Lactate Profile Assessment—A Good Predictor of Prognosis in Patients with COVID-19 and Septic Shock Requiring Continuous Renal Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Consent and Ethics Approval
2.2. Study Design and Patient Population
2.3. Data Collection
2.4. Treatment Procedure
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Clinical Outcomes
3.2. Logistic Regression Analysis
3.3. Predicting Outcomes with Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellomo, R. Bench-to-bedside review: Lactate and the kidney. Crit. Care 2002, 6, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Xu, F.; Han, D.; Lyu, J. The association between continuous renal replacement therapy as treatment for sepsis-associated acute kidney injury and trend of lactate trajectory as risk factor of 28-day mortality in intensive care units. BMC Emerg. Med. 2022, 22, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Passos, R.D.H.; Ramos, J.G.R.; Gobatto, A.; Mendonça, E.J.B.; Miranda, E.A.; Dutra, F.R.D.; Coelho, M.F.R.; Pedroza, A.C.; Batista, P.B.P.; Dutra, M.M.D. Lactate clearance is associated with mortality in septic patients with acute kidney injury requiring continuous renal replacement therapy: A cohort study. Medicine 2016, 95, e5112. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.R.; Leem, A.Y.; Park, M.S.; Kim, Y.S.; Chung, K.S. Optimal timing of initiating continuous renal replacement therapy in septic shock patients with acute kidney injury. Sci. Rep. 2019, 9, 11981. [Google Scholar] [CrossRef] [PubMed]
- Yessayan, L.; Yee, J.; Frinak, S.; Szamosfalvi, B. Continuous renal replacement therapy for the management of acid-base and electrolyte imbalances in acute kidney injury. Adv. Chronic Kidney Dis. 2016, 23, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Possemiers, H.; Vandermosten, L.; Van den Steen, P. Etiology of lactic acidosis in malaria. PLoS Pathog. 2021, 17, e1009122. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, M.; Dougherty, S.; Bouamra, O.; Pai, V.; Curry, P.; Tsui, S.; Clark, S.; Westaby, S.; Al-Attar, N.; Zamvar, V. Extra-corporeal membrane oxygenation for refractory cardiogenic shock after adult cardiac surgery: A systematic review and meta-analysis. J. Cardiothorac. Surg. 2017, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Merkle-Storms, J.; Djordjevic, I.; Weber, C.; Avgeridou, S.; Krasivskyi, I.; Gaisendrees, C.; Mader, N.; Kuhn-Régnier, F.; Kröner, A.; Bennink, G.; et al. Impact of Lactate Clearance on Early Outcomes in Pediatric ECMO Patients. Medicina 2021, 57, 284. [Google Scholar] [CrossRef]
- Preiser, J.C.; Provenzano, B.; Mongkolpun, W.; Halenarova, K.; Cnop, M. Perioperative Management of Oral Glucose-lowering Drugs in the Patient with Type 2 Diabetes. Anesthesiology 2020, 133, 430–438. [Google Scholar] [CrossRef]
- Mathew, S.; Whitman, L. 206. The utility of lactate as a biomarker for sepsis in cancer patients. In Open Forum Infectious Diseases; Oxford University Press: New York, NY, USA, 2020; Volume 7, (Suppl. S1), pp. S106–S107. [Google Scholar]
- Mungan, İ.; Kazancı, D.; Bektaş, Ş.; Ademoğlu, D.; Turan, S. Does lactate clearance prognosticates outcomes in ECMO therapy: A retrospective observational study. BMC Anesthesiol. 2018, 18, 152. [Google Scholar] [CrossRef]
