Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia–Pacific Region: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Search Strategy and Eligibility Criteria
2.3. Data Extraction and Quality Assessment
3. Results
3.1. Overview
3.2. Methodological Characteristics of Relevant Studies
3.3. Risk of Bias Based on Newcastle–Ottawa Scale
3.4. Gut Dysbiosis and Gut Microbiome Changes among PLHIV
3.5. Association of Gut Microbiome Changes with Clinical Parameters among PLHIV
4. Discussion
4.1. Gut Dysbiosis in HIV Infection Reflects Increased Pathobionts and Decreased SCFA Producers
4.2. Predominant Taxa as Potential Predictors of Severity and Outcomes during HIV Infection
4.3. Treatment Can Partially Restore Gut Microbial Diversity
4.4. Study Limitations and Potential Bias in Review Process
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Govender, R.D.; Hashim, M.J.; Khan, M.A.; Mustafa, H.; Khan, G. Global Epidemiology of HIV/AIDS: A Resurgence in North America and Europe. J. Epidemiol. Glob. Health 2021, 11, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Chen, J.; Wang, X.; Xie, Y.; Zhang, X.; Han, D.; Fu, H.; Yin, W.; Wu, N. Global, Regional, and National HIV/AIDS Disease Burden Levels and Trends in 1990–2019: A Systematic Analysis for the Global Burden of Disease 2019 Study. Front. Public Health 2023, 11, 1068664. [Google Scholar] [CrossRef] [PubMed]
- Phanuphak, N.; Lo, Y.-R.; Shao, Y.; Solomon, S.S.; O’Connell, R.J.; Tovanabutra, S.; Chang, D.; Kim, J.H.; Excler, J.L. HIV Epidemic in Asia: Implications for HIV Vaccine and Other Prevention Trials. AIDS Res. Hum. Retroviruses 2015, 31, 1060–1076. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-J.; Wu, E. The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef]
- Wiertsema, S.P.; van Bergenhenegouwen, J.; Garssen, J.; Knippels, L.M.J. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients 2021, 13, 886. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.J.; Tien, P.C.; Somsouk, M.; Price, J.C. The Human Microbiome and Gut–Liver Axis in People Living with HIV. Curr. HIV/AIDS Rep. 2023, 20, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Vujkovic-Cvijin, I.; Dunham, R.M.; Iwai, S.; Maher, M.C.; Albright, R.G.; Broadhurst, M.J.; Hernandez, R.D.; Lederman, M.M.; Huang, Y.; Somsouk, M.; et al. Dysbiosis of the Gut Microbiota Is Associated with HIV Disease Progression and Tryptophan Catabolism. Sci. Transl. Med. 2013, 5, 193ra91. [Google Scholar] [CrossRef] [PubMed]
- Vujkovic-Cvijin, I.; Somsouk, M. HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Curr. HIV/AIDS Rep. 2019, 16, 204–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Andreu-Sánchez, S.; Vadaq, N.; Wang, D.; Matzaraki, V.; Van Der Heijden, W.A.; Gacesa, R.; Weersma, R.K.; Zhernakova, A.; Vandekerckhove, L.; et al. Gut Dysbiosis Associates with Cytokine Production Capacity in Viral-Suppressed People Living with HIV. Front. Cell. Infect. Microbiol. 2023, 13, 1202035. [Google Scholar] [CrossRef]
- Geng, S.-T.; Zhang, Z.-Y.; Wang, Y.-X.; Lu, D.; Yu, J.; Zhang, J.-B.; Kuang, Y.-Q.; Wang, K.-H. Regulation of Gut Microbiota on Immune Reconstitution in Patients with Acquired Immunodeficiency Syndrome. Front. Microbiol. 2020, 11, 594820. [Google Scholar] [CrossRef] [PubMed]
