A Scientometric Evaluation of COVID-19 and Male Reproductive Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Retrieval Strategy
2.3. Scientometric and Statistical Analysis
3. Results
3.1. COVID-19 and Male Reproductive Research
3.2. The Scientometrics of COVID-19: Semen Parameters, Reproductive Hormones, and Viral Tropism Studies
3.3. COVID-19 Pandemic: Clinical Scenarios Associated with Men’s Sexual Health and Infertility
3.4. Publication Trends in Omics-Based Male Reproductive Research during COVID-19 Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. 14.9 Million Excess Deaths Associated with the COVID-19 Pandemic in 2020 and 2021. 2022. Available online: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021 (accessed on 30 July 2023).
- Miyah, Y.; Benjelloun, M.; Lairini, S.; Lahrichi, A. COVID-19 Impact on Public Health, Environment, Human Psychology, Global Socioeconomy, and Education. Sci. World J. 2022, 2022, 5578284. [Google Scholar] [CrossRef] [PubMed]
- Osterrieder, A.; Cuman, G.; Pan-Ngum, W.; Cheah, P.K.; Cheah, P.K.; Peerawaranun, P.; Silan, M.; Orazem, M.; Perkovic, K.; Groselj, U.; et al. Economic and social impacts of COVID-19 and public health measures: Results from an anonymous online survey in Thailand, Malaysia, the UK, Italy and Slovenia. BMJ Open 2021, 11, e046863. [Google Scholar] [CrossRef] [PubMed]
- Kopańska, M.; Barnaś, E.; Błajda, J.; Kuduk, B.; Łagowska, A.; Banaś-Ząbczyk, A. Effects of SARS-CoV-2 Inflammation on Selected Organ Systems of the Human Body. Int. J. Mol. Sci. 2022, 23, 4178. [Google Scholar] [CrossRef] [PubMed]
- Connelly, Z.M.; Whitaker, D.; Dullea, A.; Ramasamy, R. SARS-CoV-2 Effects on the Male Genitourinary System. Am. J. Clin. Exp. Urol. 2022, 10, 199–209. [Google Scholar] [PubMed]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef] [PubMed]
- Khalili, M.A.; Leisegang, K.; Majzoub, A.; Finelli, R.; Panner Selvam, M.K.; Henkel, R.; Mojgan, M.; Agarwal, A. Male Fertility and the COVID-19 Pandemic: Systematic Review of the Literature. World J. Men’s Health 2020, 38, 506–520. [Google Scholar] [CrossRef] [PubMed]
- Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 2020, 16, e9610. [Google Scholar] [CrossRef]
- Zangeneh, F.Z. Interaction of SARS-CoV-2 with RAS/ACE2 in the Female Reproductive System. J. Fam. Reprod. Health 2022, 16, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Li, F.; Zhang, Q.; Wang, T.; Qiang, L.; Yang, Q. Impacts of COVID-19 and SARS-CoV-2 on male reproductive function: A systematic review and meta-analysis protocol. BMJ Open 2022, 12, e053051. [Google Scholar] [CrossRef]
- He, Y.; Wang, J.; Ren, J.; Zhao, Y.; Chen, J.; Chen, X. Effect of COVID-19 on Male Reproductive System—A Systematic Review. Front. Endocrinol. 2021, 12, 677701. [Google Scholar] [CrossRef]
- Rainer, Q.; Molina, M.; Ibrahim, E.; Saltzman, R.; Masterson, T.; Ramasamy, R. Peyronie’s disease in a patient after COVID-19 infection: A case report. Andrologia 2021, 53, e14219. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Sikka, S.C.; Hellstrom, W.J. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian J. Androl. 2016, 18, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Sharma, R.; Gupta, S.; Finelli, R.; Parekh, N.; Selvam, M.K.P.; Pompeu, C.P.; Madani, S.; Belo, A.; Darbandi, M.; et al. Standardized Laboratory Procedures, Quality Control and Quality Assurance Are Key Requirements for Accurate Semen Analysis in the Evaluation of Infertile Male. World J. Men’s Health 2022, 40, 52–65. [Google Scholar] [CrossRef]
- Barratt, C.L. Semen analysis is the cornerstone of investigation for male infertility. Practitioner 2007, 251, 8–10, 12, 15–17. [Google Scholar]
- Anderson, D.; Laforge, J.; Ross, M.M.; Vanlangendonck, R.; Hasoon, J.; Viswanath, O.; Kaye, A.D.; Urits, I. Male Sexual Dysfunction. Health Psychol. Res. 2022, 10, 37533. [Google Scholar] [CrossRef]
