Assessment of 2′-Fucosyllactose and Lacto-N-Neotetraose Solution as an Irrigant in E. faecalis-Infected Root Canals: An In Vitro Study
Abstract
:1. Introduction
- Fucosylates (35–50%);
- Neutral non-fucosylates (42–55%);
- Sialylates (12–14%) [33].
2. Materials and Methods
2.1. Study Design
2.2. Identification, Culturing, and Preparation of the Bacterium
2.3. Preparation of the HMO Solution
2.4. Sample Preparation
- Group A (Case Group) n = 7: **
- -
- E. faecalis was inoculated into the canal at a concentration of 3 McF.
- -
- The canal of each sample was irrigated with 5 mL of the case solution containing HMO using a 30 G needle positioned at the anatomical apex. The HMO solution was delivered at the rate of 1 mL/30″. An extracanal lavage was performed with the same syringe, followed by canal irrigation with physiological saline. The canals were dried with paper points.
- Group B (Control Group) n = 7: **
- -
- E. faecalis was inoculated into the canal at a concentration of 3 McF.
- -
- The canals of the samples were irrigated with 5 mL of 5% NaOCl using a 30 G needle positioned at the apical foramen. The irrigant was activated with sonic activation (Endoactivator®, Dentsply Sirona, Ballaigues, Switzerland). An extracanal lavage was performed with the same syringe, followed by canal irrigation with physiological saline. The canals were dried with paper points.
- Group C (Case Group) n = 6: **
- -
- E. faecalis was inoculated into the canal at a concentration of 1 McF.
- -
- The canal of each sample was irrigated with 3 mL of the case solution containing HMO using a 30 G needle positioned at the anatomical apex. The HMO solution was delivered at the rate of 3 mL/1″. An extracanal lavage was performed with the same syringe, followed by canal irrigation with physiological saline. The canals were dried with paper points.
- Group D (Case Group) n = 6: **
- -
- E. faecalis was inoculated into the canal at a concentration of 1 McF.
- -
- The canal of each sample was irrigated with the case solution using a 30 G needle positioned at the anatomical apex. The HMO solution was delivered at the rate of 3 mL/2″. An extracanal lavage was performed with the same syringe, followed by canal irrigation with physiological saline. The canals were dried with paper points.
- Group E (Control Group) n = 6: **
- -
- E. faecalis was inoculated into the canal at a concentration of 1 McF.
- -
- The canals of the samples were irrigated with 1 mL of 5% NaOCl using a 30 G needle positioned at the apical foramen, and the irrigant was activated with sonic activation (Endoactivator®, Dentsply Sirona, Ballaigues, Switzerland). An extracanal lavage was performed with the same syringe, followed by canal irrigation with physiological saline. The canals were dried with paper points.
2.5. Statistical Analysis
3. Results
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schilder, H. Cleaning and shaping the root canal. Dent. Clin. N. Am. 1974, 18, 269–296. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; Peters, O.A. Present status and future directions: Canal shaping. Int. Endod. J. 2022, 55, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Iandolo, A.; Amato, M.; Abdellatif, D.; Barbosa, A.F.A.; Pantaleo, G.; Blasi, A.; Franco, V.; Silva, E.J.N.L. Effect of different final irrigation protocols on pulp tissue dissolution from an isthmus model. Aust. Endod. J. 2021, 47, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Dutner, J.; Mines, P.; Anderson, A. Irrigation trends among American Association of Endodontists members: A web-based survey. J. Endod. 