- Borgognone, A.; Noguera-Julian, M.; Oriol, B.; Noël-Romas, L.; Ruiz-Riol, M.; Guillén, Y.; Parera, M.; Casadellà, M.; Duran, C.; Puertas, M.C.; et al. Gut Microbiome Signatures Linked to HIV-1 Reservoir Size and Viremia Control. Microbiome 2022, 10, 59. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Chen, M.-H.; Geng, S.-T.; Yu, J.; Kuang, Y.-Q.; Luo, H.-Y.; Wang, K.-H. Effects of Probiotics on Diarrhea and CD4 Cell Count in People Living With HIV: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2021, 12, 570520. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Bondia, C.; Parera, M.; Català-Moll, F.; Casadellà, M.; Elizalde-Torrent, A.; Aguiló, M.; Espadaler-Mazo, J.; Santos, J.R.; Paredes, R.; Noguera-Julian, M. Probiotic Effects on Immunity and Microbiome in HIV-1 Discordant Patients. Front. Immunol. 2022, 13, 1066036. [Google Scholar] [CrossRef] [PubMed]
- Falasca, K.; Vecchiet, J.; Ucciferri, C.; Di Nicola, M.; D’Angelo, C.; Reale, M. Effect of Probiotic Supplement on Cytokine Levels in HIV-Infected Individuals: A Preliminary Study. Nutrients 2015, 7, 8335–8347. [Google Scholar] [CrossRef]
- D’Angelo, C.; Reale, M.; Costantini, E. Microbiota and Probiotics in Health and HIV Infection. Nutrients 2017, 9, 615. [Google Scholar] [CrossRef]
- Suzuki, T.A.; Worobey, M. Geographical Variation of Human Gut Microbial Composition. Biol. Lett. 2014, 10, 20131037. [Google Scholar] [CrossRef] [PubMed]
- Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV Subtype Diversity Worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [Google Scholar] [CrossRef]
- Cao, Z.; Li, J.; Chen, H.; Song, C.; Shen, Z.; Zhou, X.; Lan, G.; Zhu, Q.; Liang, S.; Xing, H.; et al. Effects of HIV-1 Genotype on Baseline CD4+ Cell Count and Mortality before and after Antiretroviral Therapy. Sci. Rep. 2020, 10, 15875. [Google Scholar] [CrossRef]
- Gartner, M.J.; Roche, M.; Churchill, M.J.; Gorry, P.R.; Flynn, J.K. Understanding the Mechanisms Driving the Spread of Subtype C HIV-1. EBioMedicine 2020, 53, 102682. [Google Scholar] [CrossRef]
- Qing, Y.; Xie, H.; Su, C.; Wang, Y.; Yu, Q.; Pang, Q.; Cui, F. Gut Microbiome, Short-Chain Fatty Acids, and Mucosa Injury in Young Adults with Human Immunodeficiency Virus Infection. Dig. Dis. Sci. 2019, 64, 1830–1843. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ou, Z.; Tang, X.; Zhou, Y.; Xu, H.; Wang, X.; Li, K.; He, J.; Du, Y.; Wang, H.; et al. Alterations in the Gut Microbiota of Patients with Acquired Immune Deficiency Syndrome. J. Cell. Mol. Med. 2018, 22, 2263–2271. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Sun, J.; Wei, L.; Jiang, H.; Hu, C.; Yang, J.; Huang, Y.; Ruan, B.; Zhu, B. Altered Gut Microbiota Correlate with Different Immune Responses to HAART in HIV-Infected Individuals. BMC Microbiol. 2021, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Mingjun, Z.; Fei, M.; Zhousong, X.; Wei, X.; Jian, X.; Yuanxue, Y.; Youfeng, S.; Zhongping, C.; Yiqin, L.; Xiaohong, Z.; et al. 16S rDNA Sequencing Analyzes Differences in Intestinal Flora of Human Immunodeficiency Virus (HIV) Patients and Association with Immune Activation. Bioengineered 2022, 13, 4085–4099. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhang, J.-B.; Wang, Y.-X.; Geng, S.-T.; Zhang, Z.; Xu, Y.; Li, S.-Y.; Wang, K.-H.; Kuang, Y.