Evaluation of Plasticiser Levels, Phthalates and Bisphenols in Bahraini Subjects with and Without Type-2 Diabetes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Plasma Biochemical Measurement
2.3. Plasticiser Measurement
2.4. Statistics
3. Results
3.1. Demographics
3.2. Plasticiser Levels
3.3. Correlation Analysis
3.4. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| T2D | type-2 diabetes |
| BMI | body mass index |
| HbA1c | glycosylated haemoglobin A1c |
| DEHP | di-2-ethylhexylphthalate |
| DINP | di-isononylphthalate |
| LC | liquid chromatography |
| NHR | nuclear hormone receptors |
| PPAR | perturbed peroxisome proliferator-activated receptors |
| HPLC | high-performance liquid chromatography |
| SG | specific gravity |
| LC-MS/MS | liquid chromatography tandem mass spectrometer |
| sMRM | scheduled multiple reaction monitoring |
| SD | standard deviation |
| WHO | World Health Organisation |
| OGTT | oral glucose tolerance test |
| MEP | monoethyl phthalate |
| MnBP | mono-n-butyl phthalate |
| MCPP | mono(3-carboxypropyl) phthalate |
| MEHP | mono(2-ethylhexyl) phthalate |
| MECPP | mono(2-ethyl-5-carboxypentyl) phthalate |
| MEHHP | mono(2-ethyl-5-hydroxyhexyl) phthalate |
| MEOHP | mono(2-ethyl-5-oxohexyl) phthalate |
| MBzP | monobenzyl phthalate |
| MiBP | mono-iso-butyl phthalate |
| MMP | monomethyl phthalate |
| MiNP | mono-iso-nonyl phthalate |
| MnOP | mono-n-octyl phthalate |
| MCHP | monocyclohexyl phthalate |
| BPA | bisphenol A |
| BP-AF | bisphenol AF |
| BP-AP | bisphenol AP |
| BPB | bisphenol B |
| BPF | bisphenol F |
| BPS | bisphenol S |
| BPZ | bisphenol Z |
| DiBP | di-iso-butyl phthalate |
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Howard, S.; Agay-Shay, K.; Arrebola, J.P.; Audouze, K.; Babin, P.J.; Barouki, R.; Bansal, A.; Blanc, E.; Cave, M.C.; et al. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem. Pharmacol. 2022, 199, 115015. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef]
- Khalili Sadrabad, E.; Hashemi, S.A.; Nadjarzadeh, A.; Askari, E.; Akrami Mohajeri, F.; Ramroudi, F. Bisphenol A release from food and beverage containers—A review. Food Sci. Nutr. 2023, 11, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Guo, J.L.; Xue, J.C.; Bai, C.L.; Guo, Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. Environ. Pollut. 2021, 291, 118106. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Chahoud, I.; Heindel, J.J.; Padmanabhan, V.; Paumgartten, F.J.; Schoenfelder, G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect. 2010, 118, 1055–1070. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Thoene, M.; Dzika, E.; Gonkowski, S.; Wojtkiewicz, J. Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review. Nutrients 2020, 12, 532. [Google Scholar] [CrossRef]
- Koch, H.M.; Bolt, H.M.; Angerer, J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch. Toxicol. 2004, 78, 123–130. [Google Scholar] [CrossRef]
- Koch, H.M.; Bolt, H.M.; Preuss, R.; Angerer, J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch. Toxicol. 2005, 79, 367–376. [Google Scholar] [CrossRef]
- Anderson, W.A.C.; Castle, L.; Hird, S.; Jeffery, J.; Scotter, M.J. A twenty-volunteer study using deuterium labelling to determine the kinetics and fractional excretion of primary and secondary urinary metabolites of di-2-ethylhexylphthalate and di-iso-nonylphthalate. Food Chem. Toxicol. 2011, 49, 2022–2029. [Google Scholar] [CrossRef]
- Völkel, W.; Colnot, T.; Csanády, G.A.; Filser, J.G.; Dekant, W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem. Res. Toxicol. 2002, 15, 1281–1287. [Google Scholar] [CrossRef]
- Grün, F. Obesogens. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 453–459. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, X.; Liu, L.; Martin, F.L.; Wang, H.; Zhang, J.; Huang, Q.; Wang, X.; Shen, H. Phthalate side-chain structures and hydrolysis metabolism associated with steroidogenic effects in MLTC-1 Leydig cells. Toxicol. Lett. 2019, 308, 56–64. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Minireview: The case for obesogens. Mol. Endocrinol. 2009, 23, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Grün, F.; Blumberg, B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev. Endocr. Metab. Disord. 2007, 8, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Albaladejo, E.; Solé, M.; Porte, C. Plastics and plastic additives as inducers of oxidative stress. Curr. Opin. Toxicol. 2020, 20–21, 69–76. [Google Scholar] [CrossRef]