2012, 38, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Basrani, B.; Lemonie, C. Chlorhexidine gluconate. Aust. Endod. J. 2005, 31, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Hayashi, M.; Yoshino, F.; Tamura, M.; Yoshida, A.; Ibi, H.; Lee, M.C.; Ochiai, K.; Ogiso, B. Bactericidal effect of hydroxyl radicals generated from a low concentration hydrogen peroxide with ultrasound in endodontic treatment. J. Clin. Biochem. Nutr. 2014, 54, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Estrela, C.; Estrela, C.R.; Barbin, E.L.; Spano, J.C.; Marchesan, M.A.; Pecora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef]
- Denton, G. Chlorhexidine. In Disinfection, Sterilization and Preservation, 4th ed.; Block, S.S., Ed.; Lea and Febiger: Philadelphia, PA, USA, 1991. [Google Scholar]
- Puleio, F.; Bellezza, U.; Torre, A.; Giordano, F.; Lo Giudice, G. Apical Transportation of Apical Foramen by Different NiTi Alloy Systems: A Systematic Review. Appl. Sci. 2023, 13, 10555. [Google Scholar] [CrossRef]
- Fasoulas, A.; Boutsioukis, C.; Lambrianidis, T. Subcutaneous emphysema in patients undergoing root canal treatment: A systematic review of the factors affecting its development and management. Int. Endod. J. 2019, 52, 1586–1604. [Google Scholar] [CrossRef]
- Basrani, B. Endodontic Irrigation: Chemical Disinfection of the Root Canal System; Springer International Publishing: Cham, Switzerland, 2015; Volume 5, p. 105. [Google Scholar]
- Tosco, V.; Monterubbianesi, R.; Aranguren, J.; Memè, L.; Putignano, A.; Orsini, G. Evaluation of the Efficacy of Different Irrigation Systems on the Removal of Root Canal Smear Layer: A Scanning Electron Microscopic Study. Appl. Sci. 2023, 13, 149. [Google Scholar] [CrossRef]
- Martina, S.; Pisano, M.; Amato, A.; Abdellatif, D.; Iandolo, A. Modern rotary files in minimally invasive endodontics: A case report. Front. Biosci. 2021, 13, 299–304. [Google Scholar]
- Puleio, F.; Lizio, A.S.; Coppini, V.; Lo Giudice, R.; Lo Giudice, G. CBCT-Based Assessment of Vapor Lock Effects on Endodontic Disinfection. Appl. Sci. 2023, 13, 9542. [Google Scholar] [CrossRef]
- Distefano, S.; Cannarozzo, M.G.; Spagnuolo, G.; Bucci, M.B.; Lo Giudice, R. The “Dedicated” C.B.C.T. in Dentistry. Int. J. Environ. Res. Public Health 2023, 20, 5954. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, R.; Militi, A.; Nicita, F.; Bruno, G.; Tamà, C.; Lo Giudice, F.; Puleio, F.; Calapai, F.; Mannucci, C. Correlation between Oral Hygiene and IL-6 in Children. Dent. J. 2020, 8, 91. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Roças, I.N. Microbiology of endodontic infections. In Cohen’s Pathways of the Pulp, 11th ed.; Hargreaves, K.M., Berman, L.H., Eds.; Elsevier: St. Louis, MO, USA, 2016; p. 620. [Google Scholar]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.S.; Setchell, D.J.; Harty, F.J. Factors influencing the success of conventional root canal therapy—A five-year retrospective study. Int. Endod. J. 1993, 26, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Almadi, E.M.; Almohaimede, A.A. Natural products in endodontics. Saudi Med. J. 2018, 39, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Field, C.J. The immunological components of human milk and their effect on immune development in infants. J. Nutr. 2005, 135, 1–4. [Google Scholar] [CrossRef]
- Gopalakrishna, K.P.; Hand, T.W. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients 2020, 12, 823. [Google Scholar] [CrossRef]
- Aknouch, I.; Sridhar, A.; Freeze, E.; Giugliano, F.P.; van Keulen, B.J.; Romijn, M.; Calitz, C.; García-Rodríguez, I.; Mulder, L.; Wildenberg, M.E.; et al. Human milk inhibits some enveloped virus infections, including SARS-CoV-2, in an intestinal model. Life Sci. Alliance 2022, 5, e202201432. [Google Scholar] [CrossRef]
