Fluoxetine Accumulation and Metabolism as Exposure Biomarker to Better Understand Biological Efects in Gastropods †
Abstract
:Introduction
Materials and Methods
Collection of the wastewater Samples
Immobilization of cells
Bioremediation using immobilized mixed culture
Preparation of crude oil degrading transconjugant culture
Screening of transconjugant bioremediation capabilities
Plasmid profiling and agar gel electrophoresis
Curing of plasmid
Results and Discussion
Conclusions
Acknowledgments
References
- Suleimanov, A.Y. Conditions of waste fluid accumulation at petrochemical and processing enterprise prevention of their harm to water bodies. Meditsina Truda Promyswe Nnaia Ekologila 1995, 12, 31–36. [Google Scholar]
- Uzoekwe, S.A.; Oghosanine, F.A. The effect of refinery and petrochemical effluent on water quality of Ubeji Creek Warri, Southern Nigeria. Ethiopian J Environ Stud Manag 2011, 4, 107–116. [Google Scholar] [CrossRef]
- Coelho, A.; Castro, A.V.; Dezotti, M.; Sant’Anna, G.L., Jr. Treatment of petroleum refinery sourwater by advanced oxidation processes. J Hazard Mater 2006, 137, 178–184. [Google Scholar] [CrossRef]
- Doggett, T.; Rascoe, A. Global energy demand seen up 44 percent by 2030. Washington, DC: REUTERS; 2009. Available online: http://www.reuters.com/article/2009/05/27/us-eia-global-demand-idUSN2719528620090527 (accessed on 17 September 2009).
- Top, E.M.; Moenne-Loccoz, Y.; Pembroke, T.; Thomas, C.M. Phenotypic traits conferred by plasmids. In The horizontal gene pool bacterial plasmids and gene spread; Thomas, C.M., Ed.; Harwood Academic Publishers: Newark, NJ, USA, 2000; pp. 249–285. [Google Scholar]
- Top, E.M.; Maila, M.P.; Clerinx, M.; Goris, J.; De Vos, P.; Verstraete, W. Methane oxidation as a method to evaluate the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from soil by plasmid mediated bioaugmentation. FEMS Microbiol 1999, 28, 203–213. [Google Scholar] [CrossRef]
- Saien, J.; Nejati, H. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J Hazard Mater 2007, 148, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Leahy, J.G.; Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol Rev 1990, 45, 305–315. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. Bioremediation oi petroleum contamination. In Bioremediation: principles and applications; Crawford, R.L., Crawford, D.L., Eds.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Balba, M.T.; Al-Awadhi, R.; Al-Daher, R. Bioremediation of oil contaminated soil: microbiological methods for feasibility and field evaluation. J Microbiol Methods 1998, 32, 155–164. [Google Scholar] [CrossRef]
- Bouchez–Naitali, M.; Rakatozafy, H.; Marchals, R.; Leveau, J.V.; Van Beilendecasteele, J.P. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 1999, 86, 421–428. [Google Scholar] [CrossRef]
- Margesin, R.; Labbé, D.; Schinner, F.; Greer, C.W.; Whyte, L.G. Characterization of hydrocarbon-degradative microbial populations in contaminated and pristine alpine soils. Appl Environ Microl 2003, 69, 3085–3092. [Google Scholar] [CrossRef]
- Nweke, C.O.; Okpokwasili, G.C. Effects of bioremediation treatments on the bacterial populations of soil at different depths. Nig J Microbiol 2004, 18, 363–372. [Google Scholar]
- Kaplan, C.W.; Kitts, C.L. Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 2004, 70, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Quatrini, P.; Scaglione, G.; De Pasquale, C.; Reila, S.; Puglia, A.M. Isolation of Gram-positive n-alkane degraders from a hydrocarbon contaminated Mediterranean shoreline. J Appl Microbiol 2008, 104, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Top, E.M.; Springael, D.; Boon, N. Erratum to catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 2002, 42, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Sanni Gbemisola, O.; Ajisebutu, O. Biodegradation of Escravos light crude oil by some species of soil bacteria. Sci Focus 2003, 4, 85–87. [Google Scholar]
- Department of Petroleum Resources (DPR). Environmental Guidelines and standards for the petroleum industry in Nigeria, production and terminal operations; Department of Petroleum Resources, Ministry of Petroleum Resources: Abuja, Nigeria, 1991. [Google Scholar]