- James-Todd, T.; Stahlhut, R.; Meeker John, D.; Powell, S.-G.; Hauser, R.; Huang, T.; Rich-Edwards, J. Urinary Phthalate Metabolite Concentrations and Diabetes among Women in the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Environ. Health Perspect. 2012, 120, 1307–1313. [Google Scholar] [CrossRef]
- Dales, R.E.; Kauri, L.M.; Cakmak, S. The associations between phthalate exposure and insulin resistance, β-cell function and blood glucose control in a population-based sample. Sci. Total Environ. 2018, 612, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Stahlhut, R.W.; van Wijngaarden, E.; Dye, T.D.; Cook, S.; Swan, S.H. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ. Health Perspect. 2007, 115, 876–882. [Google Scholar] [CrossRef]
- Rojas-Rueda, D.; Morales-Zamora, E.; Alsufyani, W.A.; Herbst, C.H.; AlBalawi, S.M.; Alsukait, R.; Alomran, M. Environmental Risk Factors and Health: An Umbrella Review of Meta-Analyses. Int. J. Environ. Res. Public Health 2021, 18, 704. [Google Scholar] [CrossRef]
- Lin, M.H.; Lee, C.Y.; Chuang, Y.S.; Shih, C.L. Exposure to bisphenol A associated with multiple health-related outcomes in humans: An umbrella review of systematic reviews with meta-analyses. Environ. Res. 2023, 237, 116900. [Google Scholar] [CrossRef]
- Symeonides, C.; Aromataris, E.; Mulders, Y.; Dizon, J.; Stern, C.; Barker, T.H.; Whitehorn, A.; Pollock, D.; Marin, T.; Dunlop, S. An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals. Ann. Glob. Health 2024, 90, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ben, Y.; Han, Y.; Zhang, Y.; Li, Y.; Chen, X. Phthalate exposure and risk of diabetes mellitus: Implications from a systematic review and meta-analysis. Environ. Res. 2022, 204, 112109. [Google Scholar] [CrossRef]
- Domínguez-Romero, E.; Komprdová, K.; Kalina, J.; Bessems, J.; Karakitsios, S.; Sarigiannis, D.A.; Scheringer, M. Time-trends in human urinary concentrations of phthalates and substitutes DEHT and DINCH in Asian and North American countries (2009–2019). J. Expo. Sci. Environ. Epidemiol. 2023, 33, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, J.M.; Kahn, L.G.; Pierce, K.A.; Albergamo, V.; Carrasco, A.; Manuel, R.S.J.; Singer Rosenberg, M.; Trasande, L. Filling gaps in population estimates of phthalate exposure globally: A systematic review and meta-analysis of international biomonitoring data. Int. J. Hyg. Environ. Health 2025, 265, 114539. [Google Scholar] [CrossRef]
- World Health Organization. HEARTS D: Diagnosis and Management of Type 2 Diabetes; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Birkett, M.A.; Day, S.J. Internal pilot studies for estimating sample size. Stat. Med. 1994, 13, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Quandt, S.A.; Grzywacz, J.G.; Arcury, T.A. A distribution-based multiple imputation method for handling bivariate pesticide data with values below the limit of detection. Environ. Health Perspect. 2011, 119, 351–356. [Google Scholar] [CrossRef]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef]
- Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mortensen, A.; et al. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J. 2019, 17, e05838. [Google Scholar] [CrossRef]
- Cao, X.L. Phthalate Esters in Foods: Sources, Occurrence, and Analytical Methods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 21–43. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Janjua, N.R.; Frederiksen, H.; Skakkebaek, N.E.; Wulf, H.C.; Andersson, A.M. Urinary excretion of phthalates and paraben after repeated whole-body topical application in humans. Int. J. Androl. 2008, 31, 118–130. [Google Scholar] [CrossRef] [PubMed]
- GSO. GCC Standardisation Organisation. Available online: https://www.gso.org.sa/en/standards/ (accessed on 30 December 2025).
