Plasma Rich in Growth Factors in Macular Hole Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Preparation of PRGF
2.3. The Surgical Technique Using PRGF in the Macular Hole
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikbova, G.; Oshitari, T.; Baba, T.; Yamamoto, S.; Mori, K. Pathogenesis and Management of Macular Hole: Review of Current Advances. J. Ophthalmol. 2019, 2019, 3467381. [Google Scholar] [CrossRef] [PubMed]
- De Giacinto, C.; Pastore, M.R.; Cirigliano, G.; Tognetto, D.; Azzolini, C. Macular Hole in Myopic Eyes: A Narrative Review of the Current Surgical Techniques. J. Ophthalmol. 2019, 2019, 3230695. [Google Scholar] [CrossRef]
- Tam, A.L.C.; Yan, P.; Gan, N.Y.; Lam, W.-C. The current surgical management of large, recurrent, or persistent macular holes. Retina 2018, 38, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Byeon, S.H. New insights into the pathoanatomy of macular holes based on features of optical coherence tomography. Surv. Ophthalmol. 2017, 62, 506–521. [Google Scholar] [CrossRef]
- Sheidow, T.G.; Blinder, K.J.; Holekamp, N.; Joseph, D.; Shah, G.; Grand, M.G.; Thomas, M.A.; Bakal, J.; Sharma, S. Outcome results in macular hole surgery: An evaluation of internal limiting membrane peeling with and without indocyanine green. Ophthalmology 2003, 110, 1697–1701. [Google Scholar] [CrossRef]
- Dai, Y.; Dong, F.; Zhang, X.; Yang, Z. Internal limiting membrane transplantation for unclosed and large macular holes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 2095–2099. [Google Scholar] [CrossRef]
- Wrzesińska, D.; Nowomiejska, K.; Nowakowska, D.; Toro, M.D.; Bonfiglio, V.; Reibaldi, M.; Avitabile, T.; Rejdak, R. Secondary Vitrectomy with Internal Limiting Membrane Plug due to Persistent Full-Thickness Macular Hole OCT-Angiography and Microperimetry Features: Case Series. J. Ophthalmol. 2020, 2020, 2650873. [Google Scholar] [CrossRef]
- Morizane, Y.; Shiraga, F.; Kimura, S.; Hosokawa, M.; Shiode, Y.; Kawata, T.; Hosogi, M.; Shirakata, Y.; Okanouchi, T. Autologous transplantation of the internal limiting membrane for refractory macular holes. Am. J. Ophthalmol. 2014, 157, 861–869.e1. [Google Scholar] [CrossRef]
- Ip, M.S.; Baker, B.J.; Duker, J.S.; Reichel, E.; Baumal, C.R.; Gangnon, R.; Puliafito, C.A. Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography. Arch. Ophthalmol. 2002, 120, 29–35. [Google Scholar] [CrossRef]
- Alkabes, M.; Pichi, F.; Nucci, P.; Massaro, D.; Dutra Medeiros, M.; Corcostegui, B.; Mateo, C. Anatomical and visual outcomes in high myopic macular hole (HM-MH) without retinal detachment: A review. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 191–199. [Google Scholar] [CrossRef]
- Figueroa, M.S.; Govetto, A.; Arriba-Palomero, P. Short-term results of platelet-rich plasma as adjuvant to 23-G vitrectomy in the treatment of high myopic macular holes. Eur. J. Ophthalmol. 2016, 26, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Smiddy, W.E.; Glaser, B.M.; Green, W.R.; Connor, T.B.J.; Roberts, A.B.; Lucas, R.; Sporn, M.B. Transforming growth factor beta. A biologic chorioretinal glue. Arch. Ophthalmol. 1989, 107, 577–580. [Google Scholar] [CrossRef]
