The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems
Abstract
:1. Introduction
2. Uncertainty in the Healthcare Sector: Digital Health Has Failed to Meet Expectations
3. Digital Health Trends over the Last Decade: First-Generation Systems
4. Challenges in Healthcare Systems That Need to Be Accounted for by Digital Systems
4.1. Digital Health’s Data-Related Challenges with Machine Learning
4.2. Patients and Physicians Face Challenges in Using Digital Systems
4.3. Challenges Related to Ethics and Law
4.4. Challenges Related to Healthcare Providers and Pharmaceutical Companies
4.5. Cost-Increase Challenges in Healthcare
4.6. Regulations, Validations, and Standards Challenges
5. Moving from “Nice to Have” to “Mandatory” Digital Systems
6. Constrained-Disorder Principle-Based Digital Systems Get Closer to Their Biological Basis
7. Digital Health Challenges Can Be Overcome by Using CDP-Based Digital Systems
8. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Gbadegeshin, S.A.; Natsheh, A.A.; Ghafel, K.; Mohammed, O.; Koskela, A.; Rimpiläinen, A.; Tikkanen, J.; Kuoppala, A. Overcoming the Valley of Death: A New Model for High Technology Startups. Sustain. Futures 2022, 4, 100077. [Google Scholar] [CrossRef]
- Greaves, F.; Joshi, I.; Campbell, M.; Roberts, S.; Patel, N.; Powell, J. What is an appropriate level of evidence for a digital health intervention? Lancet 2018, 392, 2665–2667. [Google Scholar] [CrossRef] [PubMed]
- Meskó, B.; Görög, M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020, 3, 126. [Google Scholar] [CrossRef] [PubMed]
- Cripps, M.; Scarbrough, H. Making Digital Health “Solutions” Sustainable in Healthcare Systems: A Practitioner Perspective. Front. Digit. Health 2022, 4, 727421. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Lennon, M.; Rogerson, R.J.; Crooks, G. Scaling Digital Health Innovation: Developing a New ‘Service Readiness Level’ Framework of Evidence. Int. J. Environ. Res. Public Health 2021, 18, 2575. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ashrafian, H.; Ghafur, S.; Fontana, G.; Gardner, C.; Prime, M. Challenges for the evaluation of digital health solutions-A call for innovative evidence generation approaches. NPJ Digit. Med. 2020, 3, 110. [Google Scholar] [CrossRef]
- Khan, S.; Vandermorris, A.; Shepherd, J.; Begun, J.W.; Lanham, H.J.; Uhl-Bien, M.; Berta, W. Embracing uncertainty, managing complexity: Applying complexity thinking principles to transformation efforts in healthcare systems. BMC Health Serv. Res. 2018, 18, 192. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Amritesh. Evolving uncertainty in healthcare service interactions during COVID-19: Artificial Intelligence—A threat or support to value cocreation? In Cyber-Physical Systems; Academic Press: Cambridge, MA, USA, 2022; pp. 93–116. [Google Scholar] [CrossRef]
- Shahmoradi, L.; Safadari, R.; Jimma, W. Knowledge Management Implementation and the Tools Utilized in Healthcare for Evidence-Based Decision Making: A Systematic Review. Ethiop. J. Health Sci. 2017, 27, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.K.; Welander Tärneberg, A. Health-care quality and information failure: Evidence from Nigeria. Health Econ. 2018, 27, e90–e93. [Google Scholar] [CrossRef]
- Branning, G.; Vater, M. Healthcare Spending: Plenty of Blame to Go Around. Am. Health Drug Benefits 2016, 9, 445–447. [Google Scholar]
- Iyanna, S.; Kaur, P.; Ractham, P.; Talwar, S.; Najmul Islam, A.K.M. Digital transformation of healthcare sector. What is impeding adoption and continued usage of technology-driven innovations by end-users? J. Bus. Res. 2022, 153, 150–161. [Google Scholar] [CrossRef]
- Jacob, C.; Sanchez-Vazquez, A.; Ivory, C. Social, Organizational, and Technological Factors Impacting Clinicians’ Adoption of Mobile Health Tools: Systematic Literature Review. JMIR Mhealth Uhealth 2020, 8, e15935. [Google Scholar] [CrossRef] [PubMed]
- Haag, M.; Igel, C.; Fischer, M.; German Medical Education Society (GMA); Committee “Digitization-Technology-Assisted Learning and Teaching”; Joint Working Group “Technology-Enhanced Teaching and Learning in Medicine (TeLL)” of the German Association for Medical Informatics, Biometry and Epidemiology (GMDS); German Informatics Society (GI). Digital Teaching and Digital Medicine: A national initiative is needed. GMS J. Med. Educ. 2018, 35, Doc43. [Google Scholar] [PubMed]
- Chaiyachati, K.H.; Shea, J.A.; Asch, D.A.; Liu, M.; Bellini, L.M.; Dine, C.J.; Sternberg, A.L.; Gitelman, Y.; Yeager, A.M.; Asch, J.M. Assessment of inpatient time allocation among first-year internal medicine residents using time-motion observations. JAMA Intern. Med. 2019, 179, 760–767. [Google Scholar] [CrossRef]
- Poghosyan, L. Clinican burnout: New times, old issue. Nurs. Econ. 2018, 36, 109–111. [Google Scholar]
- Shah, N.R. Health care in 2030: Will artificial intelligence replace physicians? Ann. Intern. Med. 2019, 170, 407–408. [Google Scholar] [CrossRef]
- Price, W.N.; Gerke, S.; Cohen, I.G. Potential liability for physicians using artificial intelligence. JAMA 2019, 322, 1765–1766. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Zhang, W.; Evans, R.; Cao, G.; Rui, T.; Shen, L. Inequities in Health Care Services Caused by the Adoption of Digital Health Technologies: Scoping Review. J. Med. Internet Res. 2022, 24, e34144. [Google Scholar] [CrossRef] [PubMed]
- Golinelli, D.; Boetto, E.; Carullo, G.; Nuzzolese, A.G.; Landini, M.P.; Fantini, M.P. Adoption of Digital Technologies in Health Care During the COVID-19 Pandemic: Systematic Review of Early Scientific Literature. J. Med. Internet Res. 2020, 22, e22280. [Google Scholar] [CrossRef]
- Ngwatu, B.K.; Nsengiyumva, N.P.; Oxlade, O.; Mappin-Kasirer, B.; Nguyen, N.L.; Jaramillo, E.; Falzon, D.; Schwartzman, K. The impact of digital health technologies on tuberculosis treatment: A systematic review. Eur. Respir. J. 2018, 51, 1701596. [Google Scholar] [CrossRef]
- Mitchell, M.; Kan, L. Digital Technology and the Future of Health Systems. Health Syst. Reform. 2019, 5, 113–120. [Google Scholar] [CrossRef]
- Hourani, D.; Darling, S.; Cameron, E.; Dromey, J.; Crossley, L.; Kanagalingam, S.; Muscara, F.; Gwee, A.; Gell, G.; Hiscock, H.; et al. What Makes for a Successful Digital Health Integrated Program of Work? Lessons Learnt and Recommendations From the Melbourne Children’s Campus. Front. Digit. Health 2021, 3, 661708. [Google Scholar] [CrossRef] [PubMed]
- Why Real-World Results Are So Challenging for Digital Health. NEJM Catalyst. 2017. Available online: https://catalyst.nejm.org/doi/full/10.1056/CAT.17.0453 (accessed on 1 June 2023).
- 98% of Digital Health Startups Fail—Here’s Why. Becker Health. 2016. Available online: https://www.beckershospitalreview.com/healthcare-information-technology/98-of-digital-health-startups-fail-here-s-why.html (accessed on 1 June 2023).
- Gupta, R. Digital health—Hope, Hype, and Halt. 2018. Preprint. Available online: https://www.hhmglobal.com/knowledge-bank/articles/digital-health-from-hope-hype-and-halt-to-hope-heal-and-health (accessed on 1 June 2023).