- Verissimo, T.; Faivre, A.; Rinaldi, A.; Lindenmeyer, M.; Delitsikou, V.; Veyrat-Durebex, C.; Heckenmeyer, C.; Fernandez, M.; Berchtold, L.; Dalga, D.; et al. Decreased renal gluconeogenesis is a hallmark of chronic kidney disease. J. Am. Soc. Nephrol. 2022, 33, 810–827. [Google Scholar] [CrossRef]
- Shadvar, K.; Nader, N.; Vahed, N.; Sanaie, S.; Iranpour, A.; Mahmoodpoor, A.; Vahedian-Azimi, A.; Samim, A.; Rahimi-Bashar, F. Comparison of lactate/albumin ratio to lactate and lactate clearance for predicting outcomes in patients with septic shock admitted to intensive care unit: An observational study. Sci. Rep. 2022, 12, 13047. [Google Scholar] [CrossRef]
- Bhat, S.; Swenson, K.; Francis, M.; Wira, C. Lactate clearance predicts survival among patients in the emergency department with severe sepsis. West. J. Emerg. Med. 2015, 16, 1118–1126. [Google Scholar] [CrossRef]
- Chertoff, J.; Chisum, M.; Simmons, L.; King, B.; Walker, M.; Lascano, J. Prognostic utility of plasma lactate measured between 24 and 48 h after initiation of early goal-directed therapy in the management of sepsis, severe sepsis, and septic shock. J. Intensive Care 2016, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Huang, J.; Li, X.; Liang, S.; Wang, Q.; Zhang, H. Risk factors for mortality in sepsis patients without lactate levels increasing early. Emerg. Med. Int. 2023, 2023, 6620157. [Google Scholar] [CrossRef] [PubMed]
- Nicola, R.; Shaqdan, K.; Aran, K.; Mansouri, M.; Singh, A.; Abujudeh, H. Contrast-induced nephropathy: Identifying the risks, choosing the right agent, and reviewing effective prevention and management methods. Curr. Probl. Diagn. Radiol. 2015, 44, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Scolari, F.; Schneider, D.; Fogazzi, D.; Gus, M.; Rover, M.; Bonatto, M.; Neves de Araújo, G.; Zimerman, A.; Sganzerla, D.; Adams Goldraichet, L.; et al. Association between serum lactate levels and mortality in patients with cardiogenic shock receiving mechanical circulatory support: A multicenter retrospective cohort study. BMC Cardiovasc. Disord. 2020, 20, 496. [Google Scholar] [CrossRef]
- Rissel, R.; Koelm, S.; Schepers, M.; Dohle, D.; Albers, J.; Oezkur, M.; Kriege, M.; Bodenstein, M. Elevated lactate levels and impaired lactate clearance during extracorporeal life support (ecls) are associated with poor outcome in cardiac surgery patients. PLoS ONE 2022, 17, e0278139. [Google Scholar] [CrossRef] [PubMed]
- Morse, B.; Vijay, N.; Morris, M. Mechanistic modeling of monocarboxylate transporter-mediated toxicokinetic/toxicodynamic interactions between γ-hydroxybutyrate and l-lactate. AAPS J. 2014, 16, 756–770. [Google Scholar] [CrossRef]
- Karkar, A.; Ronco, C. Prescription of crrt: A pathway to optimize therapy. Ann. Intensive Care 2020, 10, 32. [Google Scholar] [CrossRef]
- Gemmell, L.; Docking, R.; Black, E. Renal replacement therapy in critical care. BJA Educ. 2017, 17, 88–93. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Moreno, R.; Vincent, J.L.; Matos, R.; Mendonça, A.; Cantraine, F.; Thijs, L.; Takala, J.; Sprung, C.; Antonelli, M.; Bruining, H.; et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working group on sepsis related problems of the ESICM. Intensive Care Med. 1999, 25, 686–696. [Google Scholar] [CrossRef]