- Olsen, T.W.; Sternberg, P.J.; Capone, A.J.; Martin, D.F.; Lim, J.I.; Grossniklaus, H.E.; Aaberg, T.M.S. Macular hole surgery using thrombin-activated fibrinogen and selective removal of the internal limiting membrane. Retina 1998, 18, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.A.; Gregor, Z.J. Surgical treatment of full-thickness macular holes using autologous serum. Eye 1996, 10, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Vote, B.J.; Membrey, W.L.; Casswell, A.G. Autologous platelets for macular hole surgery: The Sussex Eye Hospital experience. Clin. Exp. Ophthalmol. 2004, 32, 472–477. [Google Scholar] [CrossRef]
- Anitua, E.; Muruzabal, F.; Tayebba, A.; Riestra, A.; Perez, V.L.; Merayo-Lloves, J.; Orive, G. Autologous serum and plasma rich in growth factors in ophthalmology: Preclinical and clinical studies. Acta Ophthalmol. 2015, 93, e605–e614. [Google Scholar] [CrossRef]
- Riestra, A.C.; Alonso-Herreros, J.M.; Merayo-Lloves, J. Plasma rico en plaquetas en superficie ocular. Arch. Soc. Esp. Oftalmol. 2016, 91, 475–490. [Google Scholar] [CrossRef]
- Anitua, E.; de la Fuente, M.; Riestra, A.; Merayo-Lloves, J.; Muruzábal, F.; Orive, G. Preservation of Biological Activity of Plasma and Platelet-Derived Eye Drops After Their Different Time and Temperature Conditions of Storage. Cornea 2015, 34, 1144–1148. [Google Scholar] [CrossRef]
- Sanchez-Avila, R.M.; Merayo-Lloves, J.; Riestra, A.C.; Anitua, E.; Muruzabal, F.; Orive, G.; Fernandez-Vega, L. The Effect of Immunologically Safe Plasma Rich in Growth Factor Eye Drops in Patients with Sjogren Syndrome. J. Ocul. Pharmacol. Ther. 2017, 33, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Avila, R.M.; Merayo-Lloves, J.; Riestra, A.C.; Fernandez-Vega Cueto, L.; Anitua, E.; Begona, L.; Muruzabal, F.; Orive, G. Treatment of patients with neurotrophic keratitis stages 2 and 3 with plasma rich in growth factors (PRGF-Endoret) eye-drops. Int. Ophthalmol. 2018, 38, 1193–1204. [Google Scholar] [CrossRef]
- Sanchez-Avila, R.M.; Merayo-Lloves, J.; Riestra, A.C.; Berisa, S.; Lisa, C.; Sanchez, J.A.; Muruzabal, F.; Orive, G.; Anitua, E. Plasma rich in growth factors membrane as coadjuvant treatment in the surgery of ocular surface disorders. Medicine 2018, 97, e0242. [Google Scholar] [CrossRef]
- Sánchez-Avila, R.M.; Merayo-Lloves, J.; Fernández, M.L.; Rodríguez-Gutiérrez, L.A.; Rodríguez-Calvo, P.P.; Fernández-Vega Cueto, A.; Muruzabal, F.; Orive, G.; Anitua, E. Plasma rich in growth factors eye drops to treat secondary ocular surface disorders in patients with glaucoma. Int. Med. Case Rep. J. 2018, 11, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Avila, R.M.; Fernandez-Vega Gonzalez, A.; Fernandez-Vega Sanz, A.; Merayo-Lloves, J. Treatment of recurrent myopic macular hole using membrane of plasma rich in growth factors. Int. Med. Case Rep. J. 2019, 12, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Paques, M.; Chastang, C.; Mathis, A.; Sahel, J.; Massin, P.; Dosquet, C.; Korobelnik, J.F.; Le Gargasson, J.F.; Gaudric, A. Effect of autologous platelet concentrate in surgery for idiopathic macular hole: Results of a multicenter, double-masked, randomized trial. Platelets in Macular Hole Surgery Group. Ophthalmology 1999, 106, 932–938. [Google Scholar] [CrossRef]
- Duker, J.S.; Kaiser, P.K.; Binder, S.; de Smet, M.D.; Gaudric, A.; Reichel, E.; Sadda, S.R.; Sebag, J.; Spaide, R.F.; Stalmans, P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 2013, 120, 2611–2619. [Google Scholar] [CrossRef]
