Early Screening for Long QT Syndrome and Cardiac Anomalies in Infants: A Comprehensive Study
Abstract
:1. Introduction
Aims of the Study
2. Materials and Methods
2.1. Patients’ Enrolment
2.2. Electrocardiographic Neonatal Screening
2.3. Laboratory and Instrumental Tests
2.4. Genetic Analysis
2.5. Statistical Analysis
2.6. Interpretation of the Results
3. Results
3.1. Electrocardiographic Screening
3.2. Genetic Investigation of LQTS
3.3. Single and Multiple ECG Abnormalities
4. Discussion
4.1. Electrocardiographic Neonatal Screening
4.2. Genetic Investigation of LQTS
4.3. Single and Multiple ECG Abnormalities
4.4. Congenital Heart Diseases and/or Valvulopathies
4.5. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krous, H.F.; Byard, R.W.; Rognum, T.O. Pathology research into sudden infant death syndrome: Where do we go from here? Pediatrics 2004, 114, 492–494. [Google Scholar] [CrossRef]
- Moon, R.Y. SIDS and Other Sleep-Related Infant Deaths: Evidence Base for 2016 Updated Recommendations for a Safe Infant Sleeping Environment. Pediatrics 2016, 138, 5. [Google Scholar] [CrossRef]
- Hakeem, G.F.; Oddy, L.; Holcroft, C.A.; Abenhaim, H.A. Incidence and determinants of sudden infant death syndrome: A population-based study on 37 million births. World J. Pediatr. 2015, 11, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Haas, E.A. Sudden Unexplained Death in Childhood: An Overview. In SIDS Sudden Infant and Early Childhood Death: The Past, the Present and the Future; Duncan, J.R., Byard, R.W., Eds.; University of Adelaide Press: Adelaide, Australia, 2018. [Google Scholar]
- Garcia, A.J., III; Koschnitzky, J.E.; Ramirez, J.M. The physiological determinants of sudden infant death syndrome. Respir. Physiol. Neurobiol. 2013, 189, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Opdal, S.H.; Rognum, T.O. Gene variants predisposing to SIDS: Current knowledge. Forensic Sci. Med. Pathol. 2011, 7, 26–36. [Google Scholar] [CrossRef]
- Tfelt-Hansen, J.; Winkel, B.G.; Grunnet, M.; Jespersen, T. Cardiac channelopathies and sudden infant death syndrome. Cardiology 2011, 119, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Fifer, W.P.; Fingers, S.T.; Youngman, M.; Gomez-Gribben, E.; Myers, M.M. Effects of alcohol and smoking during pregnancy on infant autonomic control. Dev. Psychobiol. 2009, 51, 234–242. [Google Scholar] [CrossRef]
- Richardson, H.L.; Walker, A.M.; Horne, R.S. Maternal smoking impairs arousal patterns in sleeping infants. Sleep 2009, 32, 515–521. [Google Scholar] [CrossRef]
- Hauck, F.R.; Thompson, J.M.; Tanabe, K.O.; Moon, R.Y.; Vennemann, M.M. Breastfeeding and reduced risk of sudden infant death syndrome: A meta-analysis. Pediatrics 2011, 128, 103–110. [Google Scholar] [CrossRef]
- Yiallourou, S.R.; Poole, H.; Prathivadi, P.; Odoi, A.; Wong, F.Y.; Horne, R.S. The effects of dummy/pacifier use on infant blood pressure and autonomic activity during sleep. Sleep Med. 2014, 15, 1508–1516. [Google Scholar] [CrossRef]
- Weese-Mayer, D.E.; Berry-Kravis, E.M. Genetics of congenital central hypoventilation syndrome: Lessons from a seemingly orphan disease. Am. J. Respir. Crit. Care Med. 2004, 170, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Amre, D.; Rhoads, G.G.; Demissie, K. Maternal and obstetric risk factors for sudden infant death syndrome in the United States. Obstet. Gynecol. 2004, 103, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Highet, A.R. An infectious aetiology of sudden infant death syndrome. J. Appl. Microbiol. 