- Fisher, J.R.; Hammarberg, K. Psychological and social aspects of infertility in men: An overview of the evidence and implications for psychologically informed clinical care and future research. Asian J. Androl. 2012, 14, 121–129. [Google Scholar] [CrossRef]
- Sánchez-Cruz, J.J.; Cabrera-León, A.; Martín-Morales, A.; Fernández, A.; Burgos, R.; Rejas, J. Male erectile dysfunction and health-related quality of life. Eur. Urol. 2003, 44, 245–253. [Google Scholar] [CrossRef]
- Ardestani Zadeh, A.; Arab, D. COVID-19 and male reproductive system: Pathogenic features and possible mechanisms. J. Mol. Histol. 2021, 52, 869–878. [Google Scholar] [CrossRef]
- Hui, J.; He, S.; Liu, R.; Zeng, Q.; Zhang, H.; Wei, A. Trends in erectile dysfunction research from 2008 to 2018: A bibliometric analysis. Int. J. Impot. Res. 2020, 32, 409–419. [Google Scholar] [CrossRef]
- Baskaran, S.; Agarwal, A.; Leisegang, K.; Pushparaj, P.N.; Panner Selvam, M.K.; Henkel, R. An In-Depth Bibliometric Analysis and Current Perspective on Male infertility Research. World J. Men’s Health 2021, 39, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.E.; Johnson, H.A.; Munarriz, R.M.; Gross, M.S. Bibliometric Analysis of Erectile Dysfunction Publications in Urology and Sexual Medicine Journals. J. Sex. Med. 2018, 15, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, F.; Lu, S.; Song, J.; Zhang, C.; Li, J.; Gu, K.; Lan, A.; Lv, B.; Zhang, R.; et al. Research trends and perspectives of male infertility: A bibliometric analysis of 20 years of scientific literature. Andrology 2016, 4, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Klaić, B. The use of scientometric parameters for the evaluation of scientific contributions. Coll. Antropol. 1999, 23, 751–770. [Google Scholar] [PubMed]
- de Oliveira, O.J.; da Silva, F.F.; Juliani, F.; Barbosa, L.C.F.M.; Nunhes, T.V. Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In Scientometrics Recent Advances; IntechOpen: London, UK, 2019. [Google Scholar]
- Ginting, B.; Chiari, W.; Duta, T.F.; Hudaa, S.; Purnama, A.; Harapan, H.; Rizki, D.R.; Puspita, K.; Idroes, R.; Meriatna, M.; et al. COVID-19 pandemic sheds a new research spotlight on antiviral potential of essential oils—A bibliometric study. Heliyon 2023, 9, e17703. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.; Xu, S.; Xue, J.H.; Zhang, H.Z.; Zhong, Y.M.; Liao, Y.L. Current hotspot and study trend of innate immunity in COVID-19: A bibliometric analysis from 2020 to 2022. Front. Immunol. 2023, 14, 1135334. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Parvanov, E.D.; Nawaz, F.A.; Rayan, R.A.; Kletecka-Pulker, M.; Willschke, H.; Atanasov, A.G. COVID-19 Rapid Antigen Tests: Bibliometric Analysis of the Scientific Literature. Int. J. Environ. Res. Public Health 2022, 19, 12493. [Google Scholar] [CrossRef]
- Wen, R.; Zhang, M.; Xu, R.; Gao, Y.; Liu, L.; Chen, H.; Wang, X.; Zhu, W.; Lin, H.; Liu, C.; et al. COVID-19 imaging, where do we go from here? Bibliometric analysis of medical imaging in COVID-19. Eur. Radiol. 2023, 33, 3133–3143. [Google Scholar] [CrossRef]
- Wang, H.; Le, Z. Expert recommendations based on link prediction during the COVID-19 outbreak. Scientometrics 2021, 126, 4639–4658. [Google Scholar] [CrossRef]
- Noruzi, A.; Gholampour, B.; Gholampour, S.; Jafari, S.; Farshid, R.; Stanek, A.; Saboury, A.A. Current and Future Perspectives on the COVID-19 Vaccine: A Scientometric Review. J. Clin. Med. 2022, 11, 750. [Google Scholar] [CrossRef]
- Scopus. Scopus Provides Unmatched Content and Data Quality, with Superior Search and Analytical Tools. 2023. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works (accessed on 30 July 2023).