- Venkataramanan, R.; Pradhan, A.; Kumar, A.; Purushotham, A.; Alajlani, M.; Arvanitis, T.N. Digital Inequalities in Cancer Care Delivery in India: An Overview of the Current Landscape and Recommendations for Large-Scale Adoption. Front. Digit. Health 2022, 4, 916342. [Google Scholar] [CrossRef]
- Bhyat, R.; Hagens, S.; Bryski, K.; Kohlmaier, J.F. Digital Health Value Realization Through Active Change Efforts. Front. Public Health 2021, 9, 741424. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Sutton, J. Personalized medicine could transform healthcare. Biomed. Rep. 2017, 7, 3–5. [Google Scholar] [CrossRef] [PubMed]
- NICE. 2019. Available online: https://www.nice.org.uk/about/what-we-do/our-programmes/evidence-standards-framework-for-digital-health-technologies (accessed on 1 June 2023).
- Cummins, N.; Schuller, B.W. Five Crucial Challenges in Digital Health. Front. Digit. Health 2020, 2, 536203. [Google Scholar] [CrossRef]
- Challenges in digital medicine applications in under-resourced settings. Nat. Commun. 2022, 13, 3020. [CrossRef]
- Ibrahim, M.S.; Mohamed Yusoff, H.; Abu Bakar, Y.I.; Thwe Aung, M.M.; Abas, M.I.; Ramli, R.A. Digital health for quality healthcare: A systematic mapping of review studies. Digit. Health 2022, 8, 20552076221085810. [Google Scholar] [CrossRef]
- Kim, H.S.; Kwon, I.H.; Cha, W.C. Future and Development Direction of Digital Healthcare. Healthc. Inform. Res. 2021, 27, 95–101. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; De Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar]
- Raja, J.M.; Elsakr, C.; Roman, S.; Cave, B.; Pour-Ghaz, I.; Nanda, A.; Maturana, M.; Khouzam, R.N. Apple watch, wearables, and heart rhythm: Where do we stand? Ann. Transl. Med. 2019, 7, 417. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.; Blackburn, M.; Allen, J.; Campbell, F.; Elleri, D.; Leelarathna, L.; Rankin, D.; Tauschmann, M.; Thabit, H.; Hovorka, R. Patients’ and caregivers’ experiences of using continuous glucose monitoring to support diabetes self-management: Qualitative study. BMC Endocr. Disord. 2018, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Regalia, G.; Onorati, F.; Picard, R. Embrace and E4: Devices for seizure detection and advancing research. Epilepsy Res. 2019, 153, 79–82. [Google Scholar]
- Dey, D.; Slomka, P.J.; Leeson, P.; Comaniciu, D.; Shrestha, S.; Sengupta, P.P.; Marwick, T.H. Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1317–1335. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Chang, H.Y.; Jung, C.K.; Woo, J.I.; Lee, S.; Cho, J.; Kim, S.W.; Kwak, T.Y. Artificial Intelligence in Pathology. J. Pathol. Transl. Med. 2019, 53, 1–12. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Anagnostou, V.; Lytle, K.; Parpart-Li, S.; Nesselbush, M.; Riley, D.R.; Shukla, M.; Chesnick, B.; Kadan, M.; Papp, E.; et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci. Transl. Med. 2015, 7, 283ra253. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Sharma, A.; Badea, M.; Tiwari, S.; Marty, J.L. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021, 26, 748. [Google Scholar] [CrossRef]
- Dinh-Le, C.; Chuang, R.; Chokshi, S.; Mann, D. Wearable Health Technology and Electronic Health Record Integration: Scoping Review and Future Directions. JMIR Mhealth Uhealth 2019, 7, e12861. [Google Scholar] [CrossRef] [PubMed]
- Neri, E.; Miele, V.; Coppola, F.; Grassi, R. Use of CT and artificial intelligence in suspected or COVID-19 positive patients: Statement of the Italian Society of Medical and Interventional Radiology. La Radiol. Medica 2020, 125, 505–508. [Google Scholar] [CrossRef]
- Hark, L.A.; Katz, L.J.; Myers, J.S.; Waisbourd, M.; Johnson, D.; Pizzi, L.T.; Leiby, B.E.; Fudemberg, S.J.; Mantravadi, A.V.; Henderer, J.D. Philadelphia telemedicine glaucoma detection and follow-up study: Methods and screening results. Am. J. Ophthalmol. 2017, 181, 114–124. [Google Scholar] [CrossRef]
- Miller, A.C.; Ward, M.M.; Ullrich, F.; Merchant, K.A.; Swanson, M.B.; Mohr, N.M. Emergency department telemedicine consults are associated with faster time-to-electrocardiogram and time-to-fibrinolysis for myocardial infarction patients. Telemed. E-Health 2020, 26, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, J.; Wolfe, A.; Burke, B.L.; Hepburn, S.; Lindgren, S.; Coury, D. A systematic review of telemedicine in autism spectrum disorders. Rev. J. Autism Dev. Disord. 2016, 3, 330–344. [Google Scholar] [CrossRef]
- Bouadjenek, M.R.; Verspoor, K.; Zobel, J. Automated detection of records in biological sequence databases that are inconsistent with the literature. J. Biomed. Inform. 2017, 71, 229–240. [Google Scholar] [CrossRef]
- Mortazavi, B.; Downing, N.; Bucholz, E.; Dharmarajan, K.; Manhapra, A. Analysis of machine learning techniques for heart failure readmissions. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 629–640. [Google Scholar] [CrossRef]
- Niel, O.; Boussard, C.; Bastard, P. Artificial Intelligence Can Predict GFR Decline During the Course of ADPKD. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2018, 71, 911–912. [Google Scholar] [CrossRef] [PubMed]
- Geddes, C.C.; Fox, J.G.; Allison, M.E.; Boulton-Jones, J.M.; Simpson, K. An artificial neural network can select patients at high risk of developing progressive IgA nephropathy more accurately than experienced nephrologists. Nephrol. Dial. Transplant. 1998, 13, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ben-Menachem, T.; Cooper, G.S.; Chak, A.; Sivak Jr, M.V.; Gonet, J.A.; Wong, R.C. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: Internal and external validation of a predictive model. Lancet 2003, 362, 1261–1266. [Google Scholar] [CrossRef]
- Peng, J.C.; Ran, Z.H.; Shen, J. Seasonal variation in onset and relapse of IBD and a model to predict the frequency of onset, relapse, and severity of IBD based on artificial neural network. Int. J. Color. Dis. 2015, 30, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Sato, F.; Shimada, Y.; Selaru, F.M.; Shibata, D.; Maeda, M.; Watanabe, G.; Mori, Y.; Stass, S.A.; Imamura, M.; Meltzer, S.J. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer 2005, 103, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Ichimasa, K.; Kudo, S.-e.; Mori, Y.; Misawa, M.; Matsudaira, S.; Kouyama, Y.; Baba, T.; Hidaka, E.; Wakamura, K.; Hayashi, T. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy 2018, 50, 230–240. [Google Scholar]
- Topalovic, M.; Das, N.; Burgel, P.-R.; Daenen, M.; Derom, E.; Haenebalcke, C.; Janssen, R.; Kerstjens, H.A.; Liistro, G.; Louis, R. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur. Respir. J. 2019, 53, 1801660. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Esparrach, G.; Bernal, J.; López-Cerón, M.; Córdova, H.; Sánchez-Montes, C.; De Miguel, C.R.; Sánchez, F.J. Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy 2016, 48, 837–842. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sens. Int. 2021, 2, 100117. [Google Scholar] [CrossRef]
- Salvador, M.; Valente, V. Digitalization in Telehealth: An integrative review. Int. J. Adv. Eng. Res. Sci. 2021, 8, 171–185. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Blockchain technology applications in healthcare: An overview. Int. J. Intell. Netw. 2021, 2, 130–139. [Google Scholar] [CrossRef]
- Arsenijevic, J.; Tummers, L.; Bosma, N. Adherence to Electronic Health Tools Among Vulnerable Groups: Systematic Literature Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e11613. [Google Scholar] [CrossRef]
- Zauderer, M.G.; Gucalp, A.; Epstein, A.S.; Seidman, A.D.; Caroline, A.; Granovsky, S.; Fu, J.; Keesing, J.; Lewis, S.; Co, H.; et al. Piloting IBM Watson Oncology within Memorial Sloan Kettering’s regional network. J. Clin. Oncol. 2014, 32, e17653. [Google Scholar] [CrossRef]