- Odom, S.R.; Howell, M.; Silva, G.; Nielsen, V.; Gupta, A.; Shapiro, N.; Talmor, D. Lactate clearance as a predictor of mortality in trauma patients. J. Trauma. Acute Care Surg. 2013, 74, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.; Alhazzani, W.; Levy, M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.; Sprung, C.; Nunnally, M.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.R.; Wernly, B.; Binneboessel, S.; Baldia, P.; Duse, D.A.; Erkens, R.; Kelm, M.; Mamandipoor, B.; Osmani, V.; Jung, C. Failure of Lactate Clearance Predicts the Outcome of Critically Ill Septic Patients. Diagnostics 2020, 10, 1105. [Google Scholar] [CrossRef]
- Nesseler, N.; Defontaine, A.; Launey, Y.; Morcet, J.; Mall’edant, Y.; Seguin, P. Long-term mortality and quality of life after septic shock: A Follow-Up Observational Study. Intensive Care Med. 2013, 39, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.G.; McCrone, M.P.; Koo, G.; Weltz, A.S.; Chiu, W.C.; Scalea, T.M.; Diaz, J.J.; Lissauer, M.E. Epidemiology and outcomes of acute kidney injury in critically ill surgical patients. J. Crit. Care 2015, 30, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.R.; Lee, I.S.; Lee, H.Y. Effects of hypertension, diabetes, and/or cardiovascular disease on health-related quality of life in elderly Korean individuals: A population-based cross-sectional survey. Asian Nurs. Res. 2014, 8, 267–273. [Google Scholar] [CrossRef]
- Persson, J.; Holmegaard, L.; Karlberg, I.; Redfors, P.; Jood, K.; Jern, C.; Blomstrand, C.; Forsberg-Wärleby, G. Spouses of stroke survivors report reduced health-related quality of life even in long-term follow-up: Results from Sahlgrenska Academy study on ischemic stroke. Stroke 2015, 46, 2584–2590. [Google Scholar] [CrossRef]
- Sundh, J.; Johansson, G.; Larsson, K.; Linden, A.; Löfdahl, C.G.; Janson, C.; Sandström, T. Comorbidity and health-related quality of life in patients with severe chronic obstructive pulmonary disease attending Swedish secondary care units. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Son, H.; Shin, S.K. Influence of frailty on health-related quality of life in pre-dialysis patients with chronic kidney disease in Korea: A cross-sectional study. Health Qual. Life Outcomes 2015, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Lee, Y.J.; Lim, S.Y.; Koh, S.O.; Choi, W.I.; Kim, S.C.; Chon, G.R.; Kim, J.H.; Kim, J.Y.; Lim, J.; et al. Clinical characteristics and prognosis of pneumonia and sepsis: Multicenter Study. Minerva Anestesiol. 2013, 79, 1356–1365. [Google Scholar] [PubMed]
- Mansur, A.; Klee, Y.; Popov, A.F.; Erlenwein, J.; Ghadimi, M.; Beissbarth, T.; Bauer, M.; Hinz, J. Primary bacteremia is associated with a higher mortality risk compared with pulmonary and intra-abdominal infections in patients with sepsis: A prospective observational cohort study. BMJ Open 2015, 5, e006616. [Google Scholar] [CrossRef] [PubMed]