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.X.; Ha, G.H.; Nguyen, L.H.; Vu, G.T.; Hoang, M.T.; Le, H.T.; Latkin, C.A.; Ho, C.S.H.; Ho, R.C.M. Studies of Novel Coronavirus Disease 19 (COVID-19) Pandemic: A Global Analysis of Literature. Int. J. Environ. Res. Public Health 2020, 17, 4095. [Google Scholar] [CrossRef] [PubMed]
- Şenel, E.; Topal, F.E. Holistic Analysis of Coronavirus Literature: A Scientometric Study of the Global Publications Relevant to SARS-CoV-2 (COVID-19), MERS-CoV (MERS) and SARS-CoV (SARS). Disaster Med. Public Health Prep. 2021, 15, e12–e19. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Xu, Y.; Wang, H.; Jia, Q.; Shou, X.; Zhang, X.; Zhang, N.; Li, Y.; Zhai, H.; Hu, Y. Bibliometric and visual analysis of cardiovascular diseases and COVID-19 research. Front. Public Health 2022, 10, 1022810. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, A.; Khosravi, A.; Hejazi, R.; FatemehTorabi; Abtin, A. A scientometric approach to psychological research during the COVID-19 pandemic. Curr. Psychol. 2023, 1–10. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, X.; Xu, J.; Lin, X.; Wu, Z. Knowledge mapping analysis of mental health research on COVID-19. Front. Psychiatry 2022, 13, 931575. [Google Scholar] [CrossRef]
- Kalra, G.; Kaur, R.; Ichhpujani, P.; Chahal, R.; Kumar, S. COVID-19 and ophthalmology: A scientometric analysis. Indian J. Ophthalmol. 2021, 69, 1234–1240. [Google Scholar] [CrossRef]
- Hajizadeh Maleki, B.; Tartibian, B. COVID-19 and male reproductive function: A prospective, longitudinal cohort study. Reproduction 2021, 161, 319–331. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020, 9, 920. [Google Scholar] [CrossRef]
- Kervancioglu Demirci, E.; Dursun, M.; Seviç, E.; Ergül, R.B.; Önel, M.; Ağaçfidan, A.; Kadıoğlu, A. Evidence for residual SARS-CoV-2 in corpus cavernosum of patients who recovered from COVID-19 infection. Andrology 2022, 11, 1016–1022. [Google Scholar] [CrossRef]
- Kresch, E.; Achua, J.; Saltzman, R.; Khodamoradi, K.; Arora, H.; Ibrahim, E.; Kryvenko, O.N.; Almeida, V.W.; Firdaus, F.; Hare, J.M.; et al. COVID-19 Endothelial Dysfunction Can Cause Erectile Dysfunction: Histopathological, Immunohistochemical, and Ultrastructural Study of the Human Penis. World J. Men’s Health 2021, 39, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Mumm, J.N.; Ledderose, S.; Ostermann, A.; Rudelius, M.; Hellmuth, J.C.; Münchhoff, M.; Munker, D.; Scherer, C.; Volz, Y.; Ebner, B.; et al. Dynamics of urinary and respiratory shedding of Severe acute respiratory syndrome virus 2 (SARS-CoV-2) RNA excludes urine as a relevant source of viral transmission. Infection 2022, 50, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.L.; Klinkhammer, B.M.; Djudjaj, S.; Villwock, S.; Timm, M.C.; Buhl, E.M.; Wucherpfennig, S.; Cacchi, C.; Braunschweig, T.; Knüchel-Clarke, R.; et al. Multisystemic Cellular Tropism of SARS-CoV-2 in Autopsies of COVID-19 Patients. Cells 2021, 10, 1900. [Google Scholar] [CrossRef] [PubMed]
