Polybrominated Diphenyl Ethers (PBDEs) in PM1 of Residential Indoor Air: Levels, Seasonal Variability, and Inhalation Exposure Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemical Analysis
3. Results
3.1. Indoor Air Concentrations of PBDEs Associated with PM1 and Seasonal Variations
3.2. Estimated Daily Intake (EDI) via Inhalation and Risk Characterization
- c is the median PBDE PM1 concentration (pg m−3);
- HEF is the home exposure fraction (86% for toddlers and 64% for adults) [22];
- BW is the body weight (13.8 kg for toddlers and 80 kg for adults) [21].
- Warmer period: 0.035 pg kg−1 day−1 (toddlers), 0.009 pg kg−1 day−1 (adults);
- Colder period: 0.088 pg kg−1 day−1 (toddlers), 0.023 pg kg−1 day−1 (adults).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Besis, A.; Samara, C. Polybrominated Diphenyl Ethers (PBDEs) in the Indoor and Outdoor Environments—A Review on Occurrence and Human Exposure. Environ. Pollut. 2012, 169, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Song, H.; Chen, L.; Hu, B.; Bai, R.; Xu, D.; Liu, Y.; Zhao, Y.; Chen, C. Early-Life Exposure to Three Size-Fractionated Ultrafine and Fine Atmospheric Particulates in Beijing Exacerbates Asthma Development in Mature Mice. Part. Fibre Toxicol. 2018, 15, 13. [Google Scholar] [CrossRef]
- Yang, M.; Guo, Y.M.; Bloom, M.S.; Dharmagee, S.C.; Morawska, L.; Heinrich, J.; Jalaludin, B.; Markevychd, I.; Knibbsf, L.D.; Lin, S.; et al. Is PM1 Similar to PM2.5? A New Insight into the Association of PM1 and PM2.5 with Children’s Lung Function. Environ. Int. 2020, 145, 106092. [Google Scholar] [CrossRef] [PubMed]
- Genisoglu, M.; Sofuoglu, A.; Kurt-Karakus, P.B.; Birgul, A.; Sofuoglu, S.C. Brominated Flame Retardants in a Computer Technical Service: Indoor Air Gas Phase, Submicron (PM1) and Coarse (PM10) Particles, Associated Inhalation Exposure, and Settled Dust. Chemosphere 2019, 231, 216–224. [Google Scholar] [CrossRef]
- Richman, K.E.; Butt, C.M.; Young, C.J. Size-Resolved Particle Measurements of Polybrominated Diphenyl Ethers Indoors: Implications for Sources and Human Exposure. Environ. Toxicol. Chem. 2018, 37, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Guo, J.; Xu, Z.; Sun, L.; Zhang, S. Pollution Status, Phase Partitioning, Potential Sources, and Health Impacts of Polybrominated Diphenyl Ethers in Hangzhou Offices. Atmos. Environ. 2025, 342, 120906. [Google Scholar] [CrossRef]
- Besis, A.; Botsaropoulou, E.; Voutsa, D.; Samara, C. Particle-Size Distribution of Polybrominated Diphenyl Ethers (PBDEs) in the Urban Agglomeration of Thessaloniki, Northern Greece. Atmos. Environ. 2015, 104, 176–185. [Google Scholar] [CrossRef]
- de la Torre, A.; Barbas, B.; Sanz, P.; Navarro, I.; Artíñano, B.; Martínez, M.A. Traditional and Novel Halogenated Flame Retardants in Urban Ambient Air: Gas-Particle Partitioning, Size Distribution and Health Implications. Sci. Total Environ. 2018, 630, 154–163. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y.; Wang, D.; Zhang, X.; Jones, K.C.; Ma, J.; Wang, P.; Yang, R.; Li, Y.; Pei, Z.; et al. Modeling of Flame Retardants in Typical Urban Indoor Environments in China during 2010-2030: Influence of Policy and Decoration and Implications for Human Exposure. Environ. Sci. Technol. 2021, 55, 11745–11755. [Google Scholar] [CrossRef]
- Mandalakis, M.; Besis, A.; Stephanou, E.G. Particle-Size Distribution and Gas/Particle Partitioning of Atmospheric Polybrominated Diphenyl Ethers in Urban Areas of Greece. Environ. Pollut. 2009, 157, 1227–1233. [Google Scholar] [CrossRef]