2008, 105, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Pryce, J.W.; Weber, M.A.; Heales, S.; Malone, M.; Sebire, N.J. Tandem mass spectrometry findings at autopsy for detection of metabolic disease in infant deaths: Postmortem changes and confounding factors. J. Clin. Pathol. 2011, 64, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Jaeggi, E.; Öhman, A. Fetal and Neonatal Arrhythmias. Clin. Perinatol. 2016, 43, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, A.; Kanthan, A.; Monteforte, N.; Memmi, M.; Bloise, R.; Novelli, V.; Miceli, C.; O’Rourke, S.; Borio, G.; Zienciuk-Krajka, A.; et al. Novel insight into the natural history of short QT syndrome. J. Am. Coll. Cardiol. 2014, 63, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Liebrechts-Akkerman, G.; Liu, F.; van Marion, R.; Dinjens, W.N.M.; Kayser, M. Explaining sudden infant death with cardiac arrhythmias: Complete exon sequencing of nine cardiac arrhythmia genes in Dutch SIDS cases highlights new and known DNA variants. Forensic Sci. Int. Genet. 2020, 46, 102266. [Google Scholar] [CrossRef] [PubMed]
- Sarquella-Brugada, G.; Campuzano, O.; Cesar, S.; Iglesias, A.; Fernandez, A.; Brugada, J.; Brugada, R. Sudden infant death syndrome caused by cardiac arrhythmias: Only a matter of genes encoding ion channels? Int. J. Legal Med. 2016, 130, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Priori, S.G.; Dumaine, R.; Napolitano, C.; Antzelevitch, C.; Stramba-Badiale, M.; Richard, T.A.; Berti, M.R.; Bloise, R. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N. Engl. J. Med. 2000, 343, 262–267. [Google Scholar] [CrossRef]
- Aktaa, S.; Tzeis, S.; Gale, C.P.; Ackerman, M.J.; Arbelo, E.; Behr, E.R.; Crotti, L.; d’Avila, A.; de Chillou, C.; Deneke, T.; et al. European Society of Cardiology quality indicators for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Europace 2023, 25, 199–210. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Stramba-Badiale, M.; Segantini, A.; Austoni, P.; Bosi, G.; Giorgetti, R.; Grancini, F.; Marni, E.D.; Perticone, F.; Rosti, D.; et al. Prolongation of the QT interval and the sudden infant death syndrome. N. Engl. J. Med. 1998, 338, 1709–1714. [Google Scholar] [CrossRef] [PubMed]
- Arnestad, M.; Crotti, L.; Rognum, T.O.; Insolia, R.; Pedrazzini, M.; Ferrandi, C.; Vege, A.; Wang, D.W.; Rhodes, T.E.; George, A.L., Jr.; et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 2007, 115, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Zareba, W. Genotype-specific ECG patterns in long QT syndrome. J. Electrocardiol. 2006, 39, S101–S106. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.J.; Priori, S.G.; Willems, S.; Berul, C.; Brugada, R.; Calkins, H.; Camm, A.J.; Ellinor, P.T.; Gollob, M.; Hamilton, R.; et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 2011, 13, 1077–1109. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, E.B.; Baughn, L.B.; Sharma, N.; Zjacic, N.; Pirooznia, M.; Elhaik, E. The Genetics of Sudden Infant Death Syndrome-Towards a Gene Reference Resource. Genes 2021, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Yin, R.; Yang, L.; Li, Z.H. Clinical and genetic spectrum of neonatal arrhythmia in a NICU. Transl. Pediatr. 2021, 10, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; He, J.; Shao, X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990–2017. Medicine 2020, 99, e20593. [Google Scholar] [CrossRef]
- McKenna, W.J.; Judge, D.P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021, 18, 22–36. [Google Scholar] [CrossRef]
