Evaluating the Impact of Maternal Lipid Profiles on Fetal Cardiac Function at Mid-Gestation: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Legal and Ethical Considerations
2.2. Inclusion Criteria and Study Groups
2.3. Study Variables
2.4. Fetal Echocardiographic Assessments
2.5. Birth Outcomes
2.6. Group Classification
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Analysis of Findings
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendis, S.; Graham, I.; Narula, J. Addressing the Global Burden of Cardiovascular Diseases; Need for Scalable and Sustainable Frameworks. Glob. Heart 2022, 17, 48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mandy, M.; Nyirenda, M. Developmental Origins of Health and Disease: The relevance to developing nations. Int. Health 2018, 10, 66–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wild, R.; Feingold, K.R. Effect of Pregnancy on Lipid Metabolism and Lipoprotein Levels. In Endotext [Internet].; [Updated 3 March 2023]; MDText.com, Inc.: South Dartmouth, MA, USA, 2000; Available online: https://www.ncbi.nlm.nih.gov/books/NBK498654/ (accessed on 21 September 2024).
- Herrera, E. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development—A review. Placenta 2002, 23 (Suppl. A), S9–S19. [Google Scholar] [CrossRef] [PubMed]
- Mulder, J.W.C.M.; Kusters, D.M.; Roeters van Lennep, J.E.; Hutten, B.A. Lipid metabolism during pregnancy: Consequences for mother and child. Curr. Opin. Lipidol. 2024, 35, 133–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furse, S.; Fernandez-Twinn, D.S.; Chiarugi, D.; Koulman, A.; Ozanne, S.E. Lipid Metabolism Is Dysregulated before, during and after Pregnancy in a Mouse Model of Gestational Diabetes. Int. J. Mol. Sci. 2021, 22, 7452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abu-Awwad, S.A.; Craina, M.; Boscu, L.; Bernad, E.; Ciordas, P.D.; Marian, C.; Iurciuc, M.; Abu-Awwad, A.; Iurciuc, S.; Bernad, B.; et al. Lipid Profile Variations in Pregnancies with and without Cardiovascular Risk: Consequences for Both Mother and Newborn. Children 2023, 10, 1521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Q.; Chen, H.; Xi, F.; Sagnelli, M.; Zhao, B.; Chen, Y.; Yang, M.; Xu, D.; Jiang, Y.; Chen, G.; et al. Association between maternal blood lipids levels during pregnancy and risk of small-for-gestational-age infants. Sci. Rep. 2020, 10, 19865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, Z.; Luo, S.; Cui, J.; Tang, Y.; Huang, H.; Ding, G. Research Progress of Maternal Metabolism on Cardiac Development and Function in Offspring. Nutrients 2023, 15, 3388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartels, Ä.; O’Donoghue, K. Cholesterol in pregnancy: A review of knowns and unknowns. Obstet. Med. 2011, 4, 147–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, S.M.; Zhang, H.Q.; Li, C.; Zhang, C.; Yu, J.L.; Wu, Y.T.; Huang, H.F. Maternal lipid profile during early pregnancy and birth weight: A retrospective study. Front. Endocrinol. 2022, 13, 951871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, W.; Wang, M.; Bian, J.; Ding, J.; Liu, W.; Gu, X. Evaluation of fetal cardiac morphology and function by fetal heart quantification technique in the normal second and third trimesters. Transl. Pediatr. 2024, 13, 1106–1118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, W.; Liu, J.F.; Yin, H.; Wang, L.; Zhang, G.; Song, L.L.; Song, Y. Evaluation of fetal cardiac function in fetal growth restriction via fetal HQ analysis based on two-dimensional STI. J. Obstet. Gynaecol. Res. 2023, 49, 1514–1524. [Google Scholar] [CrossRef] [PubMed]