- Saylam, B.; Uguz, M.; Yarpuzlu, M.; Efesoy, O.; Akbay, E.; Çayan, S. The presence of SARS-CoV-2 virus in semen samples of patients with COVID-19 pneumonia. Andrologia 2021, 53, e14145. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jin, M.; Bao, P.; Zhao, W.; Zhang, S. Clinical Characteristics and Results of Semen Tests Among Men with Coronavirus Disease 2019. JAMA Netw. Open 2020, 3, e208292. [Google Scholar] [CrossRef]
- Pavone, C.; Giammanco, G.M.; Cascino, A.P.; Baiamonte, D.; Pinelli, M.; Cangelosi, E.; Filizzolo, C.; Sciortino, G.; Grazia, S.; Bonura, F. Assessment of SARS-CoV-2 RNA shedding in semen of 36 males with symptomatic, asymptomatic, and convalescent infection during the first and second wave of COVID-19 pandemic in Italy. Asian J. Androl. 2022, 24, 135–138. [Google Scholar] [CrossRef]
- Burke, C.A.; Skytte, A.B.; Kasiri, S.; Howell, D.; Patel, Z.P.; Trolice, M.P.; Parekattil, S.J.; Michael, S.F.; Paul, L.M. A cohort study of men infected with COVID-19 for presence of SARS-CoV-2 virus in their semen. J. Assist. Reprod. Genet. 2021, 38, 785–789. [Google Scholar] [CrossRef]
- Holtmann, N.; Edimiris, P.; Andree, M.; Doehmen, C.; Baston-Buest, D.; Adams, O.; Kruessel, J.S.; Bielfeld, A.P. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil. Steril. 2020, 114, 233–238. [Google Scholar] [CrossRef]
- Peirouvi, T.; Aliaghaei, A.; Eslami Farsani, B.; Ziaeipour, S.; Ebrahimi, V.; Forozesh, M.; Ghadipasha, M.; Mahmoudiasl, G.R.; Aryan, A.; Moghimi, N.; et al. COVID-19 disrupts the blood-testis barrier through the induction of inflammatory cytokines and disruption of junctional proteins. Inflamm. Res. 2021, 70, 1165–1175. [Google Scholar] [CrossRef]
- Selvam, M.K.P.; Pushparaj, P.N.; Baskaran, S.; Sikka, S. PD36-01 Bioinformatic Analysis of RNA Sequencing Data of Testis from SARS-CoV-2 Infected Men Reveals Molecular Alteration of Germ Cell-Sertoli cell Junction Signaling Pathway. J. Urol. 2022, 207, e633. [Google Scholar] [CrossRef]
- Xie, Y.; Mirzaei, M.; Kahrizi, M.S.; Shabestari, A.M.; Riahi, S.M.; Farsimadan, M.; Roviello, G. SARS-CoV-2 effects on sperm parameters: A meta-analysis study. J. Assist. Reprod. Genet. 2022, 39, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Kc, N.; Thapa, S.; Ghimire, A.; Bijukchhe, S.; Sah, G.S.; Isnuwardana, R. Semen parameters in men recovered from COVID-19: A systematic review and meta-analysis. Middle East Fertil. Soc. J. 2021, 26, 44. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Vena, W.; Pizzocaro, A.; Pallotti, F.; Paoli, D.; Rastrelli, G.; Baldi, E.; Cilloni, N.; Gacci, M.; Semeraro, F.; et al. Andrological effects of SARS-Cov-2 infection: A systematic review and meta-analysis. J. Endocrinol. Investig. 2022, 45, 2207–2219. [Google Scholar] [CrossRef]