- Combi, C.; Pozzi, G. Clinical Information Systems and Artificial Intelligence: Recent Research Trends. Yearb. Med. Inform. 2019, 28, 83–94. [Google Scholar] [CrossRef]
- Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019, 7, e7702. [Google Scholar] [CrossRef] [PubMed]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Health J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-Y.; Cho, K.-J.; Kwon, O.; Kwon, J.-m.; Jeon, K.-H.; Park, H.; Lee, Y.; Park, J.; Oh, B.-H. Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 17. [Google Scholar] [CrossRef]
- Winn, A.N.; Somai, M.; Fergestrom, N.; Crotty, B.H. Association of use of online symptom checkers with patients’ plans for seeking care. JAMA Netw. Open 2019, 2, e1918561. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Roberts, R.A.; Lal-Nag, M.; Chen, X.; Huang, R.; Tong, W. AI-based language models powering drug discovery and development. Drug Discov. Today 2021, 26, 2593–2607. [Google Scholar] [CrossRef]
- Hu, H.-Z.; Feng, X.-B.; Shao, Z.-W.; Xie, M.; Xu, S.; Wu, X.-H.; Ye, Z.-W. Application and prospect of mixed reality technology in medical field. Curr. Med. Sci. 2019, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; Štromberga, Z.; Raikos, A.; Stirling, A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat. Sci. Educ. 2017, 10, 549–559. [Google Scholar] [CrossRef]
- Howard, M.C. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput. Hum. Behav. 2017, 70, 317–327. [Google Scholar] [CrossRef]
- Ishay, Y.; Potruch, A.; Schwartz, A.; Berg, M.; Jamil, K.; Agus, S.; Ilan, Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed. Pharmacother. 2021, 143, 112228. [Google Scholar] [CrossRef] [PubMed]
- Massoudi, B.L.; Sobolevskaia, D. Keep Moving Forward: Health Informatics and Information Management beyond the COVID-19 Pandemic. Yearb. Med. Inform. 2021, 30, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Manteghinejad, A.; Javanmard, S.H. Challenges and opportunities of digital health in a post-COVID19 world. J. Res. Med. Sci. 2021, 26, 11. [Google Scholar] [CrossRef] [PubMed]
- Chou, E.; Hsieh, Y.-L.; Wolfshohl, J.; Green, F.; Bhakta, T. Onsite telemedicine strategy for coronavirus (COVID-19) screening to limit exposure in ED. Emerg. Med. J. 2020, 37, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, D.R.; Davies, E.V.; Harlow, E.R.; Hsu, J.J.; Knighton, S.C.; Walker, T.A.; Voos, J.E.; Drummond, C.K. Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. Front. Digit. Health 2020, 2, 8. [Google Scholar] [CrossRef]
- Grossman, Z.; Chodick, G.; Reingold, S.M.; Chapnick, G.; Ashkenazi, S. The future of telemedicine visits after COVID-19: Perceptions of primary care pediatricians. Isr. J. Health Policy Res. 2020, 9, 53. [Google Scholar] [CrossRef]
- Evans, R.S. Electronic Health Records: Then, Now, and in the Future. Yearb. Med. Inform. 2016, 25 (Suppl. 1), S48–S61. [Google Scholar] [CrossRef]
- Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 25–60. [Google Scholar] [CrossRef]
- Shara, N.; Bjarnadottir, M.V.; Falah, N.; Chou, J.; Alqutri, H.S.; Asch, F.M.; Anderson, K.M.; Bennett, S.S.; Kuhn, A.; Montalvo, B.; et al. Voice activated remote monitoring technology for heart failure patients: Study design, feasibility and observations from a pilot randomized control trial. PLoS ONE 2022, 17, e0267794. [Google Scholar] [CrossRef]
- Jadczyk, T.; Wojakowski, W.; Tendera, M.; Henry, T.D.; Egnaczyk, G.; Shreenivas, S. Artificial Intelligence Can Improve Patient Management at the Time of a Pandemic: The Role of Voice Technology. J. Med. Internet Res. 2021, 23, e22959. [Google Scholar] [CrossRef]
- Tahri Sqalli, M.; Al-Thani, D. On How Chronic Conditions Affect the Patient-AI Interaction: A Literature Review. Healthcare 2020, 8, 313. [Google Scholar] [CrossRef]
- Viswanathan, M.; Golin, C.E.; Jones, C.D.; Ashok, M.; Blalock, S.J.; Wines, R.C.; Coker-Schwimmer, E.J.; Rosen, D.L.; Sista, P.; Lohr, K.N. Interventions to improve adherence to self-administered medications for chronic diseases in the United States: A systematic review. Ann. Intern. Med. 2012, 157, 785–795. [Google Scholar] [CrossRef]
- Babel, A.; Taneja, R.; Mondello Malvestiti, F.; Monaco, A.; Donde, S. Artificial Intelligence Solutions to Increase Medication Adherence in Patients With Non-communicable Diseases. Front. Digit. Health 2021, 3, 669869. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Seo, L.; Yoon, D.; Yang, K.; Yi, J.E.; Kim, Y.; Lee, J.H. Digital Health Profile of South Korea: A Cross Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 6329. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Bradley, S.; Chattu, V.K.; Adisesh, A.; Nurtazina, A.; Kyrykbayeva, S.; Sakhamuri, S.; Moguilner, S.; Pandya, S.; Schroeder, S.; et al. Telemedicine as the New Outpatient Clinic Gone Digital: Position Paper From the Pandemic Health System REsilience PROGRAM (REPROGRAM) International Consortium (Part 2). Front. Public Health 2020, 8, 410. [Google Scholar] [CrossRef]
- Adamo, J.E.; Bienvenu Ii, R.V.; Dolz, F.; Liebman, M.; Nilsen, W.; Steele, S.J. Translation of Digital Health Technologies to Advance Precision Medicine: Informing Regulatory Science. Digit. Biomark. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Khanna, R.K.; Ducloyer, J.B.; Hage, A.; Rezkallah, A.; Durbant, E.; Bigoteau, M.; Mouchel, R.; Guillon-Rolf, R.; Le, L.; Tahiri, R.; et al. Evaluating the potential of ChatGPT-4 in ophthalmology: The good, the bad and the ugly. J. Fr. Ophtalmol. 2023. [Google Scholar] [CrossRef]
- Nori, H.; King, N.; McKinney, S.M.; Carignan, D.; Horvitz, E. Capabilities of gpt-4 on medical challenge problems. arXiv 2023, arXiv:2303.13375. [Google Scholar]
- Biswas, S. ChatGPT and the Future of Medical Writing. Radiology 2023, 307, e223312. [Google Scholar] [CrossRef] [PubMed]
- Khare, Y.; Bagal, V.; Mathew, M.; Devi, A.; Priyakumar, U.D.; Jawahar, C. Mmbert: Multimodal bert pretraining for improved medical vqa. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 1033–1036. [Google Scholar]
- Zhang, N.; Jankowski, M. Hierarchical BERT for medical document understanding. arXiv 2022, arXiv:2204.09600. [Google Scholar]
- Chassagnon, G.; Billet, N.; Rutten, C.; Toussaint, T.; Cassius de Linval, Q.; Collin, M.; Lemouchi, L.; Homps, M.; Hedjoudje, M.; Ventre, J.; et al. Learning from the machine: AI assistance is not an effective learning tool for resident education in chest X-ray interpretation. Eur. Radiol. 2023. [Google Scholar] [CrossRef]
- Lecler, A.; Duron, L.; Soyer, P. Revolutionizing radiology with GPT-based models: Current applications, future possibilities and limitations of ChatGPT. Diagn. Interv. Imaging 2023, 104, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, F.; Ferretti, M. The FutureS of healthcare. Futures 2021, 134, 102849. [Google Scholar] [CrossRef]
- Meskó, B.; Drobni, Z.; Bényei, É.; Gergely, B.; Győrffy, Z. Digital health is a cultural transformation of traditional healthcare. mHealth 2017, 3, 38. [Google Scholar] [CrossRef]
- Van Velthoven, M.H.; Cordon, C. Sustainable Adoption of Digital Health Innovations: Perspectives From a Stakeholder Workshop. J. Med. Internet Res. 2019, 21, e11922. [Google Scholar] [CrossRef] [PubMed]
- Brinster, C.J.; Escousse, G.T.; Rivera, P.A.; Sternbergh, W.C., 3rd; Money, S.R. Drastic increase in hospital labor costs led to a sustained financial loss for an academic vascular surgery division during the coronavirus disease 2019 pandemic. J. Vasc. Surg. 2022, 76, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Boniol, M.; Kunjumen, T.; Nair, T.S.; Siyam, A.; Campbell, J.; Diallo, K. The global health workforce stock and distribution in 2020 and 2030: A threat to equity and ‘universal’ health coverage? BMJ Glob. Health 2022, 7, e009316. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, R.M.; Liu, J.X.; Kinfu, Y.; Dal Poz, M.R. Forecasting the global shortage of physicians: An economic- and needs-based approach. Bull. World Health Organ. 2008, 86, 516–523b. [Google Scholar] [CrossRef]