-Q. Association between CD4+ T Cell Counts and Gut Microbiota and Serum Cytokines Levels in HIV-Infected Immunological Non-Responders. BMC Infect. Dis. 2021, 21, 742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, Z.; Zhou, J.; Li, Y.; Ning, C.; Su, Q.; Ye, L.; Ai, S.; Lai, J.; Pan, P.; et al. The Altered Metabolites Contributed by Dysbiosis of Gut Microbiota Are Associated with Microbial Translocation and Immune Activation during HIV Infection. Front. Immunol. 2023, 13, 1020822. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, S.; Zhao, C.; Shi, J.; Li, C.; Ling, S.; Cheng, J.; Dong, W.; Xu, J. Alterations in the Gut Microbiota of AIDS Patients with Pneumocystis Pneumonia and Correlations with the Lung Microbiota. Front. Cell. Infect. Microbiol. 2022, 12, 1033427. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Lin, H.; Chen, X.; Shi, R.; Yuan, S.; Li, J.; Zhu, B.; Xu, X.; Shen, W.; Wang, K.; et al. Gut Microbiota and Fecal Metabolites Associated with Neurocognitive Impairment in HIV-Infected Population. Front. Cell. Infect. Microbiol. 2021, 11, 723840. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, F.; Zhang, R.; Shen, Y.; Liu, L.; Wang, J.; Yang, J.; Tang, Q.; Xun, J.; Qi, T.; et al. Changes in Intestinal Microbiota in HIV-1-Infected Subjects Following cART Initiation: Influence of CD4+ T Cell Count. Emerg. Microbes Infect. 2018, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Jin, C.; Xie, T.; Cheng, Y.; Li, L.; Wu, N. Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population. Sci. Rep. 2016, 6, 30673. [Google Scholar] [CrossRef]
- Imahashi, M.; Ode, H.; Kobayashi, A.; Nemoto, M.; Matsuda, M.; Hashiba, C.; Hamano, A.; Nakata, Y.; Mori, M.; Seko, K.; et al. Impact of Long-Term Antiretroviral Therapy on Gut and Oral Microbiotas in HIV-1-Infected Patients. Sci. Rep. 2021, 11, 960. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, A.; Koga, M.; Mizutani, T.; Parbie, P.K.; Prawisuda, D.; Yusa, N.; Sedohara, A.; Kikuchi, T.; Ikeuchi, K.; Adachi, E.; et al. Unique Gut Microbiome in HIV Patients on Antiretroviral Therapy (ART) Suggests Association with Chronic Inflammation. Microbiol. Spectr. 2021, 9, e00708-21. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, A.; Koga, M.; Mizutani, T.; Lim, L.A.; Adachi, E.; Ikeuchi, K.; Ueda, R.; Aoyagi, H.; Tanaka, S.; Kiyono, H.; et al. Prolonged Gut Dysbiosis and Fecal Excretion of Hepatitis A Virus in Patients Infected with Human Immunodeficiency Virus. Viruses 2021, 13, 2101. [Google Scholar] [CrossRef]
- Jayanama, K.; Phuphuakrat, A.; Pongchaikul, P.; Prombutara, P.; Nimitphong, H.; Reutrakul, S.; Sungkanuparph, S. Association between Gut Microbiota and Prediabetes in People Living with HIV. Curr. Res. Microb. Sci. 2022, 3, 100143. [Google Scholar] [CrossRef] [PubMed]
- Mak, G.; Zaunders, J.J.; Bailey, M.; Seddiki, N.; Rogers, G.; Leong, L.; Phan, T.G.; Kelleher, A.D.; Koelsch, K.K.; Boyd, M.A.; et al. Preservation of Gastrointestinal Mucosal Barrier Function and Microbiome in Patients with Controlled HIV Infection. Front. Immunol. 2021, 12, 688886. [Google Scholar] [CrossRef] [PubMed]