- Nakano, Y.; Shimizu, W. Genetics of long-QT syndrome. J. Human Genet. 2016, 61, 51–55. [Google Scholar] [CrossRef]
- Giudicessi, J.R.; Wilde, A.A.M.; Ackerman, M.J. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc. Med. 2018, 28, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.M.; Glengarry, J.; Skinner, J.R. Sudden Infant Death: QT or Not QT? That Is No Longer the Question. Circ. Arrhythm. Electrophysiol. 2016, 9, e003859. [Google Scholar] [CrossRef] [PubMed]
- Peltenburg, P.J.; Crotti, L.; Roston, T.M.; van der Werf, C. Current gaps in knowledge in inherited arrhythmia syndromes. Neth. Heart J. 2023, 31, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Mattesi, G.; Cipriani, A.; Bauce, B.; Rigato, I.; Zorzi, A.; Corrado, D. Arrhythmogenic Left Ventricular Cardiomyopathy: Genotype-Phenotype Correlations and New Diagnostic Criteria. J. Clin. Med. 2021, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Ioakeimidis, N.S.; Papamitsou, T.; Meditskou, S.; Iakovidou-Kritsi, Z. Sudden infant death syndrome due to long QT syndrome: A brief review of the genetic substrate and prevalence. J. Biol. Res. 2017, 24, 6. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Stramba-Badiale, M.; Crotti, L.; Pedrazzini, M.; Besana, A.; Bosi, G.; Gabbarini, F.; Goulene, K.; Insolia, R.; Mannarino, S.; et al. Prevalence of the congenital long-QT syndrome. Circulation 2009, 120, 1761–1767. [Google Scholar] [CrossRef]
- Quaglini, S.; Rognoni, C.; Spazzolini, C.; Priori, S.G.; Mannarino, S.; Schwartz, P.J. Cost-effectiveness of neonatal ECG screening for the long QT syndrome. Eur. Heart J. 2006, 27, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Wilde, A.A.M.; Amin, A.S.; Postema, P.G. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart 2022, 108, 332–338. [Google Scholar] [CrossRef]
- Vetter, V.L. Electrocardiographic screening of all infants, children, and teenagers should be performed. Circulation 2014, 130, 688–697, discussion 697. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Garson, A.; Paul, T.; Stramba-Badiale, M.; Vetter, V.L.; Wren, C.; European Society of Cardiology. Guidelines for the interpretation of the neonatal electrocardiogram. A task force of the European Society of Cardiology. Eur. Heart J. 2002, 23, 1329–1344. [Google Scholar] [CrossRef]
- Schwartz, A.R.; O’Donnell, C.P.; Baron, J.; Schubert, N.; Alam, D.; Samadi, S.D.; Smith, P.L. The hypotonic upper airway in obstructive sleep apnea: Role of structures and neuromuscular activity. Am. J. Respir. Crit. Care Med. 1998, 157, 1051–1057. [Google Scholar] [CrossRef]
- Ran, L.; Li, J.; Bao, L.; Chen, L. Association Between Neonatal Arrhythmia and Mortality and Recurrence: A Retrospective Study. Front. Pediatr. 2022, 10, 818164. [Google Scholar] [CrossRef]
- Mishra, V.; Zaidi, S.; Axiaq, A.; Harky, A. Sudden cardiac death in children with congenital heart disease: A critical review of the literature. Cardiol. Young 2020, 30, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Guilleminault, C.; Ariagno, R.; Coons, S.; Winkle, R.; Korobkin, R.; Baldwin, R.; Souquet, M. Near-miss sudden infant death syndrome in eight infants with sleep apnea-related cardiac arrhythmias. Pediatrics 1985, 76, 236–242. [Google Scholar]
- Southall, D.P.; Richards, J.M.; Stebbens, V.; Wilson, A.J.; Taylor, V.; Alexander, J.R. Cardiorespiratory function in 16 full-term infants with sudden infant death syndrome. Pediatrics 1986, 78, 787–796. [Google Scholar] [CrossRef]
