef]
- Schiweck, C.; Sausmekat, S.; Zhao, T.; Jacobsen, L.; Reif, A.; Edwin Thanarajah, S. No Consistent Evidence for the Anti-Inflammatory Effect of Vagus Nerve Stimulation in Humans: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2024, 116, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Medina-Urrutia, A.X.; Torre-Villalvazo, I.; Juárez-Rojas, J.G. Adipose Tissue Immunometabolism: Unveiling the Intersection of Metabolic and Immune Regulation. Rev. Investig. Clin. 2024, 76, 65–79. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The Intestinal Microbiota Fuelling Metabolic Inflammation. Nat. Rev. Immunol. 2020, 20, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.S.; Choi, H.; Mook-Jung, I. Decoding Microglial Immunometabolism: A New Frontier in Alzheimer’s Disease Research. Mol. Neurodegener. 2025, 20, 37. [Google Scholar] [CrossRef]
- McGonagle, D.; McDermott, M.F. A Proposed Classification of the Immunological Diseases. PLoS Med. 2006, 3, e297. [Google Scholar] [CrossRef]
- Kamar, M.D.; Bala, M.; Prajapati, G.; Ray, R.S. Multiomics Data Integration in Understanding of Inflammation and Inflammatory Diseases. In Inflammation Resolution and Chronic Diseases; Tripathi, A., Dwivedi, A., Gupta, S., Poojan, S., Eds.; Springer Nature: Singapore, 2024; pp. 235–243. ISBN 978-981-97-0156-8. [Google Scholar]
- Wong, C.K.; Drucker, D.J. Antiinflammatory Actions of Glucagon-like Peptide-1–Based Therapies beyond Metabolic Benefits. J. Clin. Investig. 2025, 135, e194751. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Chen, Y.; Zheng, W.; Kong, W.; Liao, Y.; Zhang, J.; Wang, M.; Zeng, T. The Effect of GLP -1 Receptor Agonists on Circulating Inflammatory Markers in Type 2 Diabetes Patients: A Systematic Review and Meta-analysis. Diabetes Obes. Metab. 2025, 27, 3607–3626. [Google Scholar] [CrossRef]
- Fredman, G.; Serhan, C.N. Specialized Pro-Resolving Mediators in Vascular Inflammation and Atherosclerotic Cardiovascular Disease. Nat. Rev. Cardiol. 2024, 21, 808–823. [Google Scholar] [CrossRef]
- Sun, S.; Yang, D.; Lv, J.; Xia, H.; Mao, Z.; Chen, X.; Gao, Y. Pharmacological Effects of Specialized Pro-Resolving Mediators in Sepsis-Induced Organ Dysfunction: A Narrative Review. Front. Immunol. 2024, 15, 1444740. [Google Scholar] [CrossRef]
- Vomero, M.; Lamberti, L.; Corberi, E.; Currado, D.; Marino, A.; Berardicurti, O.; Fava, M.; Leuti, A.; Maccarrone, M.; Giacomelli, R.; et al. Specialized Pro-Resolving Mediators and Autoimmunity: Recent Insights and Future Perspectives. Autoimmun. Rev. 2025, 24, 103896. [Google Scholar] [CrossRef]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.O.; Collins, R. Plasma Fibrinogen Level and the Risk of Major Cardiovascular Diseases and Nonvascular Mortality: An Individual Participant Meta-Analysis. J. Am. Med. Assoc. 2005, 294, 1799–1809. [Google Scholar] [CrossRef]
- Forget, P.; Khalifa, C.; Defour, J.-P.; Latinne, D.; Van Pel, M.-C.; De Kock, M. What Is the Normal Value of the Neutrophil-to-Lymphocyte Ratio? BMC Res. Notes 2017, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Tylutka, A.; Walas, Ł.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1β and Age-Related Diseases: A Systematic Review and Meta-Analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef]
- Childs, B.G.; Gluscevic, M.; Baker, D.J.; Laberge, R.-M.; Marquess, D.; Dananberg, J.; Van Deursen, J.M. Senescent Cells: An Emerging Target for Diseases of Ageing. Nat. Rev. Drug Discov. 2017, 16, 718–735. [Google Scholar] [CrossRef]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a Link between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef]
- Calder, P.C. Diet, Immunity and Inflammation; Woodhead Publishing Series in Food Science, Technology and Nutrition Ser; Elsevier Science & Technology: Jordon Hill, UK, 2013; ISBN 978-0-85709-037-9. [Google Scholar]
- WHO Equity and Universal Access in Precision Medicine: Policy Brief. 2023. Available online: https://www.who.int/our-work/access-to-medicines-and-health-products (accessed on 8 October 2025).