- Anitua, E.; Muruzabal, F.; De la Fuente, M.; Merayo-Lloves, J.; Orive, G. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop. Exp. Eye Res. 2014, 119, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S.; Haritoglou, C.; Gass, C.; Schaumberger, M.; Ulbig, M.W.; Kampik, A. Macular hole size as a prognostic factor in macular hole surgery. Br. J. Ophthalmol. 2002, 86, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Mete, M.; Alfano, A.; Guerriero, M.; Prigione, G.; Sartore, M.; Polito, A.; Pertile, G. Inverted internal limiting membrane flap technique versus complete internal limiting membrane removal in myopic macular hole surgery: A Comparative Study. Retina 2017, 37, 1923–1930. [Google Scholar] [CrossRef]
- Kuriyama, S.; Hayashi, H.; Jingami, Y.; Kuramoto, N.; Akita, J.; Matsumoto, M. Efficacy of inverted internal limiting membrane flap technique for the treatment of macular hole in high myopia. Am. J. Ophthalmol. 2013, 156, 125–131.e1. [Google Scholar] [CrossRef]
- Chen, S.-N.; Yang, C.-M. Inverted Internal Limiting Membrane Insertion for Macular Hole-Associated Retinal Detachment in High Myopia. Am. J. Ophthalmol. 2016, 162, 99–106.e1. [Google Scholar] [CrossRef]
- Chen, S.-N.; Hsieh, Y.-T.; Yang, C.-M. Multiple Free Internal Limiting Membrane Flap Insertion in the Treatment of Macular Hole-Associated Retinal Detachment in High Myopia. Ophthalmologica 2018, 240, 143–149. [Google Scholar] [CrossRef]
- Ding, C.; Li, S.; Zeng, J. Autologous Neurosensory Retinal Transplantation for Unclosed and Large Macular Holes. Ophthalmic Res. 2019, 61, 88–93. [Google Scholar] [CrossRef]
- Lee, S.M.; Kwon, H.J.; Park, S.W.; Lee, J.E.; Byon, I.S. Microstructural changes in the fovea following autologous internal limiting membrane transplantation surgery for large macular holes. Acta Ophthalmol. 2018, 96, e406–e408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korobelnik, J.F.; Hannouche, D.; Belayachi, N.; Branger, M.; Guez, J.E.; Hoang-Xuan, T. Autologous platelet concentrate as an adjunct in macular hole healing: A pilot study. Ophthalmology 1996, 103, 590–594. [Google Scholar] [CrossRef]
- Rizzo, S.; Caporossi, T.; Tartaro, R.; Finocchio, L.; Franco, F.; Barca, F.; Giansanti, F. A Human Amniotic Membrane Plug to Promote Retinal Breaks Repair and Recurrent Macular Hole Closure. Retina 2019, 39, S95–S103. [Google Scholar] [CrossRef]
- Koytak, A.; Nuhoglu, F.; Bayraktar, H.; Ercan, R.; Ozdemir, H. Autologous Platelet-Rich Fibrin in the Treatment of Refractory Macular Holes. Case Rep. Ophthalmol. Med. 2019, 2019, 6054215. [Google Scholar] [CrossRef] [Green Version]
- Cullinane, A.B.; O’Callaghan, P.; McDermo tt, K.; Keohane, C.; Cleary, P.E. Effects of autologous platelet concentrate and serum on retinal wound healing in an animal model. Graefes Arch. Clin. Exp. Ophthalmol. 2002, 240, 35–41. [Google Scholar] [CrossRef]
- Kapoor, K.G.; Khan, A.N.; Tieu, B.C.; Khurshid, G.S. Revisiting autologous platelets as an adjuvant in macular hole repair: Chronic macular holes without prone positioning. Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 2012, 43, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.N.; McDonald, H.R.; Lewis, H.; Grand, M.G.; Murray, T.G.; Mieler, W.F.; Johnson, M.W.; Boldt, H.C.; Olsen, K.R.; Tornambe, P.E.; et al. Traumatic macular hole: Observations, pathogenesis, and results of vitrectomy surgery. Ophthalmology 2001, 108, 853–857. [Google Scholar] [CrossRef]
