The First Comprehensive Evaluation of Immuno-Inflammatory Markers for Prognosis in Esophageal Cancer Patients: A South Asian Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sample Size, Inclusion, and Exclusion Criteria
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Patient Outcomes and Associations
3.3. Survival Analysis and Prognostic Factors for Overall Survival in Esophageal Cancer Patients
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deo, S.; Sharma, J.; Kumar, S. GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Ann. Surg. Oncol. 2022, 29, 6497–6500. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, Z.; Deng, B.; Mo, M.; Wang, H.; Chen, K.; Wu, H.; Ye, T.; Wang, B.; Ai, D. Epidemiological landscape of esophageal cancer in Asia: Results from GLOBOCAN 2020. Thorac. Cancer 2023, 14, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, X.; Cao, S.; Dong, X.; Rao, S.; Cai, K. Understanding esophageal cancer: The challenges and opportunities for the next decade. Front. Oncol. 2020, 10, 1727. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Zheng, Y.; Gao, Y.; He, S.; Li, H.; Zou, K.; Li, N.; Tian, J.; Chen, W. Esophageal cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2021, 33, 535. [Google Scholar] [CrossRef] [PubMed]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, W.; Cai, S.; Zhang, F.; Shao, F.; Zhang, G.; Liu, T.; Tan, F.; Li, N.; Xue, Q. Systemic immune-inflammation index (SII) is useful to predict survival outcomes in patients with surgically resected esophageal squamous cell carcinoma. J. Cancer 2019, 10, 3188. [Google Scholar] [CrossRef]
- Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Šeruga, B.; Ocana, A.; Tannock, I.F.; Amir, E. Prognostic role of platelet to lymphocyte ratio in solid tumors: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef]
- Stotz, M.; Gerger, A.; Eisner, F.; Szkandera, J.; Loibner, H.; Ress, A.; Kornprat, P.; AlZoughbi, W.; Seggewies, F.; Lackner, C. Erratum: Increased neutrophil-lymphocyte ratio is a poor prognostic factor in patients with primary operable as well as inoperable pancreatic cancer. Br. J. Cancer 2013, 109, 2026. [Google Scholar] [CrossRef]
- Takeuchi, H.; Abe, M.; Takumi, Y.; Hashimoto, T.; Miyawaki, M.; Okamoto, T.; Sugio, K. Elevated red cell distribution width to platelet count ratio predicts poor prognosis in patients with breast cancer. Sci. Rep. 2019, 9, 3033. [Google Scholar] [CrossRef]
- Feng, J.-F.; Huang, Y.; Chen, Q.-X. Preoperative platelet lymphocyte ratio (PLR) is superior to neutrophil lymphocyte ratio (NLR) as a predictive factor in patients with esophageal squamous cell carcinoma. World J. Surg. Oncol. 2014, 12, 1–6. [Google Scholar] [CrossRef]