- Wenzel, S.E. Asthma Phenotypes: The Evolution from Clinical to Molecular Approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Agache, I.; Akdis, C.A. Endotypes of Allergic Diseases and Asthma: An Important Step in Building Blocks for the Future of Precision Medicine. Allergol. Int. 2016, 65, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, M.E.; Akuthota, P.; Jayne, D.; Khoury, P.; Klion, A.; Langford, C.A.; Merkel, P.A.; Moosig, F.; Specks, U.; Cid, M.C.; et al. Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N. Engl. J. Med. 2017, 376, 1921–1932. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.L. Neutrophilic Asthma Is Characterised by Increased Rhinosinusitis with Sleep Disturbance and GERD. Asian Pac. J. Allergy Immunol. 2013, 32, 66–74. [Google Scholar] [CrossRef]
- Brusselle, G.G.; Maes, T.; Bracke, K.R. Eosinophils in the Spotlight: Eosinophilic Airway Inflammation in Nonallergic Asthma. Nat. Med. 2013, 19, 977–979. [Google Scholar] [CrossRef]
- Gibson, P.G.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Marks, G.B.; Baraket, M.; et al. Effect of Azithromycin on Asthma Exacerbations and Quality of Life in Adults with Persistent Uncontrolled Asthma (AMAZES): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2017, 390, 659–668. [Google Scholar] [CrossRef]
- Blair, H.A. Secukinumab: A Review in Psoriatic Arthritis. Drugs 2021, 81, 483–494. [Google Scholar] [CrossRef]
- McInnes, I.B.; Nash, P.; Ritchlin, C.; Choy, E.H.; Kanters, S.; Thom, H.; Gandhi, K.; Pricop, L.; Jugl, S.M. Secukinumab for Psoriatic Arthritis: Comparative Effectiveness versus Licensed Biologics/Apremilast: A Network Meta-Analysis. J. Comp. Eff. Res. 2018, 7, 1107–1123. [Google Scholar] [CrossRef]
- Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23–IL-17 Immune Axis: From Mechanisms to Therapeutic Testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar] [CrossRef]
- Ritchlin, C.T.; Helliwell, P.S.; Boehncke, W.-H.; Soriano, E.R.; Hsia, E.C.; Kollmeier, A.P.; Chakravarty, S.D.; Zazzetti, F.; Subramanian, R.A.; Xu, X.L.; et al. Guselkumab, an Inhibitor of the IL-23p19 Subunit, Provides Sustained Improvement in Signs and Symptoms of Active Psoriatic Arthritis: 1 Year Results of a Phase III Randomised Study of Patients Who Were Biologic-naïve or TNFα Inhibitor-Experienced. RMD Open 2021, 7, e001457. [Google Scholar] [CrossRef]
- Crow, M.K. Type I Interferon in the Pathogenesis of Lupus. J. Immunol. 2014, 192, 5459–5468. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.-C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef]
- Dörner, T.; Furie, R. Novel Paradigms in Systemic Lupus Erythematosus. Lancet 2019, 393, 2344–2358. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL -1 Family in Innate Inflammation and Acquired Immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Busso, N.; So, A. Mechanisms of Inflammation in Gout. Arthritis Res. Ther. 2010, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A. GM-CSF in Inflammation and Autoimmunity. Trends Immunol. 2002, 23, 403–408. [Google Scholar] [CrossRef]
- Burmester, G.R.; McInnes, I.B.; Kremer, J.; Miranda, P.; Korkosz, M.; Vencovsky, J.; Rubbert-Roth, A.; Mysler, E.; Sleeman, M.A.; Godwood, A.; et al. A Randomised Phase IIb Study of Mavrilimumab, a Novel GM–CSF Receptor Alpha Monoclonal Antibody, in the Treatment of Rheumatoid Arthritis. Ann. Rheum. Dis. 2017, 76, 1020–1030. [Google Scholar] [CrossRef]
- Taylor, P.C.; Saurigny, D.; Vencovsky, J.; Takeuchi, T.; Nakamura, T.; Matsievskaia, G.; Hunt, B.; Wagner, T.; Souberbielle, B. Efficacy and Safety of Namilumab, a Human Monoclonal Antibody against Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Ligand in Patients with Rheumatoid Arthritis (RA) with Either an Inadequate Response to Background Methotrexate Therapy or an Inadequate Response or Intolerance to an Anti-TNF (Tumour Necrosis Factor) Biologic Therapy: A Randomized, Controlled Trial. Arthritis Res. Ther. 2019, 21, 101. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [PubMed]