- Filiano, J.J.; Kinney, H.C. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: The triple-risk model. Biol. Neonate 1994, 65, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.R.; Roth, T. Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Curr. Neuropharmacol. 2008, 6, 367–378. [Google Scholar] [CrossRef]
- Kline, J.; Costantini, O. Inherited Cardiac Arrhythmias and Channelopathies. Med. Clin. N. Am. 2019, 103, 809–820. [Google Scholar] [CrossRef]
- Franco, P.; Groswasser, J.; Scaillet, S.; Lanquart, J.P.; Benatar, A.; Sastre, J.P.; Chevalier, P.; Kugener, B.; Kahn, A.; Lin, J.S. QT interval prolongation in future SIDS victims: A polysomnographic study. Sleep 2008, 31, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Sarquella-Brugada, G.; García-Algar, O.; Zambrano, M.D.; Fernández-Falgueres, A.; Sailer, S.; Cesar, S.; Sebastiani, G.; Martí-Almor, J.; Aurensanz, E.; Cruzalegui, J.C.; et al. Early Identification of Prolonged QT Interval for Prevention of Sudden Infant Death. Front. Pediatr. 2021, 9, 704580. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Leren, I.S. Prevalence, Clinical Presentation, and Management of Channelopathies and Cardiomyopathies, Long QT Syndrome, Brugada Syndrome, Arrhythmogenic Cardiomyopathy, and Hypertrophic Cardiomyopathy. Curr. Cardiovasc. Risk Rep. 2019, 13, 16. [Google Scholar] [CrossRef]
- Priori, S.G.; Schwartz, P.J.; Napolitano, C.; Bloise, R.; Ronchetti, E.; Grillo, M.; Vicentini, A.; Spazzolini, C.; Nastoli, J.; Bottelli, G.; et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 2003, 348, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Gosselin-Badaroudine, P.; Moreau, A.; Chahine, M. Nav 1.5 mutations linked to dilated cardiomyopathy phenotypes: Is the gating pore current the missing link? Channels 2014, 8, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Zaklyazminskaya, E.; Dzemeshkevich, S. The role of mutations in the SCN5A gene in cardiomyopathies. Biochim. Biophys. Acta 2016, 1863, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Gallotti, R.G.; Shannon, K.M.; Bos, J.M.; Sadeghi, E.; Strasburger, J.F.; Wakai, R.T.; Horigome, H.; Clur, S.A.; Hill, A.C.; et al. Genotype Predicts Outcomes in Fetuses and Neonates With Severe Congenital Long QT Syndrome. JACC Clin. Electrophysiol. 2020, 6, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Novelli, V.; Amin, A.S.; Abiusi, E.; Care, M.; Nannenberg, E.A.; Feilotter, H.; Amenta, S.; Mazza, D.; Bikker, H.; et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation 2020, 141, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Alders, M.; Bikker, H.; Christiaans, I. Long QT Syndrome. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2003. [Google Scholar]
- Kondo, M.; Ohishi, A.; Baba, T.; Fujita, T.; Iijima, S. Can echocardiographic screening in the early days of life detect critical congenital heart disease among apparently healthy newborns? BMC Pediatr. 2018, 18, 359. [Google Scholar] [CrossRef]
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef]
- Dawson, A.L.; Cassell, C.H.; Riehle-Colarusso, T.; Grosse, S.D.; Tanner, J.P.; Kirby, R.S.; Watkins, S.M.; Correia, J.A.; Olney, R.S. Factors associated with late detection of critical congenital heart disease in newborns. Pediatrics 2013, 132, e604–e611. [Google Scholar] [CrossRef]
- Li, J.J.; Liu, Y.; Xie, S.Y.; Zhao, G.D.; Dai, T.; Chen, H.; Mu, L.F.; Qi, H.Y.; Li, J. Newborn screening for congenital heart disease using echocardiography and follow-up at high altitude in China. Int. J. Cardiol. 2019, 274, 106–112. [Google Scholar] [CrossRef]