- Okonski, K.; Degrendele, C.; Melymuk, L.; Landlová, L.; Kukučka, P.; Vojta, Š.; Kohoutek, J.; Čupr, P.; Klánová, J. Particle Size Distribution of Halogenated Flame Retardants and Implications for Atmospheric Deposition and Transport. Environ. Sci. Technol. 2014, 48, 14426–14434. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, M.; Xu, M.; Hu, P.; Xu, X.; Liu, X.; Cai, W.; Xia, J.; Wu, D.; Xu, X.; et al. Distribution of Flame Retardants among Indoor Dust, Airborne Particles and Vapour Phase from Beijing: Spatial–Temporal Variation and Human Exposure Characteristics. Environ. Int. 2022, 170, 107557. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M.; Agostini, C.; Visin, F.; Formenton, G.; Harrison, R.M.; Rampazzo, G. Factors, Origin and Sources Affecting PM1 Concentrations and Composition at an Urban Background Site. Atmos. Res. 2016, 180, 262–273. [Google Scholar] [CrossRef]
- Jalava, P.I.; Happo, M.S.; Huttunen, K.; Sillanpää, M.; Hillamo, R.; Salonen, R.O.; Hirvonen, M.R. Chemical and Microbial Components of Urban Air PM Cause Seasonal Variation of Toxicological Activity. Environ. Toxicol. Pharmacol. 2015, 40, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Lovrić, M.; Gajski, G.; Fernandez-Agüera, J.; Pöhlker, M.; Gurcsh, H.; The EDIAQI Consortium; Borg, A.; Switters, J.; Mureddu, F. Evidence Driven Indoor Air Quality Improvement: An Innovative and Interdisciplinary Approach to Improving Indoor Air Quality. Biofactors 2025, 51, e2126. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2010. [Google Scholar]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile Organic Compounds in Indoor Environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- Chao, H.R.; Que, D.E.; Gou, Y.Y.; Chuang, C.Y.; Chang, T.Y.; Hsu, Y.C. Indoor and Outdoor Concentrations of Polybrominated Diphenyl Ethers on Respirable Particulate in Central and Southern Taiwan. Aerosol Air Qual. Res. 2016, 16, 3187–3197. [Google Scholar] [CrossRef]
- Lovrić, M.; Račić, N.; Pehnec, G.; Jakovljević, I. Indoor Polycyclic Aromatic Hydrocarbons—Relationship to Ambient Air, Risk Estimation, and Source Apportionment Based on Household Measurements. Atmosphere 2024, 15, 1525. [Google Scholar] [CrossRef]
- US EPA. 2011 Exposure Factors Handbook: 2011 Edition; EPA/600/R-; U.S. Environmental Protection Agency: Washington, DC, USA, 2011; pp. 1–1466. Available online: https://www.nrc.gov/docs/ml1400/ml14007a666.pdf (accessed on 13 August 2025).
- Pawar, G.; Abdallah, M.A.E.; De Sáa, E.V.; Harrad, S. Dermal Bioaccessibility of Flame Retardants from Indoor Dust and the Influence of Topically Applied Cosmetics. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 100–105. [Google Scholar] [CrossRef]
- Jagić, K.; Dvoršćak, M.; Tariba Lovaković, B.; Klinčić, D. Polybrominated Diphenyl Ethers in Paired Dust-Breast Milk Samples: Levels, Predictors of Contamination, and Health Risk Assessment for Infants and Mothers. Environ. Toxicol. Pharmacol. 2024, 111, 104547. [Google Scholar] [CrossRef]
- Klinčić, D.; Tariba Lovaković, B.; Jagić, K.; Dvoršćak, M. Polybrominated Diphenyl Ethers and the Multi-Element Profile of House Dust in Croatia: Indoor Sources, Influencing Factors of Their Accumulation and Health Risk Assessment for Humans. Sci. Total Environ. 2021, 800, 149430. [Google Scholar] [CrossRef] [PubMed]
- Genisoglu, M.; Edebali, O.; Sofuoglu, A.; Turgut, C.; Sofuoglu, S.C. Airborne and Dust-Bound PBDEs Indoors and Outdoors in Izmir, Türkiye: A Multi-Route Exposure—Risk Assessment. Environ. Pollut. 2025, 384, 127032. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Polycyclic Aromatic Hydrocarbons: Levels and Phase Distributions in Preschool Microenvironment. Indoor Air 2015, 25, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Ngoc, D.M.; Duan, Y.P.; Lu, Z.B.; Wen, Z.H.; Meng, X.Z. Polybrominated Diphenyl Ethers (PBDEs) in PM2.5, PM10, TSP and Gas Phase in Office Environment in Shanghai, China: Occurrence and Human Exposure. PLoS ONE 2015, 10, e0119144. [Google Scholar] [CrossRef]
- Deng, W.J.; Zheng, H.L.; Tsui, A.K.Y.; Chen, X.W. Measurement and Health Risk Assessment of PM2.5, Flame Retardants, Carbonyls and Black Carbon in Indoor and Outdoor Air in Kindergartens in Hong Kong. Environ. Int