- Koliada, A.; Moseiko, V.; Romanenko, M.; Lushchak, O.; Kryzhanovska, N.; Guryanov, V.; Vaiserman, A. Sex Differences in the Phylum-level Human Gut Microbiota Composition. BMC Microbiol. 2021, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Herzog, E.L.; Wäfler, M.; Keller, I.; Wolf, S.; Zinkernagel, M.S.; Zysset-Burri, D.C. The Importance of Age in Compositional and Functional Profiling of the Human Intestinal Microbiome. PLoS ONE 2021, 16, e0258505. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.M.; Frank, D.N.; Wilson, C.C. The Gut Microbiome and HIV-1 Pathogenesis: A Two-Way Street. AIDS 2016, 30, 2737–2751. [Google Scholar] [CrossRef]
- Rocafort, M.; Noguera-Julian, M.; Rivera, J.; Pastor, L.; Guillén, Y.; Langhorst, J.; Parera, M.; Mandomando, I.; Carrillo, J.; Urrea, V.; et al. Evolution of the Gut Microbiome Following Acute HIV-1 Infection. Microbiome 2019, 7, 73. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Nogal, A.; Valdes, A.M.; Menni, C. The Role of Short-Chain Fatty Acids in the Interplay between Gut Microbiota and Diet in Cardio-Metabolic Health. Gut Microbes 2021, 13, 1897212. [Google Scholar] [CrossRef]
- Xiong, R.-G.; Zhou, D.-D.; Wu, S.-X.; Huang, S.-Y.; Saimaiti, A.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022, 11, 2863. [Google Scholar] [CrossRef]
- Baltazar-Díaz, T.A.; Amador-Lara, F.; Andrade-Villanueva, J.F.; González-Hernández, L.A.; Cabrera-Silva, R.I.; Sánchez-Reyes, K.; Álvarez-Zavala, M.; Valenzuela-Ramírez, A.; Del Toro-Arreola, S.; Bueno-Topete, M.R. Gut Bacterial Communities in HIV-Infected Individuals with Metabolic Syndrome: Effects of the Therapy with Integrase Strand Transfer Inhibitor-Based and Protease Inhibitor-Based Regimens. Microorganisms 2023, 11, 951. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Cole, M.; Morris, A.; Martinson, J.; Mckay, H.; Mimiaga, M.; Margolick, J.; Fitch, A.; Methe, B.; et al. Signature Changes in Gut Microbiome Are Associated with Increased Susceptibility to HIV-1 Infection in MSM. Microbiome 2021, 9, 237. [Google Scholar] [CrossRef]
- González-Hernández, L.A.; Ruiz-Briseño, M.D.R.; Sánchez-Reyes, K.; Alvarez-Zavala, M.; Vega-Magaña, N.; López-Iñiguez, A.; Díaz-Ramos, J.A.; Martínez-Ayala, P.; Soria-Rodriguez, R.; Ramos-Solano, M.; et al. Alterations in Bacterial Communities, SCFA and Biomarkers in an Elderly HIV-Positive and HIV-Negative Population in Western Mexico. BMC Infect. Dis. 2019, 19, 234. [Google Scholar] [CrossRef]
- McBride, J.A.; Striker, R. Imbalance in the Game of T Cells: What Can the CD4/CD8 T-Cell Ratio Tell Us about HIV and Health? PLoS Pathog. 2017, 13, e1006624. [Google Scholar] [CrossRef]
- Catalfamo, M.; Wilhelm, C.; Tcheung, L.; Proschan, M.; Friesen, T.; Park, J.-H.; Adelsberger, J.; Baseler, M.; Maldarelli, F.; Davey, R.; et al. CD4 and CD8 T Cell Immune Activation during Chronic HIV Infection: Roles of Homeostasis, HIV, Type I IFN, and IL-7. J. Immunol. 2011, 186, 2106–2116. [Google Scholar] [CrossRef]
- Noiman, A.; Esber, A.; Wang, X.; Bahemana, E.; Adamu, Y.; Iroezindu, M.; Kiweewa, F.; Maswai, J.; Owuoth, J.; Maganga, L.; et al. Clinical Factors and Outcomes Associated with Immune Non-Response among Virally Suppressed Adults with HIV from Africa and the United States. Sci. Rep. 2022, 12, 1196. [Google Scholar] [CrossRef]
- Yang, X.; Su, B.; Zhang, X.; Liu, Y.; Wu, H.; Zhang, T. Incomplete Immune Reconstitution in HIV/AIDS Patients on Antiretroviral Therapy: Challenges of Immunological Non-Responders. J. Leukoc. Biol. 2020, 107, 597–612. [Google Scholar] [CrossRef]