Included at Follow-Up, QTc (ms) | ECG 1.0, n. (% Males) | ECG 2.0, n. (% Males) | ECG 3.0, n. (% Males) | ECG 4.0, n. (% Males) | ECG 1.1, n. (% Males) | ECG 2.1, n. (% Males) | ECG 3.1, n. (% Males) | ECG 4.1, n. (% Males) | Holter 24 h ECG, n. (% Males) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Infant enrolled | 2245 (39.9) | 667 (35.2) | 254 (29.1) | 52 (25) | 164 (37.8) | 119 (32.8) | 87 (24.1) | 23 (26.1) | 44 (31.8) | |||||
% (% males) | % (% males) | % (% males) | % (% males) | % (% males) | % (% males) | % (% males) | % (% males) | % (% males) | ||||||
≥435 | 98.8 (38.9) | 99.3 (35.2) | 95.7 (58.9) | 55.8 (24.1) | 99.4 (37.4) | 72.6 (32.8) | 100 (24.1) | 100 (26.1) | 100 (30.2) | |||||
≥440 | 86.8 (39.8) | 88.0 (34.2) | 89.4 (27.3) | 92.3 (27.1) | 89.0 (37.0) | 64.6 (32.1) | 92.0 (23.8) | 91.3 (28.6) | 95.5 (25.6) | |||||
≥445 | 37.8 (37.6) | 46.0 (27.4) | 59.8 (24.3) | 57.7 (13.3) | 53.0 (32.2) | 40.2 (24.2) | 62.1 (22.2) | 60.9 (14.3) | 95.5 (31.0) | |||||
≥450 | 33.4 (37.8) | 42.3 (26.2) | 55.9 (25.4) | 53.8 (14.3) | 48.2 (32.9) | 38.4 (25.4) | 58.6 (23.5) | 56.2 (14.4) | 86.4 (23.2) | |||||
≥455 | 14.7 (34.5) | 22.8 (22.4) | 26.8 (26.5) | 34.6 (11.1) | 26.8 (29.5) | 26.2 (23.3) | 26.4 (26.1) | 39.1 (11.1) | 68.2 (26.7) | |||||
≥460 | 9.6 (30.6) | 13.2 (14.8) | 17.3 (29.5) | 19.2 (20.0) | 20.1 (30.3) | 16.5 (18.4) | 14.9 (30.8) | 21.7 (20) | 59.1 (15.9) | |||||
≥465 | 4.9 (33.3) | 8.6 (8.3) | 8.7 (18.2) | 11.5 (33.3) | 12.8 (42.9) | 7.3 (16.7) | 4.6 (0) | 13.0 (33.3) | 45.5 (25.0) | |||||
≥470 | 3.6 (34.6) | 5.4 (5.6) | 5.4 (0) | 3.8 (0) | 7.9 (38.5) | 7.3 (16.7) | 4.6 (0) | 4.3 (0) | 29.5 (7.9) | |||||
≥475 | 0.67 (26.7) | 2.4 (6.3) | 3.5 (0) | 3.8 (0) | 2.4 (25) | 3.7 (16.7) | 3.4 (0) | 4.3 (0) | 22.7 (20.0) | |||||
≥480 | 0.49 (36.4) | 2.4 (6.3) | 3.5 (0) | 3.8 (0) | 1.8 (33.3) | 3.7 (16.7) | 3.4 (0) | 4.3 (0) | 20.5 (5.5) | |||||
≥485 | 0.22 (20) | 2.1 (7.1) | 2.0 (0) | - | 0.61 (0) | 3.0 (20) | 1.1 (0) | - | 18.2 (25.0) | |||||
≥490 | 0.22 (20) | 1.6 (9.1) | 2.5 (0) | - | 0.61 (0) | 2.4 (25) | 1.1 (0) | - | 15.9 (4.3) | |||||
≥495 | 0.22 (0) | 1.3 (0) | 1.2 (0) | - | 0.61 (0) | 1.8 (0) | 1.1 (0) | - | 11.4 (20.0) | |||||
≥500 | 0.22 (0) | 1.3 (0) | 1.2 (0) | - | - | - | - | - | 9.1 (2.4) | |||||
≥510 | 0.22 (0) | 0.9 (0) | 1.2 (0) | - | - | - | - | - | 4.5 (1.2) | |||||
From ECG 1.0 to ECG 4.0 | 100–80% | 80–60% | 60–40% | 40–20% | 20–0% | |||||||||
From ECG 1.1 to ECG 4.1 | 100–80% | 80–60% | 60–40% | 40–20% | 20–0% | |||||||||
Holter 24 h ECG | 100–80% | 80–60% | 60–40% | 40–20% | 20–0% |
Included at Follow-Up (QTc, ms) | ECG 1.0, Mean QTc ± SD (Min–Max) ms | ECG 2.0, Mean QTc ± SD (Min–Max) ms | ECG 3.0, Mean QTc ± SD (Min–Max) ms | ECG 4.0, Mean QTc ± SD (Min–Max) ms | ECG 1.1, Mean QTc ± SD (Min–Max) ms | ECG 2.1, Mean QTc ± SD (Min–Max) ms | ECG 3.1, Mean QTc ± SD (Min–Max) ms | ECG 4.1, Mean QTc ± SD (Min–Max) ms | Holter 24 h ECG, Mean QTc ± SD (Min–Max) ms |
---|---|---|---|---|---|---|---|---|---|
Infant enrolled | 445.9 ± 9.4 (392–513) | 448.1 ± 12.1 (427–513) | 450.2 ± 12.7 (428–520) | 450.5 ± 11.2 (435–482) | 449.6 ± 11.9 (433–513) | 451.7 ± 14.8 (435–513) | 450.4 ± 12.1 (435–520) | 451.3 ± 11.6 (435–482) | 465.7 ± 19.2 (430–511) |
≥435 | 446.1 ± 9.2 | 448.3 ± 12.1 | 450.3 ± 12.6 | 449.9 ± 10.9 | 449.7 ± 11.9 | 451.7 ± 14.8 | 450.4 ± 12.1 | 451.3 ± 11.6 | 466.5 ± 18.6 |
≥440 | 447.5 ± 9.0 | 449.8 ± 11.9 | 452.0 ± 12.2 | 451.8 ± 10.6 | 451.3 ± 11.5 | 453.6 ± 14.6 | 451.7 ± 11.7 | 452.9 ± 11.0 | 467.1 ± 18.3 |