- Drumheller, B.C.; Agarwal, A.; Mikkelsen, M.E.; Sante, S.C.; Weber, A.L.; Goyal, M.; Gaieski, D.F. Risk factors for mortality despite early protocolized resuscitation for severe sepsis and septic shock in the emergency department. J. Crit. Care 2016, 31, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Sales Júnior, J.A.L.; David, C.M.; Hatum, R.; Souza, P.C.S.; Japiassú, A.; Pinheiro, C.T.; Friedman, G.; Silva, O.B.D.; Dias, M.D.A.; Koterba, E.; et al. Sepse Brasil: Estudo epidemiológico da sepse em Unidades de Terapia Intensiva brasileiras. Rev. Bras. Ter. Intensiv. 2006, 18, 9–17. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Garcia-Garmendia, J.L.; Barrero-Almodovar, A.; Jimenez-Jimenez, F.J.; Perez-Paredes, C.; Ortiz-Leyba, C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit. Care Med. 2003, 31, 2742–2751. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Coffernils, M.; Leon, M.; Gris, P.; Vincent, J.-L. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 1991, 99, 956–962. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Slottosch, I.; Liakopoulos, O.; Kuhn, E.; Scherner, M.; Deppe, A.-C.; Sabashnikov, A.; Mader, N.; Choi, Y.-H.; Wippermann, J.; Wahlers, T. Lactate and lactate clearance as valuable tool to evaluate ECMO therapy in cardiogenic shock. J. Crit. Care 2017, 42, 35–41. [Google Scholar] [CrossRef]
- Ryoo, S.M.; Lee, J.; Lee, Y.-S.; Lee, J.H.; Lim, K.S.; Huh, J.W.; Hong, S.-B.; Lim, C.-M.; Koh, Y.; Kim, W.Y. Lactate level versus lactate clearance for predicting mortality in patients with septic shock defined by sepsis-3. Crit. Care Med. 2018, 46, e489–e495. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Nakada, T.A.; Walley, K.R.; Russell, J.A. Significance of lactate clearance in septic shock patients with high bilirubin levels. Sci. Rep. 2021, 11, 6313. [Google Scholar] [CrossRef] [PubMed]
- Page, B.; Vieillard-Baron, A.; Chergui, K.; Peyrouset, O.; Rabiller, A.; Beauchet, A.; Aegerter, P.; Jardin, F. Early veno-venous haemodiafiltration for sepsis-related multiple organ failure. Crit. Care 2005, 9, R755–R763. [Google Scholar] [CrossRef] [PubMed]
- Kawarazaki, H.; Uchino, S.; Tokuhira, N.; Ohnuma, T.; Namba, Y.; Katayama, S.; Toki, N.; Takeda, K.; Yasuda, H.; Izawa, J.; et al. Who may not benefit from continuous renal replacement therapy in acute kidney injury? Hemodial. Int. 2013, 17, 624–632. [Google Scholar] [CrossRef]
Variables | Survivors (n = 47) | Non-Survivors (n = 61) | p-Value |
---|---|---|---|
Age (range, years) | 71 (62–81) | 75 (63–82.5) | 0.357 |
Male % (n) | 68.1 (32) | 59.0 (36) | 0.333 |
COVID-19 infection % (n) | 46.8 (22) | 77 (47) | 0.009 |
Comorbidities % (n) | |||
| 21.3 (10) | 36.1 (22) | 0.095 |
| 10.6 (5) | 14.8 (9) | 0.577 |
| 23.4 (11) | 16.4 (10) | 0.361 |
| 40.4 (19) | 32.8 (20) | 0.413 |
| 59.6 (28) | 67.2 (41) | 0.413 |
| 51.1 (24) | 42.6 (26) | 0.383 |
| 14.9 (7) | 39.3 (24) | 0.006 |
| 10.6 (5) | 6.6 (4) | 0.499 |
| 36.2 (17) | 29.5 (18) | 0.500 |
Smoking % (n) | 17 (8) | 13.3 (8) | 0.599 |
LOS ICU (range, days) | 7 (6–10) | 6 (4–10) | 0.083 |
Plasma exchange % (n) | 59.6 (28) | 30 (18) | 0.002 |
CVVHDF % (n) | 59.6 (28) | 39.3 (24) | 0.037 |
HFNC % (n) | 68.1 (32) | 65.6 (40) | 0.784 |
CPAP % (n) | 55.3 (26) | 58.3 (35) | 0.755 |
Mechanical ventilation % (n) | 55.3 (26) | 63.3 (38) | 0.401 |
SpO2 at ICU admission (%) | 81 (74–87) | 78 (74–88) | 0.377 |
PaO2 at 1 h of ICU admission (mmHg) (range, value) | 56 (49–62) | 54 (47–61.5) | 0.511 |
FiO2 (%) | 1.0 (0.9–1.0) | 1.0 (0.9–1.0) | 0.997 |