- Vujkovic-Cvijin, I.; Sortino, O.; Verheij, E.; Sklar, J.; Wit, F.W.; Kootstra, N.A.; Sellers, B.; Brenchley, J.M.; Ananworanich, J.; Loeff, M.S.V.D.; et al. HIV-Associated Gut Dysbiosis Is Independent of Sexual Practice and Correlates with Noncommunicable Diseases. Nat. Commun. 2020, 11, 2448. [Google Scholar] [CrossRef]
- Forbes, J.D.; Van Domselaar, G.; Bernstein, C.N. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front. Microbiol. 2016, 7, 1081. [Google Scholar] [CrossRef] [PubMed]
- Crost, E.H.; Coletto, E.; Bell, A.; Juge, N. Ruminococcus Gnavus: Friend or Foe for Human Health. FEMS Microbiol. Rev. 2023, 47, fuad014. [Google Scholar] [CrossRef] [PubMed]
- Sortino, O.; Phanuphak, N.; Schuetz, A.; Ortiz, A.M.; Chomchey, N.; Belkaid, Y.; Davis, J.; Mystakelis, H.A.; Quiñones, M.; Deleage, C.; et al. Impact of Acute HIV Infection and Early Antiretroviral Therapy on the Human Gut Microbiome. Open Forum Infect. Dis. 2020, 7, ofz367. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.M.; Lee, E.J.; Kotter, C.V.; Austin, G.L.; Dong, Z.; Hecht, D.K.; Gianella, S.; Siewe, B.; Smith, D.M.; Landay, A.L.; et al. An Altered Intestinal Mucosal Microbiome in HIV-1 Infection Is Associated with Mucosal and Systemic Immune Activation and Endotoxemia. Mucosal Immunol. 2014, 7, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Kaur, U.S.; Shet, A.; Rajnala, N.; Gopalan, B.P.; Moar, P.; D., H.; Singh, B.P.; Chaturvedi, R.; Tandon, R. High Abundance of Genus Prevotella in the Gut of Perinatally HIV-Infected Children Is Associated with IP-10 Levels despite Therapy. Sci. Rep. 2018, 8, 17679. [Google Scholar] [CrossRef] [PubMed]
- Noguera-Julian, M.; Rocafort, M.; Guillén, Y.; Rivera, J.; Casadellà, M.; Nowak, P.; Hildebrand, F.; Zeller, G.; Parera, M.; Bellido, R.; et al. Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine 2016, 5, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.S.; Shaffer, M.; Nusbacher, N.M.; Griesmer, C.; Fiorillo, S.; Schneider, J.M.; Preston Neff, C.; Li, S.X.; Fontenot, A.P.; Campbell, T.; et al. An Exploration of Prevotella-Rich Microbiomes in HIV and Men Who Have Sex with Men. Microbiome 2018, 6, 198. [Google Scholar] [CrossRef] [PubMed]
- Gnoni, M.L. HIV and Aging: HIV Seen as a Chronic Inflammatory Intestinal Disease. Nort. Healthc. Med. J. 2023, 1. [Google Scholar] [CrossRef]
- Cook, R.; Fulcher, J.; Tobin, N.; Li, F.; Lee, D.; Woodward, C.; Javanbakht, M.; Brookmeyer, R.; Shoptaw, S.; Bolan, R.; et al. Combined Effects of HIV and Obesity on the Gastrointestinal Microbiome of Young Men Who Have Sex with Men. HIV Med. 2020, 21, 365–377. [Google Scholar] [CrossRef]
- San-Juan-Vergara, H.; Zurek, E.; Ajami, N.J.; Mogollon, C.; Peña, M.; Portnoy, I.; Vélez, J.I.; Cadena-Cruz, C.; Diaz-Olmos, Y.; Hurtado-Gómez, L.; et al. A Lachnospiraceae-Dominated Bacterial Signature in the Fecal Microbiota of HIV-Infected Individuals from Colombia, South America. Sci. Rep. 2018, 8, 4479. [Google Scholar] [CrossRef]
- Fulcher, J.A.; Li, F.; Tobin, N.H.; Zabih, S.; Elliott, J.; Clark, J.L.; D’Aquila, R.; Mustanski, B.; Kipke, M.D.; Shoptaw, S.; et al. Gut Dysbiosis and Inflammatory Blood Markers Precede HIV with Limited Changes after Early Seroconversion. EBioMedicine 2022, 84, 104286. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Narayanan, A.; Giske, C.G.; Neogi, U.; Sönnerborg, A.; Nowak, P. Altered Gut Microbiome under Antiretroviral Therapy: Impact of Efavirenz and Zidovudine. ACS Infect. Dis. 2021, 7, 1104–1115. [Google Scholar] [CrossRef] [PubMed]