≥445 | 455.2 ± 8.7 | 457.5 ± 12.1 | 457.0 ± 12.0 | 458.0 ± 8.7 | 457.9 ± 10.7 | 460.9 ± 14.1 | 456.3 ± 11.7 | 458.5 ± 9.0 | 467.2 ± 18.3 |
≥450 | 456.3 ± 8.6 | 458.4 ± 12.2) | 457.7 ± 12.2 | 458.8 ± 8.5 | 459.0 ± 10.6 | 461.5 ± 14.1 | 456.9 ± 11.8 | 459.4 ± 8.7 | 469.4 ± 17.8 |
≥455 | 463.7 ± 8.3 | 465.2 ± 13.3 | 465.6 ± 13.7 | 463.1 ± 7.6 | 465.8 ± 9.8 | 466.7 ± 14.4 | 464.7 ± 14.1 | 463.1 ± 7.8 | 474.1 ± 17.2 |
≥460 | 467.0 ± 8.6 | 470.8 ± 15.1 | 470 ± 15.4 | 457.2 ± 8.2 | 468.5 ± 10.0 | 472.5 ± 15.7 | 470.4 ± 16.9 | 467.2 ± 8.7 | 476.9 ± 16.7 |
≥465 | 472.6 ± 8.9 | 479.2 ± 16.2 | 479.3 ± 17.4 | 471.3 ± 8.3 | 472.7 ± 10.3 | 484.7 ± 16.5 | 489.5 ± 20.7 | (466–482) | 481.6 ± 16.4 |
≥470 | 475.0 ± 9.3 | 483.7 ± 16.4 | 488.5 ± 17.4 | 482 | 476.9 ± 11.3 | 484.7 ± 16.5 | 489.5 ± 20.7 | 482 | 489.9 ± 14.4 |
≥475 | 488.4 ± 15.7 | 499.1 ± 13.3 | 495.4 ± 16.7 | 482 | 487.3 ± 17.3 | 497.5 ± 14.2 | (482–520) | 482 | 495.1 ± 12.2 |
≥480 | 492.9 ± 16.2 | 499.1 ± 13.3 | 495.4 ± 16.7 | 482 | 513 | 497.5 ± 14.2 | 520 | 482 | 497.3 ± 10.5 |
≥485 | 508.4 ± 10.3 | 501 ± 11.8 | 506 ± 15.2 | - | 513 | 501 ± 12.7 | 520 | - | 499.5 ± 8.8 |
≥490 | 508.4 ± 10.3 | 506.4 ± 8.6 | 506 ± 15.2 | - | 513 | 505 ± 10.4 | 520 | - | 501.6 ± 7.1 |
≥495 | 513 | 510 ± 3.1 | (511–520) | - | 513 | (506–513) | 520 | - | 504.6 ± 5.9 |
≥500 | 513 | 510 ± 3.1 | (511–520) | - | - | - | - | - | 506.0 ± 5.8 |
≥510 | 513 | 512.0 ± 1.1 | (511–520) | - | - | - | - | - | 511 |
From ECG 1.0 to ECG 4.0 | 20–0% | ||||||||
From ECG 1.1 to ECG 4.1 | 20–0% | ||||||||
Holter 24 h ECG | 20–0% |
N | Mean ± SD | Minimum–Maximum | |
---|---|---|---|
ECG 1.1 QTc ms | 27 | 452.5 ± 13.1 | 435–476 |
ECG 2.1 QTc ms | 25 | 458.5 ± 19.1 | 435–511 |
ECG 3,1 QTc ms | 21 | 462.2 ± 20.9 | 441–520 |
ECG 4.1 QTc ms | 12 | 457.0 ± 11.2 | 442–482 |
ECG Holter, QTc ms | 18 | 452.9 ± 26.2 | 417–538 |
SEX | QTc msc (ECG) | QTc ms (ECG Holter) | Therapy | Dosage |
---|---|---|---|---|
F | 468 | 460 | Propranolol | 2 mg/kg, bid |
F | 402 | 441 | Propranolol | 2 mg/kg, qd |
F | 413 | 449 | Propranolol | 2 mg/kg, tid |
M | 433 | 440 | Propranolol | 2 mg/kg, tid |
F | 494 | 537 | Nadolol | ¾ cp (40 mg), tid |
F | EXTENDED | EXTENDED | Metoprolol | 8 mg, bid |
F | EXTENDED | EXTENDED | Metoprolol | 8 mg, bid |
SEX | MUTATION | Familiarity | QTc ms (ECG) | QTc ms (ECG Holter) | Therapy | Dosage |
---|---|---|---|---|---|---|
F | SCN5A (LQT3; c.647C>T) | No | 427 | 438 | Propranolol | 2 mg/kg, tid |
F | KCNH2 (LQT2) | Father | 458 | 461 | Propranolol | 20 mg |
F | KCNH2 (LQT2; c.1196C>T) | No | 438 and short PR | - | - | - |
F | KCNH2 (LQT2; c.3367G>C) | No | 452 | 462 | Propranolol | 3 mg/kg, tid |
F | KCNH2 (LQT2; c.2560T>G), SCN5A (LQT3; c.5845G>A) | No | - | - | - | - |
F | KCNQ1 (polymorphism SCN5A-H558R, KCNH2-K897K, e KCNE1-S38G) | No | 448 | 465 | Propranolol | 2 mg/kg, tid |
F | KCNQ1 (LQT1) | Mother | NA | NA | Nadolol | 1.5 mg/Kg/day |
F | KCNQ1 (LQT1) | Mother and maternal grandfather | NA | NA | - | - |
M | KCNQ1 (LQT1) | Mother and sister | 434 | 465 | Propranolol | ¾ + ½ + ½ |
M * | KCNQ1 (LQT1) | Father (asymptomatic, QTc in the norm) | NA | NA | Nadolol | 1 mg/Kg, qd |
M * | KCNQ1 (LQT1) | Father (asymptomatic, QTc in the norm) | NA | NA | Nadolol | 1 mg/Kg, qd |
Single ECG Abnormality | Patients, No. (% of Total) | Multiple ECG Abnormality | Patients, No. (% of Total) |
---|---|---|---|
Right bundle branch focal block | 983 (54.5) | Right bundle branch focal block + Right ventricular prevalence | 61 (30.8) |