PaCO2 (mmHg) (range, value) | 35.4 (29.0–39.0) | 36 (29–42.9) | 0.671 |
APACHE II score | 27 (23–35) | 27 (23–35) | <0.001 |
SOFA score | 2 (1–3) | 2 (1–3) | <0.001 |
Variables | Survivors | Non-Survivors | p-Value |
---|---|---|---|
WBC × 103/mm3 | 16.03 (11.36, 21.58) | 18.36 (11.88, 26.28) | 0.203 |
Neutrophils × 103/mm3 | 11.77 (1.87, 17.48) | 10.25 (3.80, 17.56) | 0.463 |
Lymphocytes × 103/mm3 | 0.500 (0.106, 1.198) | 0.533 (0.123, 1.871) | 0.319 |
C-reactive protein mg/dL | 101 (59, 154) | 138 (69.5, 207.5) | 0.025 |
Procalcitonin ng/mL | 3.2 (0.9, 8.6) | 6.8 (3.3, 10.8) | 0.006 |
Fibrinogen g/L | 419 (275, 559) | 460 (287, 621) | 0.381 |
Serum pH | 7.43 (7.35, 7.48) | 7.39 (7.29, 7.47) | 0.270 |
Hb g/L | 13.5 (11.1, 14.7) | 13.0 (11.2, 14.7) | 0.901 |
Lactic acid at ICU admission mmol/L | 2.9 (2.4, 3.6) | 4.3 (2.7, 4.8) | 0.001 |
Mean lactate at 6 h mmol/L | 2.5 (2.1, 3.1) | 3.9 (2.55, 5.0) | <0.001 |
Mean lactate at 24 h mmol/L | 2.1 (1.8, 2.5) | 4.8 (2.5, 5.85) | <0.001 |
Lactate clearance at 6 h of ICU admission | 0.140 (0.09, 0.250) | 0 (−0.090, 0.1350) | <0.001 |
Lactate clearance at 24 h of ICU admission | 0.260 (0.220, 0.360) | −0.2000 (−0.2750, 0.1500) | <0.001 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Mortality (yes vs. no) | ||||
Gender | 0.675 (0.304–1.499) | 0.334 | 0.753 (0.270–2.102) | 0.588 |
Age | 1.017 (0.990–1.045) | 0.229 | 1.039 (1.000–1.079) | 0.051 |
WBC | 1.036 (0.988–1.086) | 0.144 | 1.003 (0.933–1.078) | 0.940 |
CRP | 1.005 (1.001–1.010) | 0.029 | 1.006 (1.000–1.012) | 0.044 |
Procalcitonin | 1.036 (0.986–1.088) | 0.157 | 0.996 (0.938–1.059) | 0.905 |
Fibrinogen | 1.001 (0.999–1.003) | 0.346 | 1.000 (0.996–1.003) | 0.790 |
Lactic acid at ICU admission | 1.587 (1.145–2.201) | 0.006 | ||
Lactic acid at 6 h after ICU admission | 1.954 (1.376–2.776) | <0.001 | ||
Lactic acid at 24 h after ICU admission | 2.440 (1.687–3.528) | <0.001 | ||
Lactate clearance at 6 h | 0.058 (0.007–0.476) | 0.008 | ||
Lactate clearance at 24 h | 0.011 (0.002–0.065) | <0.001 | 2.556 (1.731–3.775) | <0.001 |
Variables | RRT Instituted | No. of Events | No. of Patients | Censored | Mortality [%] a | Chi-Square | p-Value | |
---|---|---|---|---|---|---|---|---|
N | Percent | (95% CI) | ||||||
Lactate parameter at 6 and 24 h after ICU admission | Plasmapheresis | 11.16 | 0.001 | |||||
With | 18 | 46 | 28 | 60.9% | 15.65 (12.25–19.05) | |||
Without | 43 | 62 | 19 | 30.6% | 4.07 (0.52–7.61) | |||
Overall | 61 | 108 | 47 | 43.5% | 8.91 (5.52–12.29) | |||
CVVHDF | 3.45 | 0.063 | ||||||
With | 24 | 52 | 28 | 53.8% | 10.04 (4.16–15.92) | |||
Without | 37 | 56 | 19 | 33.9% | 7.66 (3.71–11.62) | |||
Overall | 61 | 108 | 47 | 43.5% | 8.91 (5.52–12.29) | |||
Lactate clearance at 6 and 24 h | Plasmapheresis | 2.14 | 0.143 | |||||
With | 18 | 46 | 28 | 60.9% | 19.70 (17.41–21.98) | |||
Without | 43 | 62 | 19 | 30.6% | 17.61 (15.44–19.78) | |||
Overall | 61 | 108 | 47 | 43.5% | 18.50 (16.92–20.08) | |||
CVVHDF | 2.97 | 0.085 | ||||||
With | 24 | 52 | 28 | 53.8% | 19.5 (17.34–21.66) | |||
Without | 37 | 56 | 19 | 33.9% | 17.57 (15.28–19.86) | |||
Overall | 61 | 108 | 47 | 43.5% | 18.50 (16.92–20.08) |
AUC | SE | 95% CI | Sensitivity | Specificity | Cutoff Points | p-Value | |
---|---|---|---|---|---|---|---|