- BSMD. Bahrain Standards and Metrology Directorate. Available online: https://www.moic.gov.bh/en (accessed on 11 January 2026).
- Soop, G.L.; Husøy, T.; Wojewodzic, M.W.; Hjertholm, H.; Spyropoulou, A.; Katsanou, E.S.; Batakis, P.; Kyriakopoulou, K.; Machera, K.; Dirven, H.; et al. Transcriptional analysis in peripheral blood cells of individuals with elevated phthalate exposure—Results of the EuroMix study. Environ. Res. 2023, 222, 115377. [Google Scholar] [CrossRef]
- Schaffert, A.; Karkossa, I.; Ueberham, E.; Schlichting, R.; Walter, K.; Arnold, J.; Blüher, M.; Heiker, J.T.; Lehmann, J.; Wabitsch, M.; et al. Di-(2-ethylhexyl) phthalate substitutes accelerate human adipogenesis through PPARγ activation and cause oxidative stress and impaired metabolic homeostasis in mature adipocytes. Environ. Int. 2022, 164, 107279. [Google Scholar] [CrossRef]
- Janani, C.; Ranjitha Kumari, B.D. PPAR gamma gene—A review. Diabetes Metab. Syndr. 2015, 9, 46–50. [Google Scholar] [CrossRef]
- Shen, O.; Du, G.; Sun, H.; Wu, W.; Jiang, Y.; Song, L.; Wang, X. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays. Toxicol. Lett. 2009, 191, 9–14. [Google Scholar] [CrossRef]
- Boas, M.; Frederiksen, H.; Feldt-Rasmussen, U.; Skakkebæk, N.E.; Hegedüs, L.; Hilsted, L.; Juul, A.; Main, K.M. Childhood exposure to phthalates: Associations with thyroid function, insulin-like growth factor I, and growth. Environ. Health Perspect. 2010, 118, 1458–1464. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.C.; Kuo, P.L.; Guo, Y.L.; Liao, P.C.; Lee, C.C. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum. Reprod. 2007, 22, 2715–2722. [Google Scholar] [CrossRef]
- Pérez-Díaz, C.; Pérez-Carrascosa, F.M.; Riquelme-Gallego, B.; Villegas-Arana, E.; Armendariz, A.J.; Galindo-Ángel, J.; Frederiksen, H.; León, J.; Requena, P.; Arrebola, J.P. Serum Phthalate Concentrations and Biomarkers of Oxidative Stress in Adipose Tissue in a Spanish Adult Cohort. Environ. Sci. Technol. 2024, 58, 7719–7730. [Google Scholar] [CrossRef]
- Requena, P.; Pérez-Díaz, C.; Mustieles, V.; Peinado, F.M.; León, J.; Pérez-Carrascosa, F.M.; Frederiksen, H.; Salcedo-Bellido, I.; Barrios-Rodríguez, R.; Arrebola, J.P. Associations of circulating levels of phthalate metabolites with cytokines and acute phase reactants in a Spanish human cohort. Environ. Res. 2023, 216, 114470. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, H.Y.; Bae, S.; Lim, Y.H.; Hong, Y.C. Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: A panel study. PLoS ONE 2013, 8, e71392. [Google Scholar] [CrossRef]
- Piecha, R.; Svačina, Š.; Malý, M.; Vrbík, K.; Lacinová, Z.; Haluzík, M.; Pavloušková, J.; Vavrouš, A.; Matějková, D.; Müllerová, D.; et al. Urine Levels of Phthalate Metabolites and Bisphenol A in Relation to Main Metabolic Syndrome Components: Dyslipidemia, Hypertension and Type 2 Diabetes. A Pilot Study. Cent. Eur. J. Public Health 2016, 24, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Mérida, D.M.; Moreno-Franco, B.; Marquès, M.; León-Latre, M.; Laclaustra, M.; Guallar-Castillón, P. Phthalate exposure and the metabolic syndrome: A systematic review and meta-analysis. Environ. Pollut. 2023, 333, 121957. [Google Scholar] [CrossRef]
- Huang, T.; Saxena, A.R.; Isganaitis, E.; James-Todd, T. Gender and racial/ethnic differences in the associations of urinary phthalate metabolites with markers of diabetes risk: National Health and Nutrition Examination Survey 2001–2008. Environ. Health 2014, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Sun, H.; Han, L.; Chen, L. Association between phthalate exposure and glycosylated hemoglobin, fasting glucose, and type 2 diabetes mellitus: A case-control study in China. Sci. Total Environ. 2019, 670, 41–49. [Google Scholar] [CrossRef]