- Sharaiha, R.Z.; Halazun, K.J.; Mirza, F.; Port, J.L.; Lee, P.C.; Neugut, A.I.; Altorki, N.K.; Abrams, J.A. Elevated preoperative neutrophil: Lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Ann. Surg. Oncol. 2011, 18, 3362–3369. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Tsujimoto, H.; Yaguchi, Y.; Kishi, Y.; Ueno, H. Prognostic significance of systemic inflammatory markers in esophageal cancer: Systematic review and meta-analysis. Ann. Gastroenterol. Surg. 2020, 4, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, T.; Dai, Y.; Li, J. Preoperative systemic inflammation score (SIS) is superior to neutrophil to lymphocyte ratio (NLR) as a predicting indicator in patients with esophageal squamous cell carcinoma. BMC Cancer 2019, 19, 721. [Google Scholar] [CrossRef] [PubMed]
- Han, L.-H.; Jia, Y.-B.; Song, Q.-X.; Wang, J.-B.; Wang, N.-N.; Cheng, Y.-F. Prognostic significance of preoperative lymphocyte-monocyte ratio in patients with resectable esophageal squamous cell carcinoma. Asian Pac. J. Cancer Prev. 2015, 16, 2245–2250. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, S.; Wu, J.-z.; Song, Q. Clinical and prognostic significance of perioperative change in red cell distribution width in patients with esophageal squamous cell carcinoma. BMC Cancer 2023, 23, 319. [Google Scholar] [CrossRef]
- Proctor, M.; Morrison, D.; Talwar, D.; Balmer, S.; O’reilly, D.; Foulis, A.; Horgan, P.; McMillan, D. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: A Glasgow Inflammation Outcome Study. Br. J. Cancer 2011, 104, 726–734. [Google Scholar] [CrossRef]
- Aoyama, T.; Segami, K.; Nagasawa, S.; Tamagawa, H.; Tamagawa, A.; Maezawa, Y.; Kano, K.; Nakazono, M.; Oshima, T.; Yukawa, N. The Clinical Impacts of Neutrophil to Lymphocyte Ratio for Esophageal Cancer Patients Who Receive Curative Treatment. Indian J. Surg. 2022, 1–8. [Google Scholar] [CrossRef]
- Fan, H.; Shao, Z.-Y.; Xiao, Y.-Y.; Xie, Z.-H.; Chen, W.; Xie, H.; Qin, G.-Y.; Zhao, N.-Q. Comparison of the Glasgow Prognostic Score (GPS) and the modified Glasgow Prognostic Score (mGPS) in evaluating the prognosis of patients with operable and inoperable non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2016, 142, 1285–1297. [Google Scholar] [CrossRef]
- Zhang, H.; Shang, X.; Ren, P.; Gong, L.; Ahmed, A.; Ma, Z.; Ma, R.; Wu, X.; Xiao, X.; Jiang, H. The predictive value of a preoperative systemic immune-inflammation index and prognostic nutritional index in patients with esophageal squamous cell carcinoma. J. Cell. Physiol. 2019, 234, 1794–1802. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, D.; Song, H.; Qiu, B.; Tian, D.; Li, Z.; Ji, Y.; Wang, J. Inflammation and nutrition-based biomarkers in the prognosis of oesophageal cancer: A systematic review and meta-analysis. BMJ Open 2021, 11, e048324. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-J.; Lee, C.-T.; Tsai, Y.-N.; Tseng, C.-M.; Chen, T.-H.; Hsu, M.-H.; Wang, C.-C.; Wang, W.-L. Prognostic significance of systemic inflammatory response markers in patients with superficial esophageal squamous cell carcinomas. Sci. Rep. 2022, 12, 18241. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xiong, F.; Yi, S.; Wang, S. Prognostic and clinicopathologic significance of neutrophil-to-lymphocyte ratio in esophageal cancer: An update meta-analysis. Technol. Cancer Res. Treat. 2022, 21, 15330338211070140. [Google Scholar] [CrossRef]