- FEPA. Guidelines and standards for environmental pollution control in Nigeria; Federal Enviromental Protection Agency (FEPA): Abuja, Nigeria, 1991. [Google Scholar]
- American Public Health Association (APHA). Standard methods for examination of water/wastewater; APHA-AWWA-WPCF: Washington, DC, USA, 1995. [Google Scholar]
- American Society for Testing and Materials (ASTM). Annual book of ASTM standards; ASTM: Philadelphia, PA, USA, 1979; p. 1527. [Google Scholar]
- Joel, O.F.; Amajuoyi, C.A. Physicochemical characteristics and microbial quality of an oil polluted site in Gokana, River State. J Appl Sci Environ Manage 2009, 13, 99–103. [Google Scholar] [CrossRef]
- Ademoroti, C.M.A. Chapter 2: Environment microbiology and medical science on bioremediation. In Standard methods for water and effluent analysis, 1st ed.; Ademoroti, C.M.A., Ed.; Foludex press, Ltd.: Ibadan, Nigeria, 1996; pp. 20–50. [Google Scholar]
- Adinarayana, K.; Jyothi, B.; Ellaiah, P. Production of alkaline protease with immobilized cells of bacillus subtilis. AAPS Pharm Sci Tech 2005, 6, 391–397. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. (Eds.) Manual for soil analysis – monitoring andassessing soil bioremediation; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Bathe, S.; Hausner, M. Plasmid-mediated bioaugmentation of wastewater microbial communities to a laboatory-scale bioreaction. In Bioremediation, methods in molecular, biology; Cummings, S.P., Ed.; 599; Humma press: New York, NY, USA, 2010; pp. 185–200. [Google Scholar]
- Ojo, A.O.; Oso, B.A. Isolation of plasmid – DNA from synthetic detergent degraders in waste water from a tropical environment. Afr J Microbiol Res 2009, 3, 123–127. [Google Scholar]
- Ahrne, S.; Molun, G.; Staahl, S. plasmids in Lactobacillus strains isolated from meat and meat products system. Appl Microbial 1989, 11, 320–325. [Google Scholar]
- Bhalakia, N. Isolation and plasmid analysis of vancomycin resistant Staphylococcus aureus. J Young Invest 2006, 15, 15–24. [Google Scholar]
- Diya’uddeen Basheer, H.; Wan Mohd, A.; Wan, D.; Abdul Aziz, A.R. Treatment technologies for petroleum refinery effluents: a review. Proc Safe Environ Protect 2011, 89, 95–105. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Oko, A.I. Impact of discharge wastewater effluents on the physiscochemical qualities of a receiving watershed in a typical rural community. Int J Environ Sci Tech 2009, 6, 175–182. [Google Scholar] [CrossRef]
- Thavan, R.; Jayalakshmi, S.; Radha Krisnan, R.; Balasubramanian, T. Plasmid incidence infour species of hydrocarbonate bacteria isolated from oil polluted marine environment. Biotechnology 2007, 6, 349–352. [Google Scholar]
- Mirdamadian, S.H.; Entiazi, G.; Golabi, M.H.; Ghanavati, H. Biodegradation of petroleum and Aromatic hydrocarbons by bacteria isolated from petroleum contaminated soil. J Pet Environ Biotechnol 2010, 1, 102. [Google Scholar] [CrossRef]
- Toledo, F.L.; Calvo, C.; Rodelas, B.; González-López, J. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. System Appl Microbiol 2006, 29, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Whyte, L.G.; Bourbonnière, L.; Greer, C.W. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas Pseudomonas strains possessing both alkane (alkalk) and naphthalene (nah-nah) catabolic pathways. Appl Environ Microbiol 1997, 63, 3719–3723. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singla, R.; Kumar, G. Plasmid associated anthracene degradation by Pseudomonas sp isolated from fitting stating site. Nature Sci 2010, 8, 89–94. [Google Scholar]
- Coral, G.; Karagoz, S. Isolation and characterization of phenan threne – degrading bacteria from a petroleum refinery soil. Annals Microbiol 2005, 55, 255–259. [Google Scholar]
- DiGiovanni, G.D.; Neilson, J.W.; Pepper, I.L.; Sinclair, N.A. Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol 1996, 62, 2521–2526. [Google Scholar] [CrossRef]
- Top, E.M.; Van Daele, P.; De Saeyer, N.; Forney, L.J. Enhancement of 2,4-dichlorophenoxy-acetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Van Leeuwenhoek 1998, 73, 87–94. [Google Scholar] [CrossRef]