- Gaughan, J.; Liu, D.; Gutacker, N.; Bloor, K.; Doran, T.; Benger, J.R. Does the presence of general practitioners in emergency departments affect quality and safety in English NHS hospitals? A retrospective observational study. BMJ Open 2022, 12, e055976. [Google Scholar] [CrossRef]
- Waters, A. Government is to blame for lowest NHS satisfaction rating in 25 years, says BMA. BMJ 2022, 376, o836. [Google Scholar] [CrossRef]
- Cristea, M.; Noja, G.G.; Stefea, P.; Sala, A.L. The Impact of Population Aging and Public Health Support on EU Labor Markets. Int. J. Environ. Res. Public Health 2020, 17, 1439. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, N.; Azmanov, H.; Kesler, A.; Ilan, Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur. J. Hum. Genet. 2021, 29, 1485–1490. [Google Scholar] [CrossRef]
- Hajat, C.; Stein, E. The global burden of multiple chronic conditions: A narrative review. Prev. Med. Rep. 2018, 12, 284–293. [Google Scholar] [CrossRef]
- McFarland, S.; Coufopolous, A.; Lycett, D. The effect of telehealth versus usual care for home-care patients with long-term conditions: A systematic review, meta-analysis and qualitative synthesis. J. Telemed. Telecare 2021, 27, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Galea, S.; Maani, N. The cost of preventable disease in the USA. Lancet Public Health 2020, 5, e513–e514. [Google Scholar] [CrossRef]
- Pahus, L.; Suehs, C.M.; Halimi, L.; Bourdin, A.; Chanez, P.; Jaffuel, D.; Marciano, J.; Gamez, A.S.; Vachier, I.; Molinari, N. Patient distrust in pharmaceutical companies: An explanation for women under-representation in respiratory clinical trials? BMC Med. Ethics 2020, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Silfee, V.; Williams, K.; Leber, B.; Kogan, J.; Nikolajski, C.; Szigethy, E.; Serio, C. Health Care Provider Perspectives on the Use of a Digital Behavioral Health App to Support Patients: Qualitative Study. JMIR Form. Res. 2021, 5, e28538. [Google Scholar] [CrossRef] [PubMed]
- Bodenheimer, T. The political divide in health care: A liberal perspective. Health Aff. 2005, 24, 1426–1435. [Google Scholar] [CrossRef]
- Łukasik, M.; Porębska, A. Responsiveness and Adaptability of Healthcare Facilities in Emergency Scenarios: COVID-19 Experience. Int. J. Environ. Res. Public Health 2022, 19, 675. [Google Scholar] [CrossRef]
- Tagde, P.; Tagde, S.; Bhattacharya, T.; Tagde, P.; Chopra, H.; Akter, R.; Kaushik, D.; Rahman, M.H. Blockchain and artificial intelligence technology in e-Health. Environ. Sci. Pollut. Res. Int. 2021, 28, 52810–52831. [Google Scholar] [CrossRef]
- Pap, I.A.; Oniga, S. A Review of Converging Technologies in eHealth Pertaining to Artificial Intelligence. Int. J. Environ. Res. Public Health 2022, 19, 11413. [Google Scholar] [CrossRef]
- Taylor, K.I.; Staunton, H.; Lipsmeier, F.; Nobbs, D.; Lindemann, M. Outcome measures based on digital health technology sensor data: Data- and patient-centric approaches. NPJ Digit. Med. 2020, 3, 97. [Google Scholar] [CrossRef]
- Edgman-Levitan, S.; Schoenbaum, S.C. Patient-centered care: Achieving higher quality by designing care through the patient’s eyes. Isr. J. Health Policy Res. 2021, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Yusuff, K.B.; Mustafa, M.; Al-Qahtani, N.H. Prevalence, types and severity of medication errors associated with the use of automated medication use systems in ambulatory and institutionalized care settings: A systematic review protocol. PLoS ONE 2021, 16, e0260992. [Google Scholar] [CrossRef]
- Gianfrancesco, M.A.; Tamang, S.; Yazdany, J.; Schmajuk, G. Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA Intern. Med. 2018, 178, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.A.; Battegay, M.; Juchler, F.; Vogt, J.E.; Widmer, A.F. Introduction to Machine Learning in Digital Healthcare Epidemiology. Infect. Control Hosp. Epidemiol. 2018, 39, 1457–1462. [Google Scholar] [CrossRef]
- Triantafyllidis, A.K.; Tsanas, A. Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature. J. Med. Internet Res. 2019, 21, e12286. [Google Scholar] [CrossRef]
- Ellahham, S.; Ellahham, N.; Simsekler, M.C.E. Application of Artificial Intelligence in the Health Care Safety Context: Opportunities and Challenges. Am. J. Med. Qual. 2020, 35, 341–348. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Alanazi, A. Using machine learning for healthcare challenges and opportunities. Inform. Med. Unlocked 2022, 30, 100924. [Google Scholar] [CrossRef]
- Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing bias in big data and AI for health care: A call for open science. Patterns 2021, 2, 100347. [Google Scholar] [CrossRef]
- Egger, J.; Gsaxner, C.; Pepe, A.; Pomykala, K.L.; Jonske, F.; Kurz, M.; Li, J.; Kleesiek, J. Medical deep learning-A systematic meta-review. Comput. Methods Programs Biomed. 2022, 221, 106874. [Google Scholar] [CrossRef]
- Verheij, R.A.; Curcin, V.; Delaney, B.C.; McGilchrist, M.M. Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse. J. Med. Internet Res. 2018, 20, e185. [Google Scholar] [CrossRef]
- Senbekov, M.; Saliev, T.; Bukeyeva, Z.; Almabayeva, A.; Zhanaliyeva, M.; Aitenova, N.; Toishibekov, Y.; Fakhradiyev, I. The Recent Progress and Applications of Digital Technologies in Healthcare: A Review. Int. J. Telemed. Appl. 2020, 2020, 8830200. [Google Scholar] [CrossRef]
- Magalhães, T.; Dinis-Oliveira, R.J.; Taveira-Gomes, T. Digital Health and Big Data Analytics: Implications of Real-World Evidence for Clinicians and Policymakers. Int. J. Environ. Res. Public Health 2022, 19, 8364. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.R.; Verdugo-Sivianes, E.M.; Amiama, A.; Munoz-Galvan, S. The circadian rhythm of viruses and its implications on susceptibility to infection. Expert. Rev. Anti-Infect. Ther. 2022, 20, 1109–1117. [Google Scholar] [CrossRef]
- de Hond, A.A.H.; Leeuwenberg, A.M.; Hooft, L.; Kant, I.M.J.; Nijman, S.W.J.; van Os, H.J.A.; Aardoom, J.J.; Debray, T.P.A.; Schuit, E.; van Smeden, M.; et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: A scoping review. NPJ Digit. Med. 2022, 5, 2. [Google Scholar] [CrossRef]
- Osei, E.; Agyei, K.; Tlou, B.; Mashamba-Thompson, T.P. Availability and Use of Mobile Health Technology for Disease Diagnosis and Treatment Support by Health Workers in the Ashanti Region of Ghana: A Cross-Sectional Survey. Diagnostics 2021, 11, 1233. [Google Scholar] [CrossRef] [PubMed]
- Celi, L.A.; Cellini, J.; Charpignon, M.-L.; Dee, E.C.; Dernoncourt, F.; Eber, R.; Mitchell, W.G.; Moukheiber, L.; Schirmer, J.; Situ, J.; et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLoS Digit. Health 2022, 1, e0000022. [Google Scholar] [CrossRef]
- Curioso, W.H. Building Capacity and Training for Digital Health: Challenges and Opportunities in Latin America. J. Med. Internet Res. 2019, 21, e16513. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.Y.; Szolovits, P.; Ghassemi, M. Can AI help reduce disparities in general medical and mental health care? AMA J. Ethics 2019, 21, 167–179. [Google Scholar]
- Cohen, A.B.; Dorsey, E.R.; Mathews, S.C.; Bates, D.W.; Safavi, K. A digital health industry cohort across the health continuum. NPJ Digit. Med. 2020, 3, 68. [Google Scholar] [CrossRef]
- Adjekum, A.; Blasimme, A.; Vayena, E. Elements of Trust in Digital Health Systems: Scoping Review. J. Med. Internet Res. 2018, 20, e11254. [Google Scholar] [CrossRef]