- Wachtlin, J.; Jandeck, C.; Potthofer, S.; Kellner, U.; Foerster, M.H. Long-term results following pars plana vitrectomy with platelet concentrate in pediatric patients with traumatic macular hole. Am. J. Ophthalmol. 2003, 136, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Purtskhvanidze, K.; Frühsorger, B.; Bartsch, S.; Hedderich, J.; Roider, J.; Treumer, F. Persistent Full-Thickness Idiopathic Macular Hole: Anatomical and Functional Outcome of Revitrectomy with Autologous Platelet Concentrate or Autologous Whole Blood. Ophthalmologica 2017, 239, 19–26. [Google Scholar] [CrossRef]
- D’Souza, M.J.J.; Chaudhary, V.; Devenyi, R.; Kertes, P.J.; Lam, W.-C. Re-operation of idiopathic full-thickness macular holes after initial surgery with internal limiting membrane peel. Br. J. Ophthalmol. 2011, 95, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kwon, O.W. Vitrectomy for Refractory Macular Hole. Retin Cases Br. Rep. 2015, 9, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Chen, Y.P.; Wang, N.K.; Chuang, L.H.; Liu, L.; Chen, K.J.; Hwang, Y.S.; Wu, W.C.; Chen, T.L. Vitrectomy with Internal Limiting Membrane Repositioning and Autologous Blood for Macular Hole Retinal Detachment in Highly Myopic Eyes. Ophthalmology 2015, 122, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Arias, J.D.; Hoyos, A.T.; Alcántara, B.; Sanchez-avila, R.M.; Arango, F.J.; Galvis, V. Plasma rich in growth factors for persistent macular hole: A pilot study. Retin. Cases Brief Rep. 2019. [Google Scholar] [CrossRef]
- Anitua, E.; Prado, R.; Azkargorta, M.; Rodriguez-Suarez, E.; Iloro, I.; Casado-Vela, J.; Elortza, F.; Orive, G. High-throughput proteomic characterization of plasma rich in growth factors (PRGF-Endoret)-derived fibrin clot interactome. J. Tissue Eng. Regen. Med. 2015, 9, E1–E12. [Google Scholar] [CrossRef]
- Anitua, E.; Nurden, P.; Prado, R.; Nurden, A.T.; Padilla, S. Autologous fibrin scaffolds: When platelet- and plasma-derived biomolecules meet fibrin. Biomaterials 2019, 192, 440–460. [Google Scholar] [CrossRef]
- Riestra, A.C.; Vazquez, N.; Chacon, M.; Berisa, S.; Sanchez-Avila, R.M.; Orive, G.; Anitua, E.; Meana, A.; Merayo-Lloves, J. Autologous method for ex vivo expansion of human limbal epithelial progenitor cells based on plasma rich in growth factors technology. Ocul. Surf. 2017, 15, 248–256. [Google Scholar] [CrossRef]
- Hoerauf, H.; Klüter, H.; Joachimmeyer, E.; Roider, J.; Framme, C.; Schlenke, P.; Kirchner, H.; Lagua, H. Results of vitrectomy and the no-touch-technique using autologous adjuvants in macular hole treatment. Int. Ophthalmol. 2001, 24, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; de la Fuente, M.; Muruzabal, F.; Sanchez-Avila, R.M.; Merayo-Lloves, J.; Azkargorta, M.; Elortza, F.; Orive, G. Differential profile of protein expression on human keratocytes treated with autologous serum and plasma rich in growth factors (PRGF). PLoS ONE 2018, 13, e0205073. [Google Scholar] [CrossRef]
- Suarez-Barrio, C.; Del Olmo-Aguado, S.; Garcia-Perez, E.; de la Fuente, M.; Muruzabal, F.; Anitua, E.; Baamonde-Arbaiza, B.; Fernandez-Vega-Cueto, L.; Fernandez-Vega, L.; Merayo-Lloves, J. Antioxidant Role of PRGF on RPE Cells after Blue Light Insult as a Therapy for Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Num. Patient/Age (Years)/Gender | Laterality (Eye) | Primary Ophthalmologic Disease | MH Etiology | Time with Diagnosis of MH (Months) | Number of Previous Surgeries | Detail of Previous Surgeries | MH Time Open Since Last Surgery (Months) |