- Peña-Durán, E.; García-Galindo, J.J.; López-Murillo, L.D.; Huerta-Huerta, A.; Balleza-Alejandri, L.R.; Beltrán-Ramírez, A.; Anaya-Ambriz, E.J.; Suárez-Rico, D.O. Microbiota and Inflammatory Markers: A Review of Their Interplay, Clinical Implications, and Metabolic Disorders. Int. J. Mol. Sci. 2025, 26, 1773. [Google Scholar] [CrossRef]
- Ma, W.; Huang, Z.-Q.; Liu, K.; Li, D.-Z.; Mo, T.-L.; Liu, Q. The Role of Intestinal Microbiota and Metabolites in Intestinal Inflammation. Microbiol. Res. 2024, 288, 127838. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Majeed, O.S.; Gaaz, T.S.; Akpoghelie, P.O.; Isoje, E.F.; Igbuku, U.A.; Owheruo, J.O.; Opiti, R.A.; Garba, Y.; et al. A Review on Probiotics and Dietary Bioactives: Insights on Metabolic Well-Being, Gut Microbiota, and Inflammatory Responses. Food Chem. Adv. 2025, 6, 100919. [Google Scholar] [CrossRef]
- He, Y.; Shaoyong, W.; Chen, Y.; Li, M.; Gan, Y.; Sun, L.; Liu, Y.; Wang, Y.; Jin, M. The Functions of Gut Microbiota-Mediated Bile Acid Metabolism in Intestinal Immunity. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Ellison-Hughes, G.M. First Evidence That Senolytics Are Effective at Decreasing Senescent Cells in Humans. eBioMedicine 2020, 56, 102473. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune–Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Xu, M.; Palmer, A.K.; Ding, H.; Weivoda, M.M.; Pirtskhalava, T.; White, T.A.; Sepe, A.; Johnson, K.O.; Stout, M.B.; Giorgadze, N.; et al. Targeting Senescent Cells Enhances Adipogenesis and Metabolic Function in Old Age. eLife 2015, 4, e12997. [Google Scholar] [CrossRef]
- Wynn, T. Cellular and Molecular Mechanisms of Fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef] [PubMed]
- King, T.E.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef]
- Distler, J.H.W.; Györfi, A.-H.; Ramanujam, M.; Whitfield, M.L.; Königshoff, M.; Lafyatis, R. Shared and Distinct Mechanisms of Fibrosis. Nat. Rev. Rheumatol. 2019, 15, 705–730. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A Key System for Immune Surveillance and Homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Lambris, J.D. Complement-Targeted Therapeutics. Nat. Biotechnol. 2007, 25, 1265–1275. [Google Scholar] [CrossRef]
- Wright, R.D.; Bannerman, F.; Beresford, M.W.; Oni, L. A Systematic Review of the Role of Eculizumab in Systemic Lupus Erythematosus-Associated Thrombotic Microangiopathy. BMC Nephrol. 2020, 21, 245. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Frank, G.; Cianci, R.; Caldarelli, M.; Leggeri, G.; Raffaelli, G.; Pizzocaro, E.; Cirillo, M.; De Lorenzo, A. Exploring the Exposome Spectrum: Unveiling Endogenous and Exogenous Factors in Non-Communicable Chronic Diseases. Diseases 2024, 12, 176. [Google Scholar] [CrossRef]
- Isola, S.; Murdaca, G.; Brunetto, S.; Zumbo, E.; Tonacci, A.; Gangemi, S. The Use of Artificial Intelligence to Analyze the Exposome in the Development of Chronic Diseases: A Review of the Current Literature. Informatics 2024, 11, 86. [Google Scholar] [CrossRef]
- Van Den Brink, W.J.; Oosterman, J.E.; Smid, D.J.; De Vries, H.J.; Atsma, D.E.; Overeem, S.; Wopereis, S. Sleep as a Window of Cardiometabolic Health: The Potential of Digital Sleep and Circadian Biomarkers. Digit. Health 2025, 11, 20552076241288724. [Google Scholar] [CrossRef]
- Kim, J.-K.; Mun, S.; Lee, S. Detection and Analysis of Circadian Biomarkers for Metabolic Syndrome Using Wearable Data: Cross-Sectional Study. JMIR Med. Inform. 2025, 13, e69328. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Nino, M.E. Operationalizing Chronic Inflammation: An Endotype-to-Care Framework for Precision and Equity. Clin. Pract. 2025, 15, 233. https://doi.org/10.3390/clinpract15120233
Ramos-Nino ME. Operationalizing Chronic Inflammation: An Endotype-to-Care Framework for Precision and Equity. Clinics and Practice. 2025; 15(12):233. https://doi.org/10.3390/clinpract15120233
Chicago/Turabian StyleRamos-Nino, Maria E. 2025. "Operationalizing Chronic Inflammation: An Endotype-to-Care Framework for Precision and Equity" Clinics and Practice 15, no. 12: 233. https://doi.org/10.3390/clinpract15120233
APA StyleRamos-Nino, M. E. (2025). Operationalizing Chronic Inflammation: An Endotype-to-Care Framework for Precision and Equity. Clinics and Practice, 15(12), 233. https://doi.org/10.3390/clinpract15120233