- Sirdah, M.M.; Reading, N.S. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin. Genet. 2020, 98, 525–547. [Google Scholar] [CrossRef] [PubMed]
- Li, A.J.; Martinez-Moral, M.P.; Al-Malki, A.L.; Al-Ghamdi, M.A.; Al-Bazi, M.M.; Kumosani, T.A.; Kannan, K. Mediation analysis for the relationship between urinary phthalate metabolites and type 2 diabetes via oxidative stress in a population in Jeddah, Saudi Arabia. Environ. Int. 2019, 126, 153–161. [Google Scholar] [CrossRef]
- Al-Bazi, M.M.; Kumosani, T.A.; Al-Malki, A.L.; Kurunthachalam, K.; Moselhy, S.S. Screening the incidence of diabetogensis with urinary phthalate in Saudi subjects. Environ. Sci. Pollut. Res. Int. 2022, 29, 28743–28748. [Google Scholar] [CrossRef]
- Nam, D.J.; Kim, Y.; Yang, E.H.; Lee, H.C.; Ryoo, J.H. Relationship between urinary phthalate metabolites and diabetes: Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015–2017). Ann. Occup. Environ. Med. 2020, 32, e34. [Google Scholar] [CrossRef]
- Liu, X.K.; Si, S.W.; Ye, Y.; Li, J.Y.; Lyu, H.H.; Ma, Y.M.; Zou, C.Y.; Sun, H.J.; Xue, L.; Xu, W.; et al. The Link between Exposure to Phthalates and Type 2 Diabetes Mellitus: A Study Based on NHANES Data and Bioinformatic Analysis. Biomed. Environ. Sci. 2023, 36, 892–896. [Google Scholar] [CrossRef]
- Duan, Y.; Yao, Y.; Wang, B.; Han, L.; Wang, L.; Sun, H.; Chen, L. Association of urinary concentrations of bisphenols with type 2 diabetes mellitus: A case-control study. Environ. Pollut. 2018, 243, 1719–1726. [Google Scholar] [CrossRef]
- Johns, L.E.; Cooper, G.S.; Galizia, A.; Meeker, J.D. Exposure assessment issues in epidemiology studies of phthalates. Environ. Int. 2015, 85, 27–39. [Google Scholar] [CrossRef]
- Pearson, M.A.; Lu, C.; Schmotzer, B.J.; Waller, L.A.; Riederer, A.M. Evaluation of physiological measures for correcting variation in urinary output: Implications for assessing environmental chemical exposure in children. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 336–342. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Neumiller, J.J.; Maruthur, N.M.; Wexler, D.J. Diagnosis and Treatment of Type 2 Diabetes in Adults: A Review. JAMA 2025, 334, 984–1002. [Google Scholar] [CrossRef]
- Hatch, E.E.; Nelson, J.W.; Qureshi, M.M.; Weinberg, J.; Moore, L.L.; Singer, M.; Webster, T.F. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A cross-sectional study of NHANES data, 1999–2002. Environ. Health 2008, 7, 27. [Google Scholar] [CrossRef]
- Buser, M.C.; Murray, H.E.; Scinicariello, F. Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007–2010. Int. J. Hyg. Environ. Health 2014, 217, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Zare Jeddi, M.; Eshaghi Gorji, M.; Rietjens, I.; Louisse, J.; Bruinen de Bruin, Y.; Liska, R. Biomonitoring and Subsequent Risk Assessment of Combined Exposure to Phthalates in Iranian Children and Adolescents. Int. J. Environ. Res. Public Health 2018, 15, 2336. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Alomirah, H.; Cho, H.S.; Minh, T.B.; Mohd, M.A.; Nakata, H.; Kannan, K. Occurrence of phthalate metabolites in human urine from several Asian countries. Environ. Sci. Technol. 2011, 45, 3138–3144. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, I.; Elkhatib, R.; Alrushud, N.; Alnuwaysir, H.; Alnemer, M.; Aldhalaan, H.; Shoukri, M.; McWalter, P.; Alkhenizan, A. Potential health risks of maternal phthalate exposure during the first trimester—The Saudi Early Autism and Environment Study (SEAES). Environ. Res. 2021, 195, 110882. [Google Scholar] [CrossRef]
- MoH. Bahrain National Health Survey. Available online: https://www.iga.gov.bh/Media/Agencies/Bahrain%20National%20Health%20Survey%202018%20English.pdf (accessed on 24 September 2023).