- Lan, X.; Wang, M.; Yu, X.; Dong, L.; Li, J.; Chang, D.; Yang, F. A systematic review of the effect of COVID-19 on semen parameters. Heliyon 2023, 9, e14776. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, T.A.; Oliveira, Y.C.; Bernardes, F.S.; Kallas, E.G.; Duarte-Neto, A.N.; Esteves, S.C.; Drevet, J.R.; Hallak, J. Viral infections and implications for male reproductive health. Asian J. Androl. 2021, 23, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Sun, P.; Xie, X.; Sun, D.; Zhou, Q.; Yang, S.; Xie, Q.; Zhou, X. Hepatitis B virus surface protein induces oxidative stress by increasing peroxides and inhibiting antioxidant defences in human spermatozoa. Reprod. Fertil. Dev. 2020, 32, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Akhigbe, R.E.; Dutta, S.; Hamed, M.A.; Ajayi, A.F.; Sengupta, P.; Ahmad, G. Viral Infections and Male Infertility: A Comprehensive Review of the Role of Oxidative Stress. Front. Reprod. Health 2022, 4, 782915. [Google Scholar] [CrossRef] [PubMed]
- Panner Selvam, M.K.; Baskaran, S.; O’Connell, S.; Almajed, W.; Hellstrom, W.J.G.; Sikka, S.C. Association between Seminal Oxidation-Reduction Potential and Sperm DNA Fragmentation-A Meta-Analysis. Antioxidants 2022, 11, 1563. [Google Scholar] [CrossRef] [PubMed]
- Plant, T.M. 60 Years of Neuroendocrinology: The hypothalamo-pituitary-gonadal axis. J. Endocrinol. 2015, 226, T41–T54. [Google Scholar] [CrossRef]
- Caroppo, E. Male hypothalamic–pituitary–gonadal axis. In Infertility in the Male, 4th ed.; Niederberger, C.S., Lipshultz, L.I., Howards, S.S., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 14–28. [Google Scholar] [CrossRef]
- Dai, P.; Qiao, F.; Chen, Y.; Chan, D.Y.L.; Yim, H.C.H.; Fok, K.L.; Chen, H. SARS-CoV-2 and male infertility: From short- to long-term impacts. J. Endocrinol. Investig. 2023, 46, 1491–1507. [Google Scholar] [CrossRef]
- Moreno-Perez, O.; Merino, E.; Alfayate, R.; Torregrosa, M.E.; Andres, M.; Leon-Ramirez, J.M.; Boix, V.; Gil, J.; Pico, A. Male pituitary-gonadal axis dysfunction in post-acute COVID-19 syndrome-Prevalence and associated factors: A Mediterranean case series. Clin. Endocrinol. 2022, 96, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alarfaj, S.J.; Al-Akeel, R.K.; Faidah, H.; El-Bouseary, M.M.; Sabatier, J.M.; De Waard, M.; El-Masry, T.A.; Batiha, G.E. Long COVID and risk of erectile dysfunction in recovered patients from mild to moderate COVID-19. Sci. Rep. 2023, 13, 5977. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, D.H.; Odetayo, A.F.; Hamed, M.A.; Akhigbe, R.E. Impact of COVID-19 on erectile function. Aging Male 2022, 25, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Temiz, M.Z.; Dincer, M.M.; Hacibey, I.; Yazar, R.O.; Celik, C.; Kucuk, S.H.; Alkurt, G.; Doganay, L.; Yuruk, E.; Muslumanoglu, A.Y. Investigation of SARS-CoV-2 in semen samples and the effects of COVID-19 on male sexual health by using semen analysis and serum male hormone profile: A cross-sectional, pilot study. Andrologia 2021, 53, e13912. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, Z.; Feng, C.; Yu, W.; Chen, Y.; Zeng, X.; Liu, C. Effects of SARS-CoV-2 infection on male sex-related hormones in recovering patients. Andrology 2021, 9, 107–114. [Google Scholar] [CrossRef]
- Harirugsakul, K.; Wainipitapong, S.; Phannajit, J.; Paitoonpong, L.; Tantiwongse, K. Erectile dysfunction after COVID-19 recovery: A follow-up study. PLoS ONE 2022, 17, e0276429. [Google Scholar] [CrossRef]