- Wang, Y.; Blobel, B.; Yang, B. Reinforcing Health Data Sharing through Data Democratization. J. Pers. Med. 2022, 12, 1380. [Google Scholar] [CrossRef]
- Szarfman, A.; Levine, J.G.; Tonning, J.M.; Weichold, F.; Bloom, J.C.; Soreth, J.M.; Geanacopoulos, M.; Callahan, L.; Spotnitz, M.; Ryan, Q.; et al. Recommendations for achieving interoperable and shareable medical data in the USA. Commun. Med. 2022, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.C.; Fortuna, K.L.; Jones, C.; Walker, R.; Hayes, S.N.; Patten, C.A.; Cooper, L.A. Back to the Future: Achieving Health Equity Through Health Informatics and Digital Health. JMIR Mhealth Uhealth 2020, 8, e14512. [Google Scholar] [CrossRef]
- Cordeiro, J.V. Digital Technologies and Data Science as Health Enablers: An Outline of Appealing Promises and Compelling Ethical, Legal, and Social Challenges. Front. Med. 2021, 8, 647897. [Google Scholar] [CrossRef] [PubMed]
- Gianfrancesco, M.A.; Goldstein, N.D. A narrative review on the validity of electronic health record-based research in epidemiology. BMC Med. Res. Methodol. 2021, 21, 234. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Lu, Y.; Spatz, E.S.; Nasir, K.; Krumholz, H.M. Trends and Predictors of Use of Digital Health Technology in the United States. Am. J. Med. 2021, 134, 129–134. [Google Scholar] [CrossRef]
- Ilan, Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front. Digit. Health 2020, 2, 569178. [Google Scholar] [CrossRef]
- Cozzoli, N.; Salvatore, F.P.; Faccilongo, N.; Milone, M. How can big data analytics be used for healthcare organization management? Literary framework and future research from a systematic review. BMC Health Serv. Res. 2022, 22, 809. [Google Scholar] [CrossRef]
- Dolley, S. Big Data’s Role in Precision Public Health. Front. Public Health 2018, 6, 68. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Pratap Singh, R.; Suman, R.; Rab, S. Significance of machine learning in healthcare: Features, pillars and applications. Int. J. Intell. Netw. 2022, 3, 58–73. [Google Scholar] [CrossRef]
- Peek, S.T.M.; Wouters, E.J.; Luijkx, K.G.; Vrijhoef, H.J. What it takes to successfully implement technology for aging in place: Focus groups with stakeholders. J. Med. Internet Res. 2016, 18, e5253. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-H.; Damnée, S.; Kerhervé, H.; Ware, C.; Rigaud, A.-S. Bridging the digital divide in older adults: A study from an initiative to inform older adults about new technologies. Clin. Interv. Aging 2015, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Hom, G.L.; Abramoff, M.D.; Campbell, J.P.; Chiang, M.F. Current Challenges and Barriers to Real-World Artificial Intelligence Adoption for the Healthcare System, Provider, and the Patient. Transl. Vis. Sci. Technol. 2020, 9, 45. [Google Scholar] [CrossRef]
- Aung, Y.Y.; Wong, D.C.; Ting, D.S. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021, 139, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Di Nucci, E. Should we be afraid of medical AI? J. Med. Ethics 2019, 45, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, M.Y. AI in Healthcare: Medical and socio-economic benefits and challenges. ScienceOpen 2021, Preprints. [Google Scholar] [CrossRef]
- Dalton-Brown, S. The Ethics of Medical AI and the Physician-Patient Relationship. Camb. Q. Healthc. Ethics 2020, 29, 115–121. [Google Scholar] [CrossRef]
- Bhandari, M.; Reddiboina, M. Augmented intelligence: A synergy between man and the machine. Indian J. Urol. 2019, 35, 89–91. [Google Scholar] [CrossRef]
- Batko, K.; Ślęzak, A. The use of Big Data Analytics in healthcare. J. Big Data 2022, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Mosadeghrad, A.M. Factors influencing healthcare service quality. Int. J. Health Policy Manag. 2014, 3, 77–89. [Google Scholar] [CrossRef]
- Thimbleby, H. Technology and the future of healthcare. J. Public Health Res. 2013, 2, e28. [Google Scholar] [CrossRef]
- Hardy, A.; Wojdecka, A.; West, J.; Matthews, E.; Golby, C.; Ward, T.; Lopez, N.D.; Freeman, D.; Waller, H.; Kuipers, E. How inclusive, user-centered design research can improve psychological therapies for psychosis: Development of SlowMo. JMIR Ment. Health 2018, 5, e11222. [Google Scholar] [CrossRef]
- Maramba, I.; Chatterjee, A.; Newman, C. Methods of usability testing in the development of eHealth applications: A scoping review. Int. J. Med. Inform. 2019, 126, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Panch, T.; Mattie, H.; Celi, L.A. The “inconvenient truth” about AI in healthcare. NPJ Digit. Med. 2019, 2, 77. [Google Scholar] [CrossRef]
- Chandra, S.; Verma, S.; Lim, W.M.; Kumar, S.; Donthu, N. Personalization in personalized marketing: Trends and ways forward. Psychol. Mark. 2022, 39, 1529–1562. [Google Scholar] [CrossRef]
- O’Connor, S.; Hanlon, P.; O’Donnell, C.A.; Garcia, S.; Glanville, J.; Mair, F.S. Understanding factors affecting patient and public engagement and recruitment to digital health interventions: A systematic review of qualitative studies. BMC Med. Inform. Decis. Mak. 2016, 16, 120. [Google Scholar] [CrossRef]
- Johnson, D.; Goodman, R.; Patrinely, J.; Stone, C.; Zimmerman, E.; Donald, R.; Chang, S.; Berkowitz, S.; Finn, A.; Jahangir, E. Assessing the accuracy and reliability of AI-generated medical responses: An evaluation of the Chat-GPT model. Res. Sq. 2023, preprint. [CrossRef]
- Greenhalgh, T.; Wherton, J.; Papoutsi, C.; Lynch, J.; Hughes, G.; A’Court, C.; Hinder, S.; Fahy, N.; Procter, R.; Shaw, S. Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies. J. Med. Internet Res. 2017, 19, e367. [Google Scholar] [CrossRef]
- Malcarney, M.B.; Horton, K.; Seiler, N.; Hastings, D. Advancing the Public’s Health by Scaling Innovations in Clinical Quality. Public Health Rep. 2017, 132, 512–517. [Google Scholar] [CrossRef]
- Tobia, K.; Nielsen, A.; Stremitzer, A. When Does Physician Use of AI Increase Liability? J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2021, 62, 17–21. [Google Scholar] [CrossRef]
- Modgil, S.; Singh, R.K.; Gupta, S.; Dennehy, D. A Confirmation Bias View on Social Media Induced Polarisation During COVID-19. Inf. Syst. Front. J. Res. Innov. 2021, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Thornhill, C.; Meeus, Q.; Peperkamp, J.; Berendt, B. A Digital Nudge to Counter Confirmation Bias. Front. Big Data 2019, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Waisberg, E.; Ong, J.; Masalkhi, M.; Kamran, S.A.; Zaman, N.; Sarker, P.; Lee, A.G.; Tavakkoli, A. GPT-4: A new era of artificial intelligence in medicine. Irish J. Med. Sci. 2023, 1–4. [Google Scholar] [CrossRef] [PubMed]
- van Panhuis, W.G.; Paul, P.; Emerson, C.; Grefenstette, J.; Wilder, R.; Herbst, A.J.; Heymann, D.; Burke, D.S. A systematic review of barriers to data sharing in public health. BMC Public Health 2014, 14, 1144. [Google Scholar] [CrossRef]
- Ahmad, O.F.; Stoyanov, D.; Lovat, L.B. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues. Tech. Innov. Gastrointest. Endosc. 2020, 22, 80–84. [Google Scholar] [CrossRef]
- Madore, C.; Yin, Z.; Leibowitz, J.; Butovsky, O. Microglia, Lifestyle Stress, and Neurodegeneration. Immunity 2020, 52, 222–240. [Google Scholar] [CrossRef]
- Chevrier, R.; Foufi, V.; Gaudet-Blavignac, C.; Robert, A.; Lovis, C. Use and Understanding of Anonymization and De-Identification in the Biomedical Literature: Scoping Review. J. Med. Internet Res. 2019, 21, e13484. [Google Scholar] [CrossRef]
- Vayena, E.; Mastroianni, A.; Kahn, J. Caught in the web: Informed consent for online health research. Sci. Transl. Med. 2013, 5, 173fs176. [Google Scholar] [CrossRef]
- World Health Organization. Global Diffusion of eHealth: Making Universal Health Coverage Achievable: Report of the Third Global Survey on eHealth; World Health Organization: Geneva, Switzerland, 2017.
- Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López García, Á.; Heredia, I.; Malík, P.; Hluchý, L. Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [Google Scholar] [CrossRef]
- Schäferhoff, M.; Zimmerman, A.; Diab, M.M.; Mao, W.; Chowdhary, V.; Gill, D.; Karanja, R.; Madikizela, M.; Ogbuoji, O.; Yamey, G. Investing in late-stage clinical trials and manufacturing of product candidates for five major infectious diseases: A modelling study of the benefits and costs of investment in three middle-income countries. Lancet Glob. Health 2022, 10, e1045–e1052. [Google Scholar] [CrossRef]
- Macdonald, J.C.; Isom, D.C.; Evans, D.D.; Page, K.J. Digital Innovation in Medicinal Product Regulatory Submission, Review, and Approvals to Create a Dynamic Regulatory Ecosystem-Are We Ready for a Revolution? Front. Med. 2021, 8, 660808. [Google Scholar] [CrossRef]
- McPhail, S.M. Multimorbidity in chronic disease: Impact on health care resources and costs. Risk Manag. Healthc. Policy 2016, 9, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Swartz, A.; LeFevre, A.E.; Perera, S.; Kinney, M.V.; George, A.S. Multiple pathways to scaling up and sustainability: An exploration of digital health solutions in South Africa. Glob. Health 2021, 17, 77. [Google Scholar] [CrossRef]
- Kwee, A.; Teo, Z.L.; Ting, D.S.W. Digital health in medicine: Important considerations in evaluating health economic analysis. Lancet Reg. Health. West. Pac. 2022, 23, 100476. [Google Scholar] [CrossRef]
- Teisberg, E.; Wallace, S.; O’Hara, S. Defining and Implementing Value-Based Health Care: A Strategic Framework. Acad. Med. 2020, 95, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adv. Mater. 2020, 32, 1901989. [Google Scholar] [CrossRef]
- Gomez Rossi, J.; Feldberg, B.; Krois, J.; Schwendicke, F. Evaluation of the Clinical, Technical, and Financial Aspects of Cost-Effectiveness Analysis of Artificial Intelligence in Medicine: Scoping Review and Framework of Analysis. JMIR Med. Inf. 2022, 10, e33703. [Google Scholar] [CrossRef] [PubMed]
- Sloane, E.B.; Silva, R.J. Chapter 83—Artificial intelligence in medical devices and clinical decision support systems. In Clinical Engineering Handbook, 2nd ed.; Iadanza, E., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 556–568. [Google Scholar]
- Mbunge, E.; Batani, J.; Gaobotse, G.; Muchemwa, B. Virtual healthcare services and digital health technologies deployed during coronavirus disease 2019 (COVID-19) pandemic in South Africa: A systematic review. Glob. Health J. 2022, 6, 102–113. [Google Scholar] [CrossRef]
- Dorsey, E.R. The new platforms of health care. NPJ Digit. Med. 2021, 4, 112. [Google Scholar] [CrossRef]
- Iyamu, I.; Gómez-Ramírez, O.; Xu, A.X.; Chang, H.J.; Watt, S.; McKee, G.; Gilbert, M. Challenges in the development of digital public health interventions and mapped solutions: Findings from a scoping review. Digit. Health 2022, 8, 20552076221102255. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Bope, C.D.; Agamah, F.E.; Dzobo, K.; Owusu Ateko, R.; Chimusa, E.; Mazandu, G.K.; Ntumba, S.B.; Dandara, C.; Wonkam, A. Implementing Artificial Intelligence and Digital Health in Resource-Limited Settings? Top 10 Lessons We Learned in Congenital Heart Defects and Cardiology. Omics A J. Integr. Biol. 2020, 24, 264–277. [Google Scholar] [CrossRef]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput. 2022, 14, 8459–8486. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Shuren, J.; Patel, B.; Gottlieb, S. FDA Regulation of Mobile Medical Apps. JAMA 2018, 320, 337–338. [Google Scholar] [CrossRef]
- Aguirre, R.R.; Suarez, O.; Fuentes, M.; Sanchez-Gonzalez, M.A. Electronic Health Record Implementation: A Review of Resources and Tools. Cureus 2019, 11, e5649. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.; Hekler, E.B.; Andersson, G.; Collins, L.M.; Doherty, A.; Hollis, C.; Rivera, D.E.; West, R.; Wyatt, J.C. Evaluating Digital Health Interventions: Key Questions and Approaches. Am. J. Prev. Med. 2016, 51, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, M.; Ahn, J.S.; Oh, D.; Shin, S.Y.; Chang, Y.J.; Cho, J. Development and Validation of Digital Health Technology Literacy Assessment Questionnaire. J. Med. Syst. 2022, 46, 13. [Google Scholar] [CrossRef]
- Hayden, J.; van der Windt, D.; Cartwright, J.; Côté, P.; Bombardier, C. Assessing Bias in Studies of Prognostic Factors. Ann. Intern. Med. 2013, 158, 280–286. [Google Scholar] [CrossRef]
- Richter, P.; Harst, L. Tackling the scaling-up problem of digital health applications. J. Public Health 2022, 30, 1–3. [Google Scholar] [CrossRef]
- Shrivastava, U.; Song, J.; Han, B.T.; Dietzman, D. Do data security measures, privacy regulations, and communication standards impact the interoperability of patient health information? A cross-country investigation. Int. J. Med. Inform. 2021, 148, 104401. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.; Fadrique, L.; Bin Noon, G.; Shah, A.; Morita, P.P. Evaluating Challenges and Adoption Factors for Active Assisted Living Smart Environments. Front. Digit. Health 2022, 4, 891634. [Google Scholar] [CrossRef]
- Nazeha, N.; Pavagadhi, D.; Kyaw, B.M.; Car, J.; Jimenez, G.; Tudor Car, L. A Digitally Competent Health Workforce: Scoping Review of Educational Frameworks. J. Med. Internet Res. 2020, 22, e22706. [Google Scholar] [CrossRef]
- Kruk, M.E.; Gage, A.D.; Arsenault, C.; Jordan, K.; Leslie, H.H.; Roder-DeWan, S.; Adeyi, O.; Barker, P.; Daelmans, B.; Doubova, S.V.; et al. High-quality health systems in the Sustainable Development Goals era: Time for a revolution. Lancet Glob. Health 2018, 6, e1196–e1252. [Google Scholar] [CrossRef] [PubMed]
- Pawloski, P.A.; Brooks, G.A.; Nielsen, M.E.; Olson-Bullis, B.A. A systematic review of clinical decision support systems for clinical oncology practice. J. Natl. Compr. Cancer Netw. 2019, 17, 331–338. [Google Scholar] [CrossRef]
- Billingy, N.E.; Tromp, V.; Veldhuijzen, E.; Belderbos, J.; Aaronson, N.K.; Feldman, E.; Hoek, R.; Bogaard, H.J.; Onwuteaka-Philipsen, B.D.; van de Poll-Franse, L.; et al. SYMptom monitoring with Patient-Reported Outcomes using a web application among patients with Lung cancer in the Netherlands (SYMPRO-Lung): Study protocol for a stepped-wedge randomised controlled trial. BMJ Open 2021, 11, e052494. [Google Scholar] [CrossRef] [PubMed]
- Hershman, D.L.; Unger, J.M.; Hillyer, G.C.; Moseley, A.; Arnold, K.B.; Dakhil, S.R.; Esparaz, B.T.; Kuan, M.C.; Graham, M.L., 2nd; Lackowski, D.M.; et al. Randomized Trial of Text Messaging to Reduce Early Discontinuation of Adjuvant Aromatase Inhibitor Therapy in Women With Early-Stage Breast Cancer: SWOG S1105. J. Clin. Oncol. 2020, 38, 2122–2129. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, E.Y.; Kim, H.S.; Lee, S.H.; Yoon, K.H.; Cho, J.H. Effect of a Mobile Phone-Based Glucose-Monitoring and Feedback System for Type 2 Diabetes Management in Multiple Primary Care Clinic Settings: Cluster Randomized Controlled Trial. JMIR Mhealth Uhealth 2020, 8, e16266. [Google Scholar] [CrossRef]