- Sungur, Ş.; Ciran, M.; Köroğlu, M.; Turgut, F.H. Phthalates in commonly used pharmaceuticals. Toxin Rev. 2023, 42, 257–263. [Google Scholar] [CrossRef]
- Nespoux, J.; Vallon, V. Renal effects of SGLT2 inhibitors: An update. Curr. Opin. Nephrol. Hypertens. 2020, 29, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Lu, X.; Zhao, C.; Liao, S.; Chen, X.; Guo, F.; Yang, C.; Liu, H.F. Metformin: The updated protective property in kidney disease. Aging 2020, 12, 8742–8759. [Google Scholar] [CrossRef] [PubMed]

| Control (n = 96) | T2D (n = 60) | p-Value | |
|---|---|---|---|
| Gender (%) | |||
| Male | 57 (59.3%) | 36 (60.0%) | 1.0 |
| Female | 39 (40.6%) | 24 (40.0%) | |
| Age (Mean ± SD) | 33.61 ± 8.34 | 52.80 ± 11.07 | <0.001 |
| BMI (Mean ± SD) | 25.12 ± 2.94 | 36.17 ± 8.08 | <0.001 |
| HbA1c (%) (Mean ± SD) | 5.48 ± 0.35 | 8.31 ± 1.17 | <0.001 |
| Plasticiser (ng/mL) | Group | N < LOD | Min | Percentile 25th | Percentile 50th | Percentile 75th | Max | p-Value |
|---|---|---|---|---|---|---|---|---|
| MBzP | Control | 62 | 0.035 | 0.22 | 0.43 | 1.08 | 3.80 | 0.74 |
| T2D | 33 | 0.032 | 0.20 | 0.37 | 0.70 | 2.10 | ||
| MCPP | Control | 27 | 0.015 | 0.8 | 1.2 | 1.7 | 11 | 0.61 |
| T2D | 11 | 0.014 | 0.46 | 1.1 | 2.7 | 26 | ||
| MECPP | Control | - | 0.25 | 3.425 | 5.85 | 13.25 | 211 | 0.82 |
| T2D | - | 1.2 | 3.625 | 5.5 | 10 | 54 | ||
| MEHHP | Control | 8 | 0.081 | 0.615 | 1.35 | 7.025 | 53 | 0.19 |
| T2D | 1 | 0.086 | 0.825 | 3.8 | 8.85 | 69 | ||
| MEHP | Control | 4 | 0.26 | 1.3 | 2.8 | 4.8 | 59 | 0.45 |
| T2D | - | 0.51 | 1.4 | 2.1 | 4.7 | 32 | ||
| MEOHP | Control | 17 | 0.035 | 0.28 | 0.67 | 4.6 | 25 | 0.36 |
| T2D | 4 | 0.04 | 0.42 | 1.9 | 5.15 | 34 | ||
| MEP | Control | - | 8.5 | 55.75 | 131.5 | 239 | 5109 | 0.75 |
| T2D | - | 4.1 | 54 | 111 | 284.25 | 4272 | ||
| MiBP | Control | 21 | 0.34 | 2.55 | 5 | 22.5 | 124 | 0.17 |
| T2D | 11 | 0.37 | 5.1 | 9.1 | 19 | 90 | ||
| MnBP | Control | - | 0.85 | 3.775 | 6.45 | 55 | 327 | 0.04 |
| T2D | - | 1.1 | 5.4 | 16.5 | 44.25 | 242 | ||
| MMP | Control | 32 | 0.11 | 2.3 | 3.5 | 5.525 | 33 | 0.42 |
| T2D | 26 | 0.12 | 2.5 | 3.95 | 6.725 | 88 | ||
| BPA | Control | 59 | 0.023 | 0.93 | 1.5 | 3.3 | 11 | 0.34 |
| T2D | 27 | 0.026 | 0.9 | 1.3 | 2.4 | 6 | ||
| BPS | Control | 25 | 0.04 | 0.048 | 0.12 | 0.295 | 18 | 0.50 |
| T2D | 8 | 0.043 | 0.05375 | 0.115 | 0.245 | 2.7 |