- Sławiński, G.; Hawryszko, M.; Liżewska-Springer, A.; Nabiałek-Trojanowska, I.; Lewicka, E. Global Longitudinal Strain in Cardio-Oncology: A Review. Cancers 2023, 15, 986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poornima, I.G.; Indaram, M.; Ross, J.D.; Agarwala, A.; Wild, R.A. Hyperlipidemia and risk for preclampsia. J. Clin. Lipidol. 2022, 16, 253–260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, W.Y.; Lin, S.L.; Hou, R.L.; Chen, X.Y.; Han, T.; Jin, Y.; Tang, L.; Zhu, Z.W.; Zhao, Z.Y. Associations between maternal lipid profile and pregnancy complications and perinatal outcomes: A population-based study from China. BMC Pregnancy Childbirth 2016, 16, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kereliuk, S.M.; Brawerman, G.M.; Dolinsky, V.W. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int. J. Mol. Sci. 2017, 18, 1451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cade, W.; Levy, P.; Tinius, R.; Patel, M.D.; Choudhry, S.; Holland, M.R.; Singh, G.K.; Cahill, A.G. Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr. Res. 2017, 82, 768–775. [Google Scholar] [CrossRef]
- Higa, R.; Leonardi, M.L.; Jawerbaum, A. Intrauterine Programming of Cardiovascular Diseases in Maternal Diabetes. Front. Physiol. 2021, 12, 760251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domínguez-Gallardo, C.; Ginjaume-García, N.; Ullmo, J.; Fernández-Oliva, A.; Parra, J.; Vázquez, A.; Cruz-Lemini, M.; Llurba, E. Longitudinal Behavior of Left-Ventricular Strain in Fetal Growth Restriction. Diagnostics 2023, 13, 1252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ishii, T.; McElhinney, D.B.; Harrild, D.M.; Marcus, E.N.; Sahn, D.J.; Truong, U.; Tworetzky, W. Circumferential and longitudinal ventricular strain in the normal human fetus. J. Am. Soc. Echocardiogr. 2012, 25, 105–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Änghagen, O.; Engvall, J.; Gottvall, T.; Nelson, N.; Nylander, E.; Bang, P. Developmental Differences in Left Ventricular Strain in IUGR vs. Control Children the First Three Months of Life. Pediatr. Cardiol. 2022, 43, 1286–1297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ozawa, K.; Davey, M.G.; Tian, Z.; Hornick, M.A.; Mejaddam, A.Y.; McGovern, P.E.; Flake, A.W.; Rychik, J. Fetal echocardiographic assessment of cardiovascular impact of prolonged support on EXTrauterine Environment for Neonatal Development (EXTEND) system. Ultrasound Obstet. Gynecol. 2020, 55, 516–522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domínguez-Gallardo, C.; Ginjaume-García, N.; Ullmo, J.; Parra, J.; Vázquez, A.; Cruz-Lemini, M.; Llurba, E. Fetal Left Ventricle Function Evaluated by Two-Dimensional Speckle-Tracking Echocardiography across Clinical Stages of Severity in Growth-Restricted Fetuses. Diagnostics 2024, 14, 548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dargahpour Barough, M.; Tavares de Sousa, M.; Hergert, B.; Fischer, R.; Huber, L.; Seliger, J.M.; Kaul, M.G.; Adam, G.; Herrmann, J.; Bannas, P.; et al. Myocardial strain assessment in the human fetus by cardiac MRI using Doppler ultrasound gating and feature tracking. Eur. Radiol. 2024, 34, 4920–4927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Oostrum, N.H.M.; de Vet, C.M.; Clur, S.B.; van der Woude, D.A.A.; van den Heuvel, E.R.; Oei, S.G.; van Laar, J.O.E.H. Fetal myocardial deformation measured with two-dimensional speckle-tracking echocardiography: Longitudinal prospective cohort study of 124 healthy fetuses. Ultrasound Obstet. Gynecol. 2022, 59, 651–659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yovera, L.; Zaharia, M.; Jachymski, T.; Velicu-Scraba, O.; Coronel, C.; de Paco Matallana, C.; Georgiopoulos, G.; Nicolaides, K.H.; Charakida, M. Impact of gestational diabetes mellitus on fetal cardiac morphology and function: Cohort comparison of second- and third-trimester fetuses. Ultrasound Obstet. Gynecol. 2021, 57, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Large Differences in Share of Caesarean Births [Internet]. European Commission: Brussels. 17 December 2019. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20191217-1 (accessed on 21 September 2024).
- Blaga, O.M.; Hentes, E.; Ungureanu, M.I.; Forray, A.I. Predictors of planned caesarean section births in a sample of Romanian women. Int. J. Health Plan. Manag. 2022, 37, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, A.J.; Levy, P.T.; Bates, M.L.; McNamara, P.J.; Nuyt, A.M.; Goss, K.N. Impact of the Vulnerable Preterm Heart and Circulation on Adult Cardiovascular Disease Risk. Hypertension 2020, 76, 1028–1037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variables (Mean ± SD) | Group A (n = 48) | Group B (n = 28) | p-Value |