- Gan, J.; Robinson, R.C.; Wang, J.; Krishnakumar, N.; Manning, C.J.; Lor, Y.; Breck, M.; Barile, D.; German, J.B. Peptidomic profiling of human milk with LC-MS/MS reveals pH-specific proteolysis of milk proteins. Food Chem. 2019, 274, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Zheng, J.; Krishnakumar, N.; Goonatilleke, E.; Lebrilla, C.B.; Barile, D.; German, J.B. Selective Proteolysis of α-Lactalbumin by Endogenous Enzymes of Human Milk at Acidic pH. Mol. Nutr. Food Res. 2019, 63, e1900259. [Google Scholar] [CrossRef] [PubMed]
- Dallas, D.C.; Guerrero, A.; Khaldi, N.; Castillo, P.A.; Martin, W.F.; Smilowitz, J.T.; Bevins, C.L.; Barile, D.; German, J.B.; Lebrilla, C.B. Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J. Proteome Res. 2013, 12, 2295–2304. [Google Scholar] [CrossRef]
- Jakaitis, B.M.; Denning, P.W. Human breast milk and the gastrointestinal innate immune system. Clin. Perinatol. 2014, 41, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Craft, K.M.; Thomas, H.C.; Townsend, S.D. Sialylated variants of lacto-N-tetraose exhibit antimicrobial activity against Group B Streptococcus. Org. Biomol. Chem. 2019, 17, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Asadpoor, M.; Peeter, C.; Henricks, P.A.J.; Varasteh, S.; Pieters, R.J.; Folkerts, G.; Braber, S. Anti-Pathogenic Functions of Non-Digestible Oligosaccharides In Vitro. Nutrients 2020, 12, 1789. [Google Scholar] [CrossRef] [PubMed]
- Koromyslova, A.; Tripathi, S.; Morozov, V.; Schroten, H.; Hansman, G.S. Human norovirus inhibition by a human milk oligosaccharide. Virology 2017, 508, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Underwood, M.; German, J.; Lebrilla, C.B.; Mills, D.A. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr. Res. 2015, 77, 229–235. [Google Scholar] [CrossRef]
- Zhang, B.; Li, L.Q.; Liu, F.; Wu, J.Y. Human milk oligosaccharides and infant gut microbiota: Molecular structures, utilization strategies and immune function. Carbohydr. Polym. 2022, 276, 118738. [Google Scholar] [CrossRef]
- Moubareck, C.A. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021, 13, 1123. [Google Scholar] [CrossRef]
- Lin, A.E.; Autran, C.A.; Szyszka, A.; Escajadillo, T.; Huang, M.; Godula, K.; Prudden, A.R.; Boons, G.J.; Lewis, A.L.; Doran, K.S.; et al. Human milk oligosaccharides inhibit growth of group B Streptococcus. J. Biol. Chem. 2017, 292, 11243–11249. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, A.; Chuhunhavacharatorn, P.; Bhargav, S.; Malhotra, A.; Sendrayakannan, A.; Kharkar, P.S.; Nirmal, N.P.; Chauhan, A. Human Milk Oligosaccharides as Potential Antibiofilm Agents: A Review. Nutrients 2022, 14, 5112. [Google Scholar] [CrossRef] [PubMed]
- Jarzynka, S.; Spot, R.; Tchatchiashvili, T.; Ueberschaar, N.; Martinet, M.G.; Strom, K.; Kryczka, T.; Wesosołowska, A.; Pletz, M.W.; Olędzka, G.; et al. Human Milk Oligosaccharides Exhibit Biofilm Eradication Activity against Matured Biofilms Formed by Different Pathogen Species. Front. Microbiol. 2022, 12, 794441. [Google Scholar] [CrossRef]
- Ackerman, D.L.; Doster, R.S.; Weitkamp, J.H.; Aronoff, D.M.; Gaddy, J.A.; Townsend, S.D. Human Milk Oligosaccharides Exhibit Antimicrobial and Antibiofilm Properties against Group B Streptococcus. ACS Infect. Dis. 2017, 3, 595–605. [Google Scholar] [CrossRef]
- Morozov, V.; Hansman, G.; Hanisch, F.G.; Schroten, H.; Kunz, C. Human Milk Oligosaccharides as Promising Antivirals. Mol. Nutr. Food Res. 2018, 62, e1700679. [Google Scholar] [CrossRef]