| Plasticiser | Controls | T2D | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Age | BMI | HbA1c | Age | BMI | HbA1c | |||||||
| ρ | p-Value | ρ | p-Value | ρ | p-Value | ρ | p-Value | ρ | p-Value | ρ | p-Value | |
| MBzP | 0.348 | 0.04 | 0.253 | 0.16 | 0.275 | 0.13 | 0.413 | 0.03 | −0.453 | 0.02 | 0.250 | 0.23 |
| MCPP | 0.018 | 0.89 | 0.018 | 0.89 | 0.137 | 0.27 | 0.122 | 0.48 | 0.361 | 0.03 | −0.164 | 0.36 |
| MECPP | 0.045 | 0.69 | −0.090 | 0.41 | 0.198 | 0.06 | 0.146 | 0.27 | 0.284 | 0.03 | 0.183 | 0.17 |
| MEHHP | 0.277 | 0.01 | −0.013 | 0.91 | 0.047 | 0.68 | −0.339 | 0.01 | 0.150 | 0.29 | 0.108 | 0.46 |
| MEHP | 0.092 | 0.42 | −0.150 | 0.18 | −0.150 | 0.17 | −0.238 | 0.07 | 0.227 | 0.08 | 0.052 | 0.69 |
| MEOHP | 0.307 | 0.01 | 0.109 | 0.36 | 0.057 | 0.63 | −0.088 | 0.59 | −0.006 | 0.97 | 0.334 | 0.06 |
| MEP | −0.126 | 0.25 | −0.317 | 0.003 | −0.235 | 0.03 | −0.096 | 0.47 | 0.329 | 0.01 | −0.042 | 0.75 |
| MiBP | 0.296 | 0.02 | 0.151 | 0.23 | −0.068 | 0.57 | −0.206 | 0.16 | 0.046 | 0.76 | 0.126 | 0.39 |
| MnBP | 0.224 | 0.04 | −0.086 | 0.43 | −0.065 | 0.54 | −0.384 | 0.002 | 0.091 | 0.49 | 0.031 | 0.82 |
| MMP | −0.201 | 0.13 | −0.155 | 0.24 | −0.213 | 0.03 | 0.196 | 0.27 | −0.329 | 0.06 | 0.330 | 0.07 |
| BPA | −0.009 | 0.96 | −0.065 | 0.72 | −0.122 | 0.48 | −0.109 | 0.57 | −0.217 | 0.25 | 0.293 | 0.13 |
| BPS | 0.249 | 0.047 | 0.051 | 0.69 | 0.016 | 0.89 | −0.186 | 0.76 | −0.559 | 0.33 | 0.725 | 0.17 |
| Plasticiser | Predictor | B | SE | 95% CI (Lower, Upper) | p-Value |
|---|---|---|---|---|---|
| MBzP | (Intercept) | −1.09 | 1.58 | −4.20, 2.02 | 0.49 |
| Group 1 | −0.89 | 1.98 | −4.78, 2.98 | 0.65 | |
| Group 2 (Ref) | |||||
| Age | 0.036 | 0.02 | −0.01, 0.08 | 0.15 | |
| BMI | −0.01 | 0.08 | −0.18, 0.16 | 0.9 | |
| Group (1) × Age | −0.003 | 0.02 | −0.06, 0.05 | 0.91 | |
| Group (1) × BMI | 0.004 | 0.09 | −0.17, 0.18 | 0.96 | |
| MCPP | Intercept | 0.04 | 0.96 | [−1.85, 1.93] | 0.97 |
| Group 1 | −3.41 | 1.42 | [−6.20, −0.61] | 0.01 | |
| Group 2 (Ref) | |||||
| Age | 0.01 | 0.01 | [−0.01, 0.04] | 0.3 | |
| BMI | 0 | 0.04 | [−0.09, 0.08] | 0.93 | |
| Group (1) × Age | 0.03 | 0.01 | [−0.001, 0.07] | 0.04 | |
| Group (1) × BMI | 0.04 | 0.05 | [−0.05, 0.14] | 0.37 | |
| MECPP | (Intercept) | 4.93 | 0.78 | [3.39, 6.47] | <0.001 |
| Group 1 | −5.28 | 1.24 | [−7.72, −2.84] | <0.001 | |
| Group 2 (Ref) | |||||