- Yoneda, A.; Ogata, R.; Ryu, S.; Yoshino, K.; Fukui, S.; Kugiyama, T.; Kitasato, A.; Sugiyama, N.; Takeshita, H.; Minami, S. Prognostic value of systemic inflammation score in patients with esophageal cancer. Ann. Med. Surg. 2024, 86, 3852–3855. [Google Scholar] [CrossRef]
- Aoyama, T.; Ju, M.; Komori, K.; Tamagawa, H.; Tamagawa, A.; Onodera, A.; Morita, J.; Hashimoto, I.; Ishiguro, T.; Endo, K. The platelet-to-lymphocyte ratio is an independent prognostic factor for patients with esophageal cancer who receive curative treatment. In Vivo 2022, 36, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Lin, X.; Chen, Y.; Chang, Q.; Chen, G.; Li, C.; Zhang, H.; Cui, Z.; Liang, B.; Jiang, W. Preoperative blood-routine markers and prognosis of esophageal squamous cell carcinoma: The Fujian prospective investigation of cancer (FIESTA) study. Oncotarget 2017, 8, 23841. [Google Scholar] [CrossRef]
- Cai, G.; Yu, J.; Meng, X. Predicting prognosis and adverse events by hematologic markers in patients with locally advanced esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy. Cancer Manag. Res. 2020, 12, 8497–8507. [Google Scholar] [CrossRef]
Inflammatory Markers | AUC (95% CI) | Cut-Off Values | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|
Neutrophil to lymphocyte ratio (NLR) | 0.56 (0.46–0.65) | 3.6 | 54.0 | 66.1 |
Platelet to lymphocyte ratio (PLR) | 0.52 (0.41–0.60) | 198.4 | 44.8 | 64.4 |
Lymphocyte monocyte ratio (LMR) | 0.53 (0.43–0.63) | 4.3 | 66.7 | 47.5 |
C-reactive protein albumin ratio (CAR) | 0.57 (0.47–0.67) | 0.17 | 81.6 | 33.9 |
RDW to platelet ratio (RPR) | 0.58 (0.48–0.67) | 5.2 | 75.9 | 42.4 |
Systemic immune inflammation (SII) index | 0.58 (0.48–0.67) | 858.0 | 69.0 | 52.5 |
Systemic inflammation score (SIS) | 0.57 (0.47–0.66) | 2 | 62.1 | 52.5 |
Modified Glasgow prognostic score (mGPS) | 0.56 (0.46–0.65) | 2 | 39.1 | 72.9 |
Characteristics | Total n (%) | Alive (n = 59) | Expired (n = 87) | p-Value * |
---|---|---|---|---|
Age in years, Median (Q1–Q3) | 45 (35–58) | 48 (35–60) | 0.875 | |
Gender | ||||
Male | 69 (47.3) | 32 (54.2) | 37 (42.5) | 0.164 |
Female | 77 (52.7) | 27 (45.8) | 50 (57.5) | |
Histopathology | ||||
Adenocarcinoma | 39 (26.7) | 17 (28.8) | 22 (25.3) | 0.637 |
Squamous cell carcinoma | 107 (73.3) | 42 (71.2) | 65 (74.7) | |
Tumor site | ||||
Upper thoracic | 13 (8.9) | 5 (8.5) | 8 (9.2) | 0.778 |
Mid thoracic | 54 (37.0) | 20 (33.9) | 34 (39.1) | |
Lower thoracic involving the junction | 79 (54.1) | 34 (57.6) | 45 (51.7) | |
Grade of differentiation | ||||
Well differentiated | 15 (10.3) | 8 (13.6) | 7 (8.0) | 0.155 |
Moderately differentiated | 95 (65.1) | 41 (69.5) | 54 (62.1) | |
Poorly differentiated | 36 (24.7) | 10 (16.9) | 26 (29.9) | |
Tumor length | ||||
<5 cm | 44 (30.1) | 21 (35.6) | 23 (26.4) | 0.031 |
5–10 cm | 78 (53.4) | 34 (57.6) | 44 (50.6) | |