Left axial deviation | 166 (9.2) | Right bundle branch focal block + Left axial deviation | 26 (13.1) |
Nonspecific abnormalities of ventricular repolarization | 128 (7.1) | Right bundle branch focal block + Nonspecific alterations of repolarization | 8 (4.0) |
Ventricular extrasystole | 83 (4.6) | Right bundle branch focal block + Supraventricular extrasystole | 6 (3.0) |
Supraventricular extrasystole | 82 (4.5) | Right bundle branch focal block + Ventricular extrasystole | 6 (3.0) |
Complete right bundle branch block | 66 (3.7) | Right bundle branch focal block + High voltages of QRS | 5 (2.5) |
High-voltage QRS | 46 (2.5) | Right bundle branch focal block + PQ at upper limits | 5 (2.5) |
Ventricular pre-excitation | 32 (1.8) | Right bundle branch focal block + Negative T wave | 2 |
Increased P wave amplitude | 28 (1.5) | Right bundle branch focal block + Inf Q waves | 2 |
FP at upper limits | 27 (1.5) | Right bundle branch focal block + Right ventricular head + Left axial deviation | 2 |
Low QRS voltages | 20 (1.1) | Right bundle branch focal block + Sinus tachycardia | 2 |
Tachycardia sinusale | 20 (1.1) | Blocco focale di branca dx + Deviazione assiale sx + Extrasistolia sopraventricolare | 1 |
Bradicardia sinusale relativa | 18 (1.0) | Right bundle branch focal block + Supraventricular extrasystole + Ventricular extrasystole | 1 |
FP at lower limits | 16 (0.9) | Right bundle branch focal block + Ventricular parasystole | 1 |
AV conduction at the upper limits | 10 (0.6) | Right bundle branch focal block + Right ventricular prevalence + PQ at lower limits | 1 |
Positive T | 10 (0.6) | Right branch focal block + Migrant steplight | 1 |
Ectopic atrial rhythm | 9 (0.5) | Right bundle branch focal block + Right ventricular and atrial prevalence | 1 |
Positive T wave | 8 0.4) | Right bundle branch focal block + Right ventricular prevalence + PQ at upper limits | 1 |
Migrant step marker | 8 (0.4) | TOTAL Right bundle branch focal block | 132 (66.7) |
Right axial deviation | 7 (0.4) | Right ventricular head + left axial deviation | 17 (8.6) |
Left front hemiblock | 5 (0.3) | Right ventricular head + Deep Q waves | 7 (3.5) |
Delayed right intraventricular conduction | 4 (0.2) | Right ventricular prevalence + PR at the experimental limits | 6 (3.0) |
Respiratory sinus arrhythmia | 3 (0.2) | Right ventricular head + High QRS voltages | 4 (2.0) |
ST elevation | 3 (0.2) | Right ventricular prevalence + Nonspecific abnormalities of ventricular repolarization | 4 (2.0) |
Negative T | 3 (0.2) | Right ventricular prevalence + Ventricular extrasystole | 4 (2.0) |
Dextrocardia | 2 (0.1) | Right ventricular head + Low QRS voltages | 4 (2.0) |
QTc and PQ at the lower limits | 2 (0.1) | Right ventricular prevalence + Nonspecific abnormalities of ventricular repolarization | 3 (1.5) |
Ventricular hyperkinetic arrhythmia | 1 | Right ventricular prevalence + Supraventricular extrasystole | 3 (1.5) |
Appearance S1-Q3 | 1 | Right ventricular prevalence + PQ at upper limits | 2 (1.0) |
AV dissociation | 1 | Right ventricular head + Appearance S1-Q3 | 1 |
Right atrial engagement | 1 | Right ventricular prevalence + AV conduction at upper limits | 1 |
Increased amplitude P waves | 1 | TOTAL Right ventricular prevalence | 56 (28.3) |
Septal Q waves | 1 | Supraventricular extrasystole + Ventricular extrasystole | 7 (3.5) |
Flat T waves | 1 | Ventricular pre-excitation + Right bundle branch focal block | 2 (1.0) |