- Crakes, K.R.; Jiang, G. Gut Microbiome Alterations During HIV/SIV Infection: Implications for HIV Cure. Front. Microbiol. 2019, 10, 1104. [Google Scholar] [CrossRef] [PubMed]
- Burkhart Colorado, A.S.; Lazzaro, A.; Neff, C.P.; Nusbacher, N.; Boyd, K.; Fiorillo, S.; Martin, C.; Siebert, J.C.; Campbell, T.B.; Borok, M.; et al. Differential Effects of Antiretroviral Treatment on Immunity and Gut Microbiome Composition in People Living with HIV in Rural versus Urban Zimbabwe. Microbiome 2024, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Gosalbes, M.J.; Jimenéz-Hernandéz, N.; Moreno, E.; Artacho, A.; Pons, X.; Ruíz-Pérez, S.; Navia, B.; Estrada, V.; Manzano, M.; Talavera-Rodriguez, A.; et al. Interactions among the Mycobiome, Bacteriome, Inflammation, and Diet in People Living with HIV. Gut Microbes 2022, 14, 2089002. [Google Scholar] [CrossRef]
- Villoslada-Blanco, P.; Pérez-Matute, P.; Íñiguez, M.; Recio-Fernández, E.; Jansen, D.; De Coninck, L.; Close, L.; Blanco-Navarrete, P.; Metola, L.; Ibarra, V.; et al. Impact of HIV Infection and Integrase Strand Transfer Inhibitors-Based Treatment on the Gut Virome. Sci. Rep. 2022, 12, 21658. [Google Scholar] [CrossRef]
Reference | Country | Study Design | PLHIV | ART Status (Duration) | Healthy Controls | Microbiome Sample | Analysis Method |
---|---|---|---|---|---|---|---|
Qing et al., 2019 [22] | China | Prospective cohort | n = 15 | Active (3 months to 5 years) | 10 | Stool | Illumina MiSeq; 16S rDNA v4 region |
Zhou et al., 2018 [23] | China | Cross-sectional | n = 33 (naïve = 19; treated = 14) | Mixed (naïve or >3 months) | 35 (age- and sex-matched) | Stool | Illumina HiSeq 2500; 16S rRNA V4 region |
Xie et al., 2021 [24] | China | Cross-sectional | n = 58 (IR = 28; INR = 30) | Active (>2 years) | 36 | Stool | Illumina MiSeq; 16S rRNA V3–V4 region |
Mingjun et al., 2022 [25] | China | Cross-sectional | n = 33 | Not stated | 28 | Stool | Illumina HiSeq 2500; 16S rDNA V3–V4 regions |
Lu et al., 2021 [26] | China | Cross-sectional | n = 34 (CD4 < 200 = 17; CD4 > 200 = 17) | Active (4 to 11 years) | None | Stool | Illumina HiSeq 2500; 16S rRNA v4 region |
Zhang et al., 2023 [27] | China | Case–control | n = 80 (pre-AIDS = 39; AIDS = 41) | Naïve | 34 | Stool | Illumina MiSeq; 16S rRNA V3–V4 regions |
Zhu et al., 2022 [28] | China | Cross-sectional | n = 83 (PCP+ = 25; PCP- = 58) | Not stated | 8 | Stool | Illumina MiSeq; 16S rRNA V3–V4 regions |
Dong et al., 2021 [29] | China | Prospective cohort | n = 102 (NCI = 67; non-NCI = 35) | Active (3 to 8 years) | None | Stool | Illumina; 16S rRNA V3–V4 regions |
Ji et al., 2018 [30] | China | Prospective cohort | n = 36 (CD4 < 300 = 14; CD4 > 300 = 22) | Active (14 to 16 months) | None | Stool | Illumina MiSeq; 16S rRNA V3–V4 regions |
Ling et al., 2016 [31] | China | Cross-sectional | n = 67 (naïve = 32; treated = 35) | Mixed (naïve to >1 year) | 16 (age- and sex-matched) | Stool | 454 Life Sciences Genome Sequencer FLX system; 16S rRNA V1-V3 hypervariable regions |