---|---|---|---|
Maternal age, years | 34.67 ± 4.12 | 34.29 ± 4.07 | 0.806 |
Height (cm) | 164.00 ± 5.35 | 167.14 ± 4.88 | 0.239 |
Weight (kg) | 72.25 ± 12.26 | 89.43 ± 9.17 | 0.003 |
BMI (kg/m2) | 27.01 ± 2.40 | 31.94 ± 2.80 | <0.001 |
Variables (Mean ± SD) | Group A (n = 48) | Group B (n = 28) | p-Value |
---|---|---|---|
Total Cholesterol (mg/dL) | 137.75 ± 8.58 | 162.29 ± 11.80 | <0.001 |
LDL Cholesterol (mg/dL) | 119.83 ± 8.67 | 146.14 ± 13.38 | <0.001 |
HDL Cholesterol (mg/dL) | 40.08 ± 2.96 | 37.94 ± 2.10 | 0.091 |
Triglycerides (mg/dL) | 131.42 ± 10.57 | 163.43 ± 11.34 | <0.001 |
Variables (Mean ± SD) | Group A (n = 48) | Group B (n = 28) | p-Value |
---|---|---|---|
Gestational Age at Assessment (weeks) | 22.75 ± 1.82 | 22.86 ± 1.86 | 0.882 |
LV Global Longitudinal Strain (%) | –26.14 ± 5.92 | –19.86 ± 6.83 | 0.017 |
RV Global Longitudinal Strain (%) | –23.17 ± 6.52 | –17.71 ± 6.08 | 0.064 |
LV Fractional Area Change (%) | 47.83 ± 9.68 | 38.71 ± 10.60 | 0.041 |
RV Fractional Area Change (%) | 45.58 ± 9.27 | 38.14 ± 9.91 | 0.090 |
Ejection Fraction (%) | 61.96 ± 6.12 | 55.14 ± 6.82 | 0.031 |
Stroke Volume (mL) | 0.53 ± 0.22 | 0.96 ± 0.62 | 0.049 |
Cardiac Output (mL/min) | 56.18 ± 16.80 | 106.24 ± 72.37 | 0.038 |
Maternal Variable | Correlation Coefficient (r) | p-Value |
---|---|---|
Triglycerides | 0.536 | 0.019 |
LDL Cholesterol | 0.493 | 0.033 |
HDL Cholesterol | −0.376 | 0.116 |
BMI | 0.57 | 0.012 |
Variables | Unstandardized Coefficient (β) | Standard Error | p-Value |
---|---|---|---|
Triglycerides | 0.45 | 0.17 | 0.021 |
BMI | 0.39 | 0.17 | 0.038 |
Maternal Age | –0.05 | 0.19 | 0.795 |
(Constant) | –41.28 | 7.8 | <0.001 |
Variables | Group A (n = 48) | Group B (n = 28) | p-Value |
---|---|---|---|
Gestational Age at Birth (weeks) | 37.75 ± 4.00 | 37.86 ± 2.12 | 0.937 |
Preterm proportions (n, %) | 10 (20.8%) | 9 (32.1%) | 0.297 |
Birth Weight (g) | 3398 ± 358 | 3252 ± 460 | 0.493 |
Apgar Score at 1 min | 8.58 ± 0.67 | 8.29 ± 0.76 | 0.334 |
Apgar Score at 5 min | 9.25 ± 0.45 | 9.14 ± 0.38 | 0.592 |
Cesarean Delivery | 36 (75.0%) | 24 (85.7%) | 0.608 |
Maternal BMI Category | n | LV Global Longitudinal Strain (%) | LV Fractional Area Change (%) | p-Value (LV GLS) | p-Value (LV FAC) |
---|---|---|---|---|---|
Normal (18.5–24.99) | 40 | −25.84 ± 4.98 | 48.29 ± 8.47 | - | - |
Overweight (25–29.99) | 24 | −23.67 ± 5.23 | 45.03 ± 7.92 | 0.276 | 0.157 |
Obese (≥30) | 12 | −18.92 ± 6.04 | 39.84 ± 9.36 | 0.017 | 0.043 |
Maternal Triglyceride Levels (mg/dL) | n | LV Global Longitudinal Strain (%) | LV Fractional Area Change (%) | p-Value (LV GLS) | p-Value (LV FAC) |
---|---|---|---|---|---|
<150 | 48 | −26.34 ± 5.12 | 49.13 ± 8.23 | - | - |
150–300 | 17 | −22.47 ± 6.19 | 43.79 ± 8.76 | 0.036 | 0.022 |
>300 | 11 | −16.89 ± 7.41 | 36.87 ± 10.03 | 0.008 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belovan, B.; Popa, Z.L.; Citu, C.; Citu, I.M.; Sas, I.; Ratiu, A. Evaluating the Impact of Maternal Lipid Profiles on Fetal Cardiac Function at Mid-Gestation: An Observational Study. Clin. Pract. 2024, 14, 2590-2600. https://doi.org/10.3390/clinpract14060204
Belovan B, Popa ZL, Citu C, Citu IM, Sas I, Ratiu A. Evaluating the Impact of Maternal Lipid Profiles on Fetal Cardiac Function at Mid-Gestation: An Observational Study. Clinics and Practice. 2024; 14(6):2590-2600. https://doi.org/10.3390/clinpract14060204
Chicago/Turabian StyleBelovan, Biliana, Zoran Laurentiu Popa, Cosmin Citu, Ioana Mihaela Citu, Ioan Sas, and Adrian Ratiu. 2024. "Evaluating the Impact of Maternal Lipid Profiles on Fetal Cardiac Function at Mid-Gestation: An Observational Study" Clinics and Practice 14, no. 6: 2590-2600. https://doi.org/10.3390/clinpract14060204
APA StyleBelovan, B., Popa, Z. L., Citu, C., Citu, I. M., Sas, I., & Ratiu, A. (2024). Evaluating the Impact of Maternal Lipid Profiles on Fetal Cardiac Function at Mid-Gestation: An Observational Study. Clinics and Practice, 14(6), 2590-2600. https://doi.org/10.3390/clinpract14060204