- Chávez De Paz, L.E.; Dahlén, G.; Molande, A.; Mölle, A.; Bergenholtz, G. Bacteria recovered from teeth with apical periodontitis after antimicrobial endodontic treatment. Int. Endod. J. 2003, 36, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.H.; Chandran, L.; Mohan, T.M.; Sudha, K.; Malini, D.L.; Dominic, B. Evaluation of the efficacy of a novel disinfecting material on the surface topography of gutta-percha: An in vitro study. J. Conserv. Dent. 2023, 26, 94–97. [Google Scholar] [PubMed]
- Parveen, S.; Kaur, S.; David, S.A.; Kenney, J.L.; McCormick, W.M.; Gupta, R.K. Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products. Vaccine 2011, 29, 8012–8023. [Google Scholar] [CrossRef]
- Estrela, C.; Ribeiro, R.G.; Estrela, C.R.; Pécora, J.D.; Sousa-Neto, M.D. Antimicrobial effect of 2% sodium hypochlorite and 2% chlorhexidine tested by different methods. Braz. Dent. J. 2003, 14, 58–62. [Google Scholar] [CrossRef]
- Pantaleo, G.; Amato, A.; Iandolo, A.; Abdellatif, D.; Di Spirito, F.; Caggiano, M.; Pisano, M.; Blasi, A.; Fornara, R.; Amato, M. Two-Year Healing Success Rates after Endodontic Treatment Using 3D Cleaning Technique: A Prospective Multicenter Clinical Study. J. Clin. Med. 2022, 11, 6213. [Google Scholar] [CrossRef] [PubMed]
- Pages Monteiro, L.; Von Allmen, N.; Friesen, I.; Huth, K.; Zambardi, G. Performance of the VITEK®2 advanced expert system™ for the validation of antimicrobial susceptibility testing results. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1333–1335. [Google Scholar] [CrossRef] [PubMed]
Group A | Group B |
---|---|
Positive | Negative |
Positive | Negative |
Negative | Negative |
Positive | Negative |
Positive | Positive |
Positive | Negative |
Positive | Negative |
Group C | Group D | Group E |
---|---|---|
Positive | Negative | Negative |
Positive | Negative | Negative |
Positive | Negative | Negative |
Positive | Negative | Negative |
Positive | Negative | Negative |
Positive | Negative | Negative |
Group C | Group D | Group E |
---|---|---|
Positive | Positive | Negative |
Positive | Positive | Negative |
Positive | Positive | Negative |
Positive | Positive | Negative |
Positive | Positive | Negative |
Positive | Positive | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puleio, F.; Pirri, R.; Tosco, V.; Lizio, A.S.; Tripodi, P.; La Spina, I.; La Fauci, V.; Squeri, R. Assessment of 2′-Fucosyllactose and Lacto-N-Neotetraose Solution as an Irrigant in E. faecalis-Infected Root Canals: An In Vitro Study. Clin. Pract. 2024, 14, 1348-1356. https://doi.org/10.3390/clinpract14040108
Puleio F, Pirri R, Tosco V, Lizio AS, Tripodi P, La Spina I, La Fauci V, Squeri R. Assessment of 2′-Fucosyllactose and Lacto-N-Neotetraose Solution as an Irrigant in E. faecalis-Infected Root Canals: An In Vitro Study. Clinics and Practice. 2024; 14(4):1348-1356. https://doi.org/10.3390/clinpract14040108
Chicago/Turabian StylePuleio, Francesco, Rosario Pirri, Vincenzo Tosco, Angelo Sergio Lizio, Paola Tripodi, Isabella La Spina, Vincenza La Fauci, and Raffaele Squeri. 2024. "Assessment of 2′-Fucosyllactose and Lacto-N-Neotetraose Solution as an Irrigant in E. faecalis-Infected Root Canals: An In Vitro Study" Clinics and Practice 14, no. 4: 1348-1356. https://doi.org/10.3390/clinpract14040108
APA StylePuleio, F., Pirri, R., Tosco, V., Lizio, A. S., Tripodi, P., La Spina, I., La Fauci, V., & Squeri, R. (2024). Assessment of 2′-Fucosyllactose and Lacto-N-Neotetraose Solution as an Irrigant in E. faecalis-Infected Root Canals: An In Vitro Study. Clinics and Practice, 14(4), 1348-1356. https://doi.org/10.3390/clinpract14040108