| Age | 0.004 | 0.01 | [−0.02, 0.02] | 0.74 | |
| BMI | −0.1 | 0.03 | [−0.17, −0.03] | 0.01 | |
| Group (1) × Age | 0.01 | 0.01 | [−0.01, 0.04] | 0.28 | |
| Group (1) × BMI | 0.14 | 0.04 | [0.06, 0.22] | <0.001 | |
| MEHHP | (Intercept) | 3.07 | 1.1 | [0.90, 5.24] | 0.01 |
| Group 1 | 1.01 | 1.68 | [−2.29, 4.31] | 0.54 | |
| Group 2 (Ref) | |||||
| Age | 0.02 | 0.01 | [−0.002, 0.06] | 0.07 | |
| BMI | −0.08 | 0.05 | [−0.18, 0.008] | 0.07 | |
| Group (1) × Age | −0.06 | 0.02 | [−0.10, −0.02] | 0.01 | |
| Group (1) × BMI | 0.07 | 0.05 | [−0.02, 0.18] | 0.14 | |
| MEHP | (Intercept) | 2.88 | 1.02 | [0.87, 4.88] | 0.01 |
| Group 1 | −0.4 | 1.42 | [−3.20, 2.39] | 0.77 | |
| Group 2 (Ref) | |||||
| Age | 0 | 0.01 | [−0.029, 0.02] | 0.82 | |
| BMI | −0.03 | 0.04 | [−0.12, 0.05] | 0.42 | |
| Group (1) × Age | −0.02 | 0.01 | [−0.05, 0.01] | 0.23 | |
| Group (1) × BMI | 0.04 | 0.04 | [−0.05, 0.13] | 0.39 | |
| MEOHP | (Intercept) | 1.57 | 1.23 | [−0.84, 3.98] | 0.2 |
| Group 1 | 1.45 | 1.86 | [−2.19, 5.104] | 0.43 | |
| Group 2 (Ref) | |||||
| Age | 0.02 | 0.01 | [−0.010, 0.060] | 0.16 | |
| BMI | −0.04 | 0.05 | [−0.157, 0.066] | 0.42 | |
| Group (1) × Age | −0.05 | 0.02 | [−0.099, −0.001] | 0.05 | |
| Group (1) × BMI | 0.03 | 0.06 | [−0.082, 0.153] | 0.55 | |
| MEP | (Intercept) | 10.69 | 1.16 | [8.40, 12.98] | <0.001 |
| Group 1 | −8.94 | 1.79 | [−12.46, −5.43] | <0.001 | |
| Group 2 (Ref) | |||||
| Age | 0.04 | 0.01 | [0.00, 0.08] | 0.01 | |
| BMI | −0.26 | 0.04 | [−0.35, −0.16] | <0.001 | |
| Group (1) × Age | −0.02 | 0.02 | [−0.06, 0.03] | 0.48 | |
| Group (1) × BMI | 0.32 | 0.05 | [0.22, 0.43] | <0.001 | |
| MiBP | (Intercept) | 3.97 | 1.09 | [1.83, 6.10] | <0.001 |
| Group 1 | −0.72 | 1.61 | [−3.89, 2.44] | 0.66 | |
| Group 2 (Ref) | |||||
| Age | 0.03 | 0.02 | [−0.00, 0.06] | 0.07 | |
| BMI | −0.09 | 0.05 | [−0.19, 0.01] | 0.08 | |
| Group (1) × Age | −0.04 | 0.02 | [−0.08, 0.00] | 0.08 | |
| Group (1) × BMI | 0.08 | 0.05 | [−0.02, 0.19] | 0.12 | |
| MnBP | (Intercept) | 4.53 | 1.29 | [2.00, 7.07] | <0.001 |
| Group 1 | 0.11 | 1.89 | [−3.60, 3.81] | 0.95 | |
| Group 2 (Ref) | |||||
| Age | 0.04 | 0.02 | [0.00, 0.07] | 0.03 | |
| BMI | −0.09 | 0.06 | [−0.20, 0.02] | 0.11 | |
| Group (1) × Age | −0.06 | 0.02 | [−0.10, −0.01] | 0.01 | |
| Group (1) × BMI | 0.09 | 0.06 | [−0.03, 0.20] | 0.14 | |
| MMP | (Intercept) | 3.3 | 1.01 | [1.32, 5.29] | 0.001 |