AV conduction extension | 1 | Ventricular pre-excitation + Right ventricular head | 2 (1.0) |
qR in inferolateral site | 1 | TOTAL Ventricular pre-excitation | 4 (2.0) |
Biventricular overloads | 1 | Left axial deviation + Sinus tachycardia | 1 |
Signs of bi-atrial engagement | 1 | Left front hemiblock + Left axial deviation | 1 |
Right overload | 1 | Biventricular hypertrophy + Supraventricular extrasystole | 1 |
Right ventricular overload | 1 | PQ at lower limits + Supraventricular extrasystole | 1 |
Diphasic T | 2 (0.1) | FP at lower limits + Probable junctional rhythm in migrant stepper | 1 |
Paroxysmal supraventricular tachycardia | 1 | Ventricular pre-excitation + Supraventricular extrasystole | 1 |
Total | 1805 | Migrant steplight + Supraventricular extrasystole | 1 |
TOTAL | 198 |
Structural Alteration of the Heart Associated with ECG Abnormalities | Patients, n. (%) | Structural Alterations of the Heart Associated with Long QTc | Patients, n. (%) |
---|---|---|---|
PFO | 164 (61.4) | PFO | 72 (62.1) |
PFO/IAD OS | 25 (9.4) | PFO + IVD | 6 (5.2) |
PFO + Mitral insufficiency | 21 (7.9) | PFO + PDA | 4 (3.4) |
PFO + PDA | 12 (4.5) | PFO/IAD OS | 3 (2.4) |
PFO + IVD | 6 (2.2) | PFO + Mitral insufficiency | 3 (2.4) |
PFO/IAD OS + Mitral insufficiency | 3 (1.1) | PFO + Aortic insufficiency | 1 |
PFO + PDA + Mitral insufficiency | 3 (1.1) | PFO + Tricuspid insufficiency | 1 |
PFO + Aortic insufficiency | 2 | IAD OS | 12 (10.3) |
PFO/IAD OS + IVD | 1 | IAD OS + IM | 1 |
PFO/IAD OS + PDA | 1 | IAD OS + Tricuspid insufficiency | 1 |
PFO + Aortic coarctation + Mitral insufficiency | 1 | IAD OS + Aortic dysplasia | 1 |
PFO + Tricuspid insufficiency | 1 | PDA | 4 (3.2) |
PFO + Flow acceleration at the level of the aortic isthmus without obstructive gradient + Mitral insufficiency | 2 | IVD | 3 (2.4) |
Mitral insufficiency | 12 (4.5) | Mitral insufficiency | 2 |
IAD OS | 2 | Aortic Insufficiency | 1 |
IAD OS + Tricuspid insufficiency | 2 | Pulmonary stenosis | 1 |
PDA | 2 | TOTAL | 116 |
PDA + Mitral insufficiency | 2 | ||
IVD | 1 | ||
Pulmonary insufficiency | 1 | ||
Tricuspid insufficiency | 1 | ||
Mild aortic insufficiency in apparently tricuspid valve | 1 | ||
Multiple ventricular echo-dense neoformations, referable in the first hypothesis to rhabdomyoma | 1 | ||
TOTAL | 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosetti, L.; Zaffanello, M.; Lombardi, C.; Gerosa, A.; Piacentini, G.; Abramo, M.; Agosti, M. Early Screening for Long QT Syndrome and Cardiac Anomalies in Infants: A Comprehensive Study. Clin. Pract. 2024, 14, 1038-1053. https://doi.org/10.3390/clinpract14030082
Nosetti L, Zaffanello M, Lombardi C, Gerosa A, Piacentini G, Abramo M, Agosti M. Early Screening for Long QT Syndrome and Cardiac Anomalies in Infants: A Comprehensive Study. Clinics and Practice. 2024; 14(3):1038-1053. https://doi.org/10.3390/clinpract14030082
Chicago/Turabian StyleNosetti, Luana, Marco Zaffanello, Carolina Lombardi, Alessandra Gerosa, Giorgio Piacentini, Michele Abramo, and Massimo Agosti. 2024. "Early Screening for Long QT Syndrome and Cardiac Anomalies in Infants: A Comprehensive Study" Clinics and Practice 14, no. 3: 1038-1053. https://doi.org/10.3390/clinpract14030082
APA StyleNosetti, L., Zaffanello, M., Lombardi, C., Gerosa, A., Piacentini, G., Abramo, M., & Agosti, M. (2024). Early Screening for Long QT Syndrome and Cardiac Anomalies in Infants: A Comprehensive Study. Clinics and Practice, 14(3), 1038-1053. https://doi.org/10.3390/clinpract14030082