Imahashi et al., 2021 [32] | Japan | Prospective cohort | n = 20 (NRTI+ = 6; NRTI-PI− = 9; NRTI-PI+ = 5) | Mixed (naïve to >2 years) | 13 | Stool | Illumina MiSeq; 16S rRNA deep sequencing V3–V4 regions |
Ishizaka et al., 2021 [33] | Japan | Prospective cohort | n = 109 (high CD4 = 61; medium CD4 = 38; low CD4 = 10) | Mixed (naïve to 15 years) | 61 (age- and sex-matched) | Stool | Illumina MiSeq; 16S rRNA V3–V4 regions |
Ishizaka et al., 2021 [34] | Japan | Prospective cohort | n = 35 (HAV+ = 10; HAV− = 25) | Active (3 to 14 years) | 22 (age-matched) | Stool | Illumina MiSeq; 16S rRNA V3–V4 regions |
Jayanama et al., 2022 [35] | Thailand | Cross-sectional | n = 40 (normoglycemia = 20; prediabetes = 20) | Active (>6 months) | None | Stool | Illumina MiSeq; 16S rRNA V3–V4 regions |
Mak et al., 2021 [36] | Australia | Cross-sectional | n = 12 (PHI = 5; CHI = 7) | Active (4 to 23 years) | 6 (age- and sex-matched) | Stool | Illumina Miseq; 16S rRNA V3 region |
Clinical Parameters | Predominant Taxa or Gut Microbiota | ||
---|---|---|---|
Positive | Negative | Conflicting | |
CD4+ T-cell count | Ruminococcaceae [24,26,27] Bacteroidaceae [26] Veillonellales [25] Lachnospira [27] Escherichia-Shigella [24] Alistipes [24] | Fusobacteriaceae and Fusobacterium [24,26] Prevotellaceae and Alloprevotella [24,26] Enterobacteriaceae and Enterococcus [26,27] Eubacterium [24] Prevotella_9 [28] Clostridiales [25] | Faecalibacterium [27,28] Roseburia [24,27] |
CD8+ T-cell count | Proteobacteria [22] Oxalobacter [22] Escherichia-Shigella [24] Roseburia [24] Catenibacterium [28] Parabacteroides [28] Prevotella_9 [28] | Ruminococcaceae [24] Alistipes [24] | |
CD4/CD8 ratio | Ruminococcaceae [24] Succinovibrionaceae [26] | Escherichia-Shigella [24] Veillonellaceae [26] Parabacteroides [28] Prevotella_9 [28] Dialister [28] | Faecalibacterium [24,28] |
Plasma or serum cytokines TNF- IL-2 and IL-8 IL-6 IL-22 IL-19 and IL-35 IFN- | Fusobacterium [25] Gammaproteobacteria [25] Phascolarctobacterium [31] Agathobacter [25] Megamonas [31] Dialister [31] Negativiticutes [33] Veillonellaceae [33] | Ruminococcaceae [25,26] Bacteroidales [25] Prevotellaceae [25] Erysipelotrichaceae [33] Atopobiaceae [33] Clostridium XIVb [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador, P.B.U.; Altavas, P.J.d.R.; del Rosario, M.A.S.; Ornos, E.D.B.; Dalmacio, L.M.M. Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia–Pacific Region: A Systematic Review. Clin. Pract. 2024, 14, 846-861. https://doi.org/10.3390/clinpract14030066
Salvador PBU, Altavas PJdR, del Rosario MAS, Ornos EDB, Dalmacio LMM. Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia–Pacific Region: A Systematic Review. Clinics and Practice. 2024; 14(3):846-861. https://doi.org/10.3390/clinpract14030066
Chicago/Turabian StyleSalvador, Paul Benedic U., Patrick Josemaria d. R. Altavas, Mark Angelo S. del Rosario, Eric David B. Ornos, and Leslie Michelle M. Dalmacio. 2024. "Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia–Pacific Region: A Systematic Review" Clinics and Practice 14, no. 3: 846-861. https://doi.org/10.3390/clinpract14030066
APA StyleSalvador, P. B. U., Altavas, P. J. d. R., del Rosario, M. A. S., Ornos, E. D. B., & Dalmacio, L. M. M. (2024). Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia–Pacific Region: A Systematic Review. Clinics and Practice, 14(3), 846-861. https://doi.org/10.3390/clinpract14030066