- Gök, A.; Altan, M.; Doğan, A.E.; Eraslan, A.; Uysal, F.; Öztürk, U.; Saguner, A.M.; İmamoğlu, M.A. Does Post-COVID-19 Erectile Dysfunction Improve over Time? J. Clin. Med. 2023, 12, 1241. [Google Scholar] [CrossRef]
- Li, Y.; Hou, G.; Zhou, H.; Wang, Y.; Tun, H.M.; Zhu, A.; Zhao, J.; Xiao, F.; Lin, S.; Liu, D.; et al. Multi-platform omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and drug target discovery. Signal Transduct. Target. Ther. 2021, 6, 155. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Chen, Z.; Yang, R.; Liu, Q.; Pan, J.; Wang, J.; Liu, Y.; Zhou, M.; Zhang, Y.; et al. COVID-19 inhibits spermatogenesis in the testes by inducing cellular senescence. Front. Genet. 2022, 13, 981471. [Google Scholar] [CrossRef]
- Ma, X.; Guan, C.; Chen, R.; Wang, Y.; Feng, S.; Wang, R.; Qu, G.; Zhao, S.; Wang, F.; Wang, X.; et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell. Mol. Immunol. 2021, 18, 487–489. [Google Scholar] [CrossRef]
- Ghosh, S.; Parikh, S.; Nissa, M.U.; Acharjee, A.; Singh, A.; Patwa, D.; Makwana, P.; Athalye, A.; Barpanda, A.; Laloraya, M.; et al. Semen Proteomics of COVID-19 Convalescent Men Reveals Disruption of Key Biological Pathways Relevant to Male Reproductive Function. ACS Omega 2022, 7, 8601–8612. [Google Scholar] [CrossRef] [PubMed]
Scopus (Search Date: 31 May 2023) |
---|
TITLE-ABS-KEY(“COVID”OR“SARS-CoV-2”OR“COVID-19”OR“COVID-19”OR“pandemic”)ANDTITLE-ABS-KEY(“male reproducti*”OR“male fertility”OR“male infertility”OR“male subfertility”OR“male sterility”OR“seminal plasma”OR“semen”OR“seminal fluid”OR“sperm*”OR“testis”OR“testicular”OR“gonad*”OR“testosterone”OR“prostat*”OR“epididy*”OR“erectile dysfunction”OR“ejaculat*”) |
Clinical Scenarios | Number of Studies (n) | % of Studies Evaluated |
---|---|---|
Erectile dysfunction | 21 | 16.4% |
Semen abnormalities | 6 | 4.7% |
Varicocele | 5 | 3.9% |
Idiopathic infertility | 2 | 1.6% |
Orchiepididymitis | 1 | 0.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panner Selvam, M.K.; Kapoor, A.; Baskaran, S.; Moharana, A.K.; Sikka, S.C. A Scientometric Evaluation of COVID-19 and Male Reproductive Research. Clin. Pract. 2023, 13, 1319-1330. https://doi.org/10.3390/clinpract13060118
Panner Selvam MK, Kapoor A, Baskaran S, Moharana AK, Sikka SC. A Scientometric Evaluation of COVID-19 and Male Reproductive Research. Clinics and Practice. 2023; 13(6):1319-1330. https://doi.org/10.3390/clinpract13060118
Chicago/Turabian StylePanner Selvam, Manesh Kumar, Anika Kapoor, Saradha Baskaran, Ajaya Kumar Moharana, and Suresh C. Sikka. 2023. "A Scientometric Evaluation of COVID-19 and Male Reproductive Research" Clinics and Practice 13, no. 6: 1319-1330. https://doi.org/10.3390/clinpract13060118
APA StylePanner Selvam, M. K., Kapoor, A., Baskaran, S., Moharana, A. K., & Sikka, S. C. (2023). A Scientometric Evaluation of COVID-19 and Male Reproductive Research. Clinics and Practice, 13(6), 1319-1330. https://doi.org/10.3390/clinpract13060118