>10 cm | 24 (16.4) | 4 (6.8) | 20 (23.0) | |
cT stage | ||||
T1–T2 | 19 (13.0) | 13 (22.0) | 6 (6.9) | 0.021 |
T3 | 63 (43.2) | 25 (42.4) | 38 (43.7) | |
T4 | 64 (43.8) | 21 (35.6) | 43 (49.4) | |
cN stage | ||||
N0 | 13 (8.9) | 10 (16.9) | 3 (3.4) | <0.001 |
N1 | 51 (34.9) | 29 (49.2) | 22 (25.3) | |
N2 | 44 (30.1) | 12 (20.3) | 32 (36.8) | |
N3 | 38 (26.0) | 8 (13.6) | 30 (34.5) | |
M stage | ||||
M0 | 103 (70.5) | 53 (89.8) | 50 (57.5) | <0.001 |
M1 | 43 (29.5) | 6 (10.2) | 37 (42.5) | |
Clinical stage | ||||
I–II | 12 (8.2) | 7 (11.9) | 5 (5.7) | 0.012 |
III | 46 (31.5) | 25 (42.4) | 21 (24.1) | |
IV | 88 (60.3) | 27 (45.8) | 61 (70.1) | |
Surgery | ||||
Performed | 41 (28.1) | 25 (42.4) | 16 (18.4) | 0.002 |
Not performed | 105 (71.9) | 34 (57.6) | 71 (81.6) | |
Neutrophil to lymphocyte ratio (NLR) | ||||
<3.6 | 79 (54.1) | 39 (66.1) | 40 (46.0) | 0.017 |
≥3.6 | 67 (45.9) | 20 (33.9) | 47 (54.0) | |
Platelet to lymphocyte ratio (PLR) | ||||
<198.4 | 86 (58.9) | 38 (64.4) | 48 (55.2) | 0.266 |
≥198.4 | 60 (41.1) | 21 (35.6) | 39 (44.8) | |
Lymphocyte monocyte ratio (LMR) | ||||
<4.3 | 89 (61.0) | 31 (52.5) | 58 (66.7) | 0.086 |
≥4.3 | 57 (39.0) | 28 (47.5) | 29 (33.3) | |
C-reactive protein albumin ratio (CAR) | ||||
<0.17 | 36 (24.7) | 20 (33.9) | 16 (18.4) | 0.033 |
≥0.17 | 110 (75.3) | 39 (66.1) | 71 (81.6) | |
RDW to platelet ratio (RPR) | ||||
<5.2 | 46 (31.5) | 25 (42.4) | 21 (24.1) | 0.020 |
≥5.2 | 100 (68.5) | 34 (57.6) | 66 (75.9) | |
Systemic immune inflammation (SII) index | ||||
<858.0 | 58 (39.7) | 31 (52.5) | 27 (31.0) | 0.009 |
≥858.0 | 88 (60.3) | 28 (47.5) | 60 (69.0) | |
Systemic inflammation score (SIS) | ||||
0 | 6 (4.1) | 4 (6.8) | 2 (2.3) | 0.158 |
1 | 58 (39.7) | 27 (45.8) | 31 (35.6) | |
2 | 82 (56.2) | 28 (47.5) | 54 (62.1) | |
Modified Glasgow prognostic score (mGPS) | ||||
0 | 37 (25.3) | 20 (33.9) | 17 (19.5) | 0.112 |
1 | 59 (40.4) | 23 (39.0) | 36 (41.4) | |
2 | 50 (34.2) | 16 (27.1) | 34 (39.1) |
Characteristics | Survival | Univariate | Multivariate | ||
---|---|---|---|---|---|
(%) | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age in years | 0.99 (0.98–1.01) | 0.905 | - | ||
Gender | |||||
Male | 46.4 | Ref | |||
Female | 35.1 | 0.93 (0.60–1.44) | 0.744 | - | |
Histopathology | |||||
Adenocarcinoma | 43.6 | Ref | Ref | ||
Squamous cell carcinoma | 39.3 | 0.67 (0.41–1.09) | 0.108 | 0.74 (0.40–1.35) | 0.327 |
Grade of differentiation | |||||
Well differentiated | 53.3 | Ref | Ref | ||
Moderately differentiated | 43.2 | 1.50 (0.68–3.31) | 0.314 | 1.22 (0.52–2.82) | 0.648 |
Poorly differentiated | 27.8 | 1.80 (0.77–4.21) | 0.175 | 0.95 (0.37–2.45) | 0.920 |
Tumor length | |||||
<5 cm | 47.7 | Ref | Ref | ||
5–10 cm | 43.6 | 1.08 (0.64–1.81) | 0.757 | 0.95 (0.54–1.67) | 0.859 |
>10 cm | 16.7 | 2.09 (1.14–3.84) | 0.016 | 1.23 (0.62–2.45) | 0.551 |
cT stage | |||||
T1–T2 | 68.4 | Ref | Ref | ||
T3 | 39.7 | 1.91 (0.80–4.54) | 0.145 | 1.76 (0.67–4.56) | 0.247 |