---|---|---|---|---|---|---|---|
1/36/M | R | PDR + VH + SMH | Iatrogenic | 3 | 1 | 1st: PPV + P-ILM + C3F8 | 1.6 |
2/64/F | L | High myopia | MMH | 72 | 2 | 1st: PPV + TMHE + C3F8; 2nd: PPV + TMHE + C3F8 | 63 |
3/47/M | R | High myopia | MMH | 3 | 1 | 1st: PPV + P-ILM + C3F8 | 2.8 |
4/62/M | L | High myopia | MMH | 24 | 1 | 1st: PPV + P-ILM + C3F8 | 21.5 |
5/71/M | R | Primary MH | IMH | 3 | 1 | 1st: PPV + P-ILM + C3F8 | 2 |
6/68/F | L | Primary MH | IMH | 24 | 0 | N/A | 24 |
7/62/F | L | High myopia | MMH | 24 | 2 | 1st: PPV + TMHE + C3F8; 2nd: PPV + TMHE + C3F8 | 12 |
8/15/M | R | Traumatic MH | Trauma | 6 | 0 | N/A | 6 |
Patient | Pre-Surgery Lens | BCVA Pre-Surgical; Decimal (LogMAR) | IOP Pre-surgical (mmHg) | Base Diameter of MH (µm) | Minimum Diameter of MH (µm) | Height of MH (µm) | Surgery Performed | Final State of the Lens | BCVA Final; Decimal (LogMAR) | IOP Final (mmHg) | Follow-Up Time (Month) | Final Closure of MH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Phakic | 0.2 (0.699) | 14 | 1031 | 433 | 514 | PPV + rexis ILM + TMHE + iPRGF + C3F8 | Phakic | 0.6 (0.222) | 14 | 29 | Si |
2 | Pseudophakic | 0.3 (0.523) | 15 | 673 | 313 | 389 | PPV + TMHE + iPRGF + C3F8 | Pseudophakic | 0.6 (0.222) | 11 | 25.9 | Si |
3 | Pseudophakic | 0.05 (1.301) | 12 | 1345 | 806 | 497 | PPV + R and T ILM + m/iPRGF + SilOil | Pseudophakic | 0.1 (1.000) | 15 | 12.5 | Si |
4 | Pseudophakic | 0.1 (1.000) | 13 | 1470 | 633 | 511 | PPV + rexis ILM + TMHE + m/iPRGF + C3F8 | Pseudophakic | 0.1 (1.000) | 12 | 14.8 | Si |
5 | Pseudophakic | 0.1 (1.000) | 13 | 1577 | 499 | 473 | PPV + R and T ILM + m/iPRGF + C3F8 | Pseudophakic | 0.01 (2.000) | 9 | 33.3 | No † |
6 | Pseudophakic | 0.4 (0.398) | 15 | 1209 | 547 | 519 | PPV + P-ILM + m/iPRGF + C3F8 | Pseudophakic | 1.0 (0.000) | 15 | 35.5 | Si |
7 | Pseudophakic | 0.3 (0.523) | 13 | 710 | 374 | 419 | PPV + TMHE + iPRGF + C3F8 | Pseudophakic | 0.5 (0.301) | 12 | 31 | Si |
8 | Phakic | 0.05 (1.301) | 17 | 1438 | 530 | 380 | PPV + P-ILM + m/iPRGF + C3F8 | Phakic | 0.6 (0.222) | 13 | 35.8 | Si |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Ávila, R.M.; Robayo-Esper, C.A.; Villota-Deleu, E.; Fernández-Vega Sanz, Á.; Fernández-Vega González, Á.; de la Sen-Corcuera, B.; Anitua, E.; Merayo-Lloves, J. Plasma Rich in Growth Factors in Macular Hole Surgery. Clin. Pract. 2022, 12, 57-69. https://doi.org/10.3390/clinpract12010007
Sánchez-Ávila RM, Robayo-Esper CA, Villota-Deleu E, Fernández-Vega Sanz Á, Fernández-Vega González Á, de la Sen-Corcuera B, Anitua E, Merayo-Lloves J. Plasma Rich in Growth Factors in Macular Hole Surgery. Clinics and Practice. 2022; 12(1):57-69. https://doi.org/10.3390/clinpract12010007
Chicago/Turabian StyleSánchez-Ávila, Ronald M., Carlos A. Robayo-Esper, Eva Villota-Deleu, Álvaro Fernández-Vega Sanz, Álvaro Fernández-Vega González, Borja de la Sen-Corcuera, Eduardo Anitua, and Jesús Merayo-Lloves. 2022. "Plasma Rich in Growth Factors in Macular Hole Surgery" Clinics and Practice 12, no. 1: 57-69. https://doi.org/10.3390/clinpract12010007
APA StyleSánchez-Ávila, R. M., Robayo-Esper, C. A., Villota-Deleu, E., Fernández-Vega Sanz, Á., Fernández-Vega González, Á., de la Sen-Corcuera, B., Anitua, E., & Merayo-Lloves, J. (2022). Plasma Rich in Growth Factors in Macular Hole Surgery. Clinics and Practice, 12(1), 57-69. https://doi.org/10.3390/clinpract12010007