- Rahimi, R.; Kazemi, A.; Moghaddasi, H.; Arjmandi Rafsanjani, K.; Bahoush, G. Specifications of Computerized Provider Order Entry and Clinical Decision Support Systems for Cancer Patients Undergoing Chemotherapy: A Systematic Review. Chemotherapy 2018, 63, 162–171. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Wang, Y.K.; Chen, H.P.; Gao, K.L.; Shu, C.; Wang, J.C.; Yan, L.F.; Yang, Y.G.; Xie, F.Y.; Liu, J. A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment. Front. Med. 2021, 8, 626369. [Google Scholar] [CrossRef] [PubMed]
- Bowen, D.J.; Kreuter, M.; Spring, B.; Cofta-Woerpel, L.; Linnan, L.; Weiner, D.; Bakken, S.; Kaplan, C.P.; Squiers, L.; Fabrizio, C. How we design feasibility studies. Am. J. Prev. Med. 2009, 36, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Mentz, R.J.; Hernandez, A.F.; Berdan, L.G.; Rorick, T.; O’Brien, E.C.; Ibarra, J.C.; Curtis, L.H.; Peterson, E.D. Good clinical practice guidance and pragmatic clinical trials: Balancing the best of both worlds. Circulation 2016, 133, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Cunanan, K.M.; Iasonos, A.; Shen, R.; Begg, C.B.; Gönen, M. An efficient basket trial design. Stat. Med. 2017, 36, 1568–1579. [Google Scholar] [CrossRef] [PubMed]
- Ford, I.; Norrie, J. Pragmatic trials. N. Engl. J. Med. 2016, 375, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Hospodková, P.; Berežná, J.; Barták, M.; Rogalewicz, V.; Severová, L.; Svoboda, R. Change Management and Digital Innovations in Hospitals of Five European Countries. Healthcare 2021, 9, 1508. [Google Scholar] [CrossRef]
- Marwaha, J.S.; Landman, A.B.; Brat, G.A.; Dunn, T.; Gordon, W.J. Deploying digital health tools within large, complex health systems: Key considerations for adoption and implementation. NPJ Digit. Med. 2022, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Tighe, P.J.; Ozrazgat-Baslanti, T.; Davis, J.P.; Ruppert, M.M.; Ren, Y.; Shickel, B.; Kamaleswaran, R.; Hogan, W.R.; Moorman, J.R.; et al. Ideal algorithms in healthcare: Explainable, dynamic, precise, autonomous, fair, and reproducible. PLoS Digit. Health 2022, 1, e0000006. [Google Scholar] [CrossRef]
- Ilan, Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J. Biosci. 2019, 44, 132. [Google Scholar] [CrossRef]
- Ilan, Y. Generating randomness: Making the most out of disordering a false order into a real one. J. Transl. Med. 2019, 17, 49. [Google Scholar] [CrossRef]
- Ilan, Y. Advanced Tailored Randomness: A Novel Approach for Improving the Efficacy of Biological Systems. J. Comput. Biol. 2020, 27, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Order Through Disorder: The Characteristic Variability of Systems. Front. Cell Dev. Biol. 2020, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Finn, E.H.; Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 2019, 365, eaaw9498. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Randomness in microtubule dynamics: An error that requires correction or an inherent plasticity required for normal cellular function? Cell Biol. Int. 2019, 43, 739–748. [Google Scholar] [CrossRef]
- Ilan, Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J. Cell. Physiol. 2019, 234, 7923–7937. [Google Scholar] [CrossRef] [PubMed]
- Ilan-Ber, T.; Ilan, Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol. Immunol. 2019, 111, 73–82. [Google Scholar] [CrossRef]
- Forkosh, E.; Kenig, A.; Ilan, Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol. Res. Perspect. 2020, 8, e00616. [Google Scholar] [CrossRef]
- Ilan, Y. Microtubules as a potential platform for energy transfer in biological systems: A target for implementing individualized, dynamic variability patterns to improve organ function. Mol. Cell. Biochem. 2022, 478, 375–392. [Google Scholar] [CrossRef]
- Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature 1984, 312, 237–242. [Google Scholar] [CrossRef]
- Kirschner, M.W.; Mitchison, T. Microtubule dynamics. Nature 1986, 324, 621. [Google Scholar] [CrossRef]
- Turana, Y.; Shen, R.; Nathaniel, M.; Chia, Y.C.; Li, Y.; Kario, K. Neurodegenerative diseases and blood pressure variability: A comprehensive review from HOPE Asia. J. Clin. Hypertens. 2022, 24, 1204–1217. [Google Scholar] [CrossRef] [PubMed]
- Chiera, M.; Cerritelli, F.; Casini, A.; Barsotti, N.; Boschiero, D.; Cavigioli, F.; Corti, C.G.; Manzotti, A. Heart Rate Variability in the Perinatal Period: A Critical and Conceptual Review. Front. Neurosci. 2020, 14, 561186. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Jia, H.; Yu, B. The Effect of Blood Pressure Variability on Coronary Atherosclerosis Plaques. Front. Cardiovasc. Med. 2022, 9, 803810. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. The constrained disorder principle defines living organisms and provides a method for correcting disturbed biological systems. Comput. Struct. Biotechnol. J. 2022, 20, 6087–6096. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Making use of noise in biological systems. Prog. Biophys. Mol. Biol. 2023, 178, 83–90. [Google Scholar] [CrossRef]
- Ilan, Y. Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks. Prog. Biophys. Mol. Biol. 2023, 180–181, 37–48. [Google Scholar] [CrossRef]
- Sigawi, T.; Lehmann, H.; Hurvitz, N.; Ilan, Y. Constrained Disorder Principle-Based Second-Generation Algorithms Implement Quantified Variability Signatures to Improve the Function of Complex Systems. J. Bioinform. Syst. Biol. 2023, 6, 82–89. [Google Scholar] [CrossRef]
- Ilan, Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. Mol. Ther. Methods Clin. Dev. 2020, 18, 335–344. [Google Scholar] [CrossRef]
- Shabat, Y.; Lichtenstein, Y.; Ilan, Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage. Inflammation 2021, 44, 518–525. [Google Scholar] [CrossRef]
- El-Haj, M.; Kanovitch, D.; Ilan, Y. Personalized inherent randomness of the immune system is manifested by an individualized response to immune triggers and immunomodulatory therapies: A novel platform for designing personalized immunotherapies. Immunol. Res. 2019, 67, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. beta-Glycosphingolipids as Mediators of Both Inflammation and Immune Tolerance: A Manifestation of Randomness in Biological Systems. Front. Immunol. 2019, 10, 1143. [Google Scholar] [CrossRef]
- Kessler, A.; Weksler-Zangen, S.; Ilan, Y. Role of the Immune System and the Circadian Rhythm in the Pathogenesis of Chronic Pancreatitis: Establishing a Personalized Signature for Improving the Effect of Immunotherapies for Chronic Pancreatitis. Pancreas 2020, 49, 1024–1032. [Google Scholar] [CrossRef]
- Ishay, Y.; Kolben, Y.; Kessler, A.; Ilan, Y. Role of circadian rhythm and autonomic nervous system in liver function: A hypothetical basis for improving the management of hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G400–G412. [Google Scholar] [CrossRef]
- Kolben, Y.; Weksler-Zangen, S.; Ilan, Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes. Rev. 2021, 22, e13108. [Google Scholar] [CrossRef]
- Kenig, A.; Kolben, Y.; Asleh, R.; Amir, O.; Ilan, Y. Improving Diuretic Response in Heart Failure by Implementing a Patient-Tailored Variability and Chronotherapy-Guided Algorithm. Front. Cardiovasc. Med. 2021, 8, 695547. [Google Scholar] [CrossRef] [PubMed]
- Azmanov, H.; Ross, E.L.; Ilan, Y. Establishment of an Individualized Chronotherapy, Autonomic Nervous System, and Variability-Based Dynamic Platform for Overcoming the Loss of Response to Analgesics. Pain Physician 2021, 24, 243–252. [Google Scholar]