WBC | 0.572 | 0.055 | 0.464–0.679 | 0.541 | 0.532 | 16.705 | 0.203 |
CRP | 0.626 | 0.054 | 0.520–0.733 | 0.623 | 0.617 | 124.5 | 0.025 |
Procalcitonin | 0.655 | 0.054 | 0.550–0.760 | 0.639 | 0.638 | 4.75 | 0.006 |
Lactate level at ICU admission | 0.682 | 0.052 | 0.580–0.785 | 0.672 | 0.596 | 3.25 | 0.001 |
Lactate level at 6 h after ICU admission | 0.711 | 0.051 | 0.611–0.811 | 0.689 | 0.574 | 2.75 | <0.001 |
Lactate level at 24 h after ICU admission | 0.797 | 0.044 | 0.712–0.883 | 0.770 | 0.532 | 2.15 | <0.001 |
Lactate clearance at 6 h | 0.717 | 0.051 | 0.618–0.817 | 0.638 | 0.721 | 0.1150 | <0.001 |
Lactate clearance at 24 h | 0.816 | 0.044 | 0.730–0.902 | 0.783 | 0.770 | 0.2150 | <0.001 |
Variable | Death | Lactate at ICU Admission | Median Lactate at 6 h | Median Lactate at 24 h | Lactate Clearance at 6 h | Lactate Clearance at 24 h | CRP | |
---|---|---|---|---|---|---|---|---|
Death | Spearman’s rho | - | ||||||
p-value | - | |||||||
Lactate at ICU admission | Spearman’s rho | 0.314 *** | - | |||||
p-value | <0.001 | - | ||||||
Median lactate at 6 h | Spearman’s rho | 0.363 *** | 0.818 *** | - | ||||
p-value | <0.001 | <0.001 | - | |||||
Median lactate at 24 h | Spearman’s rho | 0.511 *** | 0.756 *** | 0.896 *** | - | |||
p-value | <0.001 | <0.001 | <0.001 | - | ||||
Lactate clearance at 6 h | Spearman’s rho | −0.373 *** | - | −0.512 *** | −0.497 *** | - | ||
p-value | <0.001 | - | <0.001 | <0.001 | - | |||
Lactate clearance at 24 h | Spearman’s rho | −0.543 *** | - | −0.462 *** | −0.668 *** | 0.772 *** | - | |
p-value | <0.001 | - | <0.001 | <0.001 | <0.001 | - | ||
FBG | Spearman’s rho | - | - | - | - | - | - | 0.393 *** |
p-value | - | - | - | - | - | - | ˂0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trebuian, C.I.; Marza, A.M.; Chioibaş, R.; Şutoi, D.; Petrica, A.; Crintea-Najette, I.; Popa, D.; Borcan, F.; Flondor, D.; Mederle, O.A. Lactate Profile Assessment—A Good Predictor of Prognosis in Patients with COVID-19 and Septic Shock Requiring Continuous Renal Therapy. Clin. Pract. 2024, 14, 980-994. https://doi.org/10.3390/clinpract14030078
Trebuian CI, Marza AM, Chioibaş R, Şutoi D, Petrica A, Crintea-Najette I, Popa D, Borcan F, Flondor D, Mederle OA. Lactate Profile Assessment—A Good Predictor of Prognosis in Patients with COVID-19 and Septic Shock Requiring Continuous Renal Therapy. Clinics and Practice. 2024; 14(3):980-994. https://doi.org/10.3390/clinpract14030078
Chicago/Turabian StyleTrebuian, Cosmin Iosif, Adina Maria Marza, Raul Chioibaş, Dumitru Şutoi, Alina Petrica, Iulia Crintea-Najette, Daian Popa, Florin Borcan, Daniela Flondor, and Ovidiu Alexandru Mederle. 2024. "Lactate Profile Assessment—A Good Predictor of Prognosis in Patients with COVID-19 and Septic Shock Requiring Continuous Renal Therapy" Clinics and Practice 14, no. 3: 980-994. https://doi.org/10.3390/clinpract14030078
APA StyleTrebuian, C. I., Marza, A. M., Chioibaş, R., Şutoi, D., Petrica, A., Crintea-Najette, I., Popa, D., Borcan, F., Flondor, D., & Mederle, O. A. (2024). Lactate Profile Assessment—A Good Predictor of Prognosis in Patients with COVID-19 and Septic Shock Requiring Continuous Renal Therapy. Clinics and Practice, 14(3), 980-994. https://doi.org/10.3390/clinpract14030078