| Group 1 | 0.53 | 1.66 | [−2.74, 3.79] | 0.75 | |
| Group 2 (Ref) | |||||
| Age | −0.01 | 0.02 | [−0.04, 0.03] | 0.71 | |
| BMI | −0.06 | 0.04 | [−0.15, 0.02] | 0.15 | |
| Group (1) × Age | 0.01 | 0.02 | [−0.03, 0.06] | 0.57 | |
| Group (1) × BMI | 0.01 | 0.05 | [−0.09, 0.10] | 0.88 | |
| BPA | (Intercept) | 2.05 | 1.33 | [−0.55, 4.65] | 0.12 |
| Group 1 | −0.26 | 1.62 | [−3.43, 2.90] | 0.87 | |
| Group 2 (Ref) | |||||
| Age | 0.01 | 0.01 | [−0.02, 0.04] | 0.66 | |
| BMI | −0.05 | 0.06 | [−0.17, 0.06] | 0.36 | |
| Group (1) × Age | −0.02 | 0.02 | [−0.06, 0.02] | 0.39 | |
| Group (1) × BMI | 0.04 | 0.06 | [−0.08, 0.16] | 0.56 | |
| BPS | (Intercept) | 5.81 | 1.65 | [2.57, 9.04] | <0.001 |
| Group 1 | −6.09 | 2.23 | [−10.46, −1.71] | 0.01 | |
| Group 2 (Ref) | |||||
| Age | 0.08 | 0.02 | [0.03, 0.12] | <0.001 | |
| BMI | −0.36 | 0.06 | [−0.48, −0.24] | <0.001 | |
| Group (1) × Age | −0.09 | 0.03 | [−0.14, −0.03] | 0.003 | |
| Group (1) × BMI | 0.34 | 0.07 | [0.21, 0.48] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Brennan, E.; Das, P.; Wasif, P.; Wang, X.F.; Mueller, J.F.; He, C.; Varghese, J.V.; Butler, A.E.; Atkin, S.L.; Alamuddin, N. Evaluation of Plasticiser Levels, Phthalates and Bisphenols in Bahraini Subjects with and Without Type-2 Diabetes. J. Xenobiot. 2026, 16, 15. https://doi.org/10.3390/jox16010015
Brennan E, Das P, Wasif P, Wang XF, Mueller JF, He C, Varghese JV, Butler AE, Atkin SL, Alamuddin N. Evaluation of Plasticiser Levels, Phthalates and Bisphenols in Bahraini Subjects with and Without Type-2 Diabetes. Journal of Xenobiotics. 2026; 16(1):15. https://doi.org/10.3390/jox16010015
Chicago/Turabian StyleBrennan, Edwina, Priya Das, Pearl Wasif, Xianyu F. Wang, Jochen F. Mueller, Chang He, Jean V. Varghese, Alexandra E. Butler, Stephen L. Atkin, and Naji Alamuddin. 2026. "Evaluation of Plasticiser Levels, Phthalates and Bisphenols in Bahraini Subjects with and Without Type-2 Diabetes" Journal of Xenobiotics 16, no. 1: 15. https://doi.org/10.3390/jox16010015
APA StyleBrennan, E., Das, P., Wasif, P., Wang, X. F., Mueller, J. F., He, C., Varghese, J. V., Butler, A. E., Atkin, S. L., & Alamuddin, N. (2026). Evaluation of Plasticiser Levels, Phthalates and Bisphenols in Bahraini Subjects with and Without Type-2 Diabetes. Journal of Xenobiotics, 16(1), 15. https://doi.org/10.3390/jox16010015