- Potruch, A.; Khoury, S.T.; Ilan, Y. The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020, 80, 201–211. [Google Scholar] [CrossRef]
- Isahy, Y.; Ilan, Y. Improving the long-term response to antidepressants by establishing an individualized platform based on variability and chronotherapy. Int. J. Clin. Pharmacol. Ther. 2021, 59, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Khoury, T.; Ilan, Y. Introducing Patterns of Variability for Overcoming Compensatory Adaptation of the Immune System to Immunomodulatory Agents: A Novel Method for Improving Clinical Response to Anti-TNF Therapies. Front. Immunol. 2019, 10, 2726. [Google Scholar] [CrossRef]
- Khoury, T.; Ilan, Y. Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent weight regain following weight loss in patients with obesity. Obes. Res. Clin. Pract. 2021, 15, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Kenig, A.; Ilan, Y. A Personalized Signature and Chronotherapy-Based Platform for Improving the Efficacy of Sepsis Treatment. Front. Physiol. 2019, 10, 1542. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Why targeting the microbiome is not so successful: Can randomness overcome the adaptation that occurs following gut manipulation? Clin. Exp. Gastroenterol. 2019, 12, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Gelman, R.; Bayatra, A.; Kessler, A.; Schwartz, A.; Ilan, Y. Targeting SARS-CoV-2 receptors as a means for reducing infectivity and improving antiviral and immune response: An algorithm-based method for overcoming resistance to antiviral agents. Emerg. Microbes Infect. 2020, 9, 1397–1406. [Google Scholar] [CrossRef]
- Ilan, Y.; Spigelman, Z. Establishing patient-tailored variability-based paradigms for anti-cancer therapy: Using the inherent trajectories which underlie cancer for overcoming drug resistance. Cancer Treat. Res. Commun. 2020, 25, 100240. [Google Scholar] [CrossRef]
- Ilan, Y. Digital Medical Cannabis as Market Differentiator: Second-Generation Artificial Intelligence Systems to Improve Response. Front. Med. 2021, 8, 788777. [Google Scholar] [CrossRef]
- Gelman, R.; Berg, M.; Ilan, Y. A Subject-Tailored Variability-Based Platform for Overcoming the Plateau Effect in Sports Training: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 1722. [Google Scholar] [CrossRef]
- Azmanov, H.; Bayatra, A.; Ilan, Y. Digital Analgesic Comprising a Second-Generation Digital Health System: Increasing Effectiveness by Optimizing the Dosing and Minimizing Side Effects. J. Pain Res. 2022, 15, 1051–1060. [Google Scholar] [CrossRef]
- Hurvitz, N.; Elkhateeb, N.; Sigawi, T.; Rinsky-Halivni, L.; Ilan, Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. Front. Aging 2022, 3, 1044038. [Google Scholar] [CrossRef]
- Kolben, Y.; Azmanov, H.; Gelman, R.; Dror, D.; Ilan, Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann. Med. 2023, 55, 311–318. [Google Scholar] [CrossRef]
- Ilan, Y. Improving Global Healthcare and Reducing Costs Using Second-Generation Artificial Intelligence-Based Digital Pills: A Market Disruptor. Int. J. Environ. Res. Public Health 2021, 18, 811. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Next-Generation Personalized Medicine: Implementation of Variability Patterns for Overcoming Drug Resistance in Chronic Diseases. J. Pers. Med. 2022, 12, 1303. [Google Scholar] [CrossRef]
- Patel, D.; Konstantinidou, H. Prescribing in personality disorder: Patients’ perspectives on their encounters with GPs and psychiatrists. Fam. Med. Community Health 2020, 8, e000458. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; FitzPatrick, M.E.; Roycroft, M. The role of the future physician: Building on shifting sands. Clin. Med. 2020, 20, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Baltaxe, E.; Czypionka, T.; Kraus, M.; Reiss, M.; Askildsen, J.E.; Grenkovic, R.; Lindén, T.S.; Pitter, J.G.; Rutten-van Molken, M.; Solans, O.; et al. Digital Health Transformation of Integrated Care in Europe: Overarching Analysis of 17 Integrated Care Programs. J. Med. Internet Res. 2019, 21, e14956. [Google Scholar] [CrossRef] [PubMed]
- Warraich, H.J.; Califf, R.M.; Krumholz, H.M. The digital transformation of medicine can revitalize the patient-clinician relationship. NPJ Digit. Med. 2018, 1, 49. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef]
- Gelman, R.; Hurvitz, N.; Nesserat, R.; Kolben, Y.; Nachman, D.; Jamil, K.; Agus, S.; Asleh, R.; Amir, O.; Berg, M.; et al. A second-generation artificial intelligence-based therapeutic regimen improves diuretic resistance in heart failure: Results of a feasibility open-labeled clinical trial. Biomed. Pharmacother. 2023, 161, 114334. [Google Scholar] [CrossRef] [PubMed]
- Park, J.I.; Lee, H.Y.; Kim, H.; Lee, J.; Shinn, J.; Kim, H.S. Lack of Acceptance of Digital Healthcare in the Medical Market: Addressing Old Problems Raised by Various Clinical Professionals and Developing Possible Solutions. J. Korean Med. Sci. 2021, 36, e253. [Google Scholar] [CrossRef]
- Mathews, S.C.; McShea, M.J.; Hanley, C.L.; Ravitz, A.; Labrique, A.B.; Cohen, A.B. Digital health: A path to validation. NPJ Digit. Med. 2019, 2, 38. [Google Scholar] [CrossRef] [PubMed]
Digital Health System Challenge | Constrained-Disorder Principle-Based Second-Generation Artificial Intelligence Solutions | |
---|---|---|
Data | “Big data” failed to translate into improving patient outcome | Generating insightful, personalized datasets for subject-tailored therapeutic regimens [146,236,239,261,262] |
Users | Lack of engagement by patients and physicians | Outcome-based systems ensure long-term engagement as patients view the system as part of the therapy [262]. |
A need for explainable systems | The improved outcome is quantifiable in most cases, easing the process of adapting to digital systems [146,261,262] | |
System functions | Biases | The system reduces biases as it is independent of the physician. Algorithms are targeted to clinically meaningful outcomes [146]. |
Payers | Increased costs | By improving outcomes, the system reduces hospitalizations and the need for more expensive therapies, thus saving costs [261]. |
Pharma companies | Cannot translate digital system to profits | Improving adherence increases sales while providing pharma with a market disruptor [261]. |
Validation | Difficulty in validating advantages | Outcome-based endpoints are quantifiable and, in most cases, are easily validated [238,268]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurvitz, N.; Ilan, Y. The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems. Clin. Pract. 2023, 13, 994-1014. https://doi.org/10.3390/clinpract13040089
Hurvitz N, Ilan Y. The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems. Clinics and Practice. 2023; 13(4):994-1014. https://doi.org/10.3390/clinpract13040089
Chicago/Turabian StyleHurvitz, Noa, and Yaron Ilan. 2023. "The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems" Clinics and Practice 13, no. 4: 994-1014. https://doi.org/10.3390/clinpract13040089
APA StyleHurvitz, N., & Ilan, Y. (2023). The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems. Clinics and Practice, 13(4), 994-1014. https://doi.org/10.3390/clinpract13040089