- Mancini, P.; Fertels, S.; Nave, D.; Gealt, M.A. Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility. Appl Environ Microbiol 1987, 53, 665–671. [Google Scholar] [CrossRef]
- Attiogbe, F.K.; Glover-Amengor, M.; Nyadziehe, K.T. Correlating biochemical and chemical oxygen demand of effluents-a case study of selected industries in Kumasi, bacteria from coastal water. Biotechnol Bio Eng 2007, 14, 297–308. [Google Scholar]
- De-Bruin, D.B. A bacterial bioassay for assessment of waste-water toxicity. In Mechanism of toxicity for various compounds; Kenneth, J., Ed.; Wat-Res. G. Britain, 1976; pp. 383–390. [Google Scholar]
- Staples, C.A.; Dorn, P.B.; Klecka, G.M.; O’Block, S.T.; Harris, L.R. A review of the environmental fate, effects and exposures of bisphenol A. Chemosphere 1998, 36, 2149–2173. [Google Scholar] [CrossRef] [PubMed]
- DeGraeve, G.M.; Geiger, D.L.; Meyer, J.S.; Bergman, H.L. Acute and embryolarval toxicity of phenolic compounds to aquatic biota. Arch Environ Contam Toxicol 1980, 9, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Pollino, C.A.; Holdway, D.A. Hydrocarboninduced changes to metabolic and detoxification enzymes of the Australinan crimson-spotted rainbow fish (Melanotaeni fluviatilis). Environ Toxicol 2003, 18, 21–28. [Google Scholar] [CrossRef]
- Sikkema, J.A.; deBont, A.M.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microb Rev 1995, 59, 201–222. [Google Scholar] [CrossRef]
- Grant, A.; Briggs, A.D. Toxicity of sediments from around a North Sea oil platform: are metals or hydrocarbons responsible for ecological impacts? Marine Environ Res 2002, 53, 95–116. [Google Scholar] [CrossRef]
- Beeby, A. Measuring the effect of pollution. In Applying ecology; Beeby, A., Ed.; Chapman and Hall: London, UK; New York, NY, USA, 1993; pp. 220–420. [Google Scholar]
- Obire, O. Studies on the biodegradation potential of some microorganisms isolated from water systems of two petroleum-producing areas in Nigeria. Nig J Bot 1988, 1, 81–90. [Google Scholar]
- Amund, O.O.; Nwokaye, N. Hydrocarbon degradation potentials of yeast isolates from a polluted lagoon. J Sci Res Dev 1993, 1, 61–64. [Google Scholar]
- Facundo, J.M.R.; Vaness, H.R.; Teresa, M.L. Biodegradation of diesel oil in soil by a microbial consortium. Water Air Pollut 2001, 129, 313–320. [Google Scholar]
- Kulwadee, T.; Vithaya, M.; Prayad, P.; Attawut, I. Isolation and characterisation of crude oil, degrading bacteria in Thailand. In Proceedings of the International Conference on ‘New Horizons in Biotechnology’, Trivandruim, India, 18–21 April 2001. [Google Scholar]
- Ndip, R.N.; Akoachere, J.F.; Akeniji, T.N.; Yongabi, F.N.; Nkwekang, G. Lubrication oil degrading bacterial in soils from filling stations and auto mechanic workshops in Buea, Cameroon occurrence and characteristics of isolates. Afr J Biotechnol 2008, 11, 1700–1706. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
©Copyright A.T. Ajao et al., 2013 Licensee PAGEPress, Italy. This work is licensed under a Creative Commons Attribution NonCommercial 3.0 License (CC BYNC 3.0).
Share and Cite
Gust, M.; Cren-Olivé, C.; Bulete, A.; Buronfosse, T.; Garric, J. Fluoxetine Accumulation and Metabolism as Exposure Biomarker to Better Understand Biological Efects in Gastropods. J. Xenobiot. 2013, 3, e4. https://doi.org/10.4081/xeno.2013.s1.e4
Gust M, Cren-Olivé C, Bulete A, Buronfosse T, Garric J. Fluoxetine Accumulation and Metabolism as Exposure Biomarker to Better Understand Biological Efects in Gastropods. Journal of Xenobiotics. 2013; 3(s1):e4. https://doi.org/10.4081/xeno.2013.s1.e4
Chicago/Turabian StyleGust, M., C. Cren-Olivé, A. Bulete, T. Buronfosse, and J. Garric. 2013. "Fluoxetine Accumulation and Metabolism as Exposure Biomarker to Better Understand Biological Efects in Gastropods" Journal of Xenobiotics 3, no. s1: e4. https://doi.org/10.4081/xeno.2013.s1.e4
APA StyleGust, M., Cren-Olivé, C., Bulete, A., Buronfosse, T., & Garric, J. (2013). Fluoxetine Accumulation and Metabolism as Exposure Biomarker to Better Understand Biological Efects in Gastropods. Journal of Xenobiotics, 3(s1), e4. https://doi.org/10.4081/xeno.2013.s1.e4