T4 | 32.8 | 2.91 (1.23–6.88) | 0.015 | 1.82 (0.66–5.03) | 0.248 |
cN stage | |||||
N0 | 76.9 | Ref | Ref | ||
N1 | 56.9 | 1.03 (0.31–3.49) | 0.957 | 0.50 (0.14–1.82) | 0.298 |
N2 | 27.3 | 1.86 (0.56–6.14) | 0.308 | 0.52 (0.14–2.01) | 0.347 |
N3 | 21.1 | 2.17 (0.65–7.21) | 0.204 | 0.52 (0.14–2.01) | 0.346 |
M stage | |||||
M0 | 51.5 | Ref | Ref | ||
M1 | 14.0 | 4.35 (2.69–7.02) | <0.001 | 3.09 (1.66–5.73) | <0.001 |
Clinical stage | |||||
I–II | 58.3 | Ref | |||
III | 54.3 | 0.61 (0.23–1.65) | 0.335 | - | |
IV | 30.7 | 1.16 (0.46–2.91) | 0.749 | ||
Surgery | |||||
Performed | 61.0 | Ref | Ref | ||
Not performed | 32.4 | 2.86 (1.65–4.95) | <0.001 | 2.27 (1.21–4.26) | 0.011 |
Neutrophil to lymphocyte ratio (NLR) | |||||
<3.6 | 49.4 | Ref | |||
≥3.6 | 29.9 | 1.09 (0.71–1.68) | 0.686 | - | |
Platelet to lymphocyte ratio (PLR) | |||||
<198.4 | 44.2 | Ref | |||
≥198.4 | 35.0 | 1.01 (0.65–1.56) | 0.971 | - | |
Lymphocyte monocyte ratio (LMR) | |||||
≥4.3 | 34.8 | Ref | |||
<4.3 | 49.1 | 1.13 (0.72–1.78) | 0.600 | - | |
C-reactive protein albumin ratio (CAR) | |||||
<0.17 | 55.6 | Ref | Ref | ||
≥0.17 | 35.5 | 1.62 (0.94–2.79) | 0.084 | 1.14 (0.60–2.17) | 0.682 |
RDW to platelet ratio (RPR) | |||||
<5.2 | 54.3 | Ref | Ref | ||
≥5.2 | 34.0 | 1.55 (0.94–2.55) | 0.080 | 1.02 (0.57–1.83) | 0.947 |
Systemic immune inflammation (SII) index | |||||
<858.0 | 53.4 | Ref | Ref | ||
≥858.0 | 31.8 | 1.71 (1.08–2.71) | 0.022 | 1.41 (0.78–2.54) | 0.257 |
Systemic inflammation score (SIS) | |||||
0 | 66.7 | Ref | |||
1 | 46.6 | 1.55 (0.37–6.53) | 0.545 | - | |
2 | 34.1 | 2.07 (0.50–8.55) | 0.312 | ||
Modified Glasgow prognostic score (mGPS) | |||||
0 | 54.1 | Ref | |||
1 | 39.0 | 1.34 (0.74–2.39) | 0.326 | - | |
2 | 32.0 | 1.25 (0.69–2.26) | 0.448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, S.; Abbasi, W.A.; Jalil, H.A.; Mughal, S.; Quraishy, M.S. The First Comprehensive Evaluation of Immuno-Inflammatory Markers for Prognosis in Esophageal Cancer Patients: A South Asian Perspective. Clin. Pract. 2024, 14, 2071-2079. https://doi.org/10.3390/clinpract14050163
Qureshi S, Abbasi WA, Jalil HA, Mughal S, Quraishy MS. The First Comprehensive Evaluation of Immuno-Inflammatory Markers for Prognosis in Esophageal Cancer Patients: A South Asian Perspective. Clinics and Practice. 2024; 14(5):2071-2079. https://doi.org/10.3390/clinpract14050163
Chicago/Turabian StyleQureshi, Sajida, Waqas Ahmad Abbasi, Hira Abdul Jalil, Saba Mughal, and Muhammad Saeed Quraishy. 2024. "The First Comprehensive Evaluation of Immuno-Inflammatory Markers for Prognosis in Esophageal Cancer Patients: A South Asian Perspective" Clinics and Practice 14, no. 5: 2071-2079. https://doi.org/10.3390/clinpract14050163
APA StyleQureshi, S., Abbasi, W. A., Jalil, H. A., Mughal, S., & Quraishy, M. S. (2024). The First Comprehensive Evaluation of Immuno-Inflammatory Markers for Prognosis in Esophageal Cancer Patients: A South Asian Perspective. Clinics and Practice, 14(5), 2071-2079. https://doi.org/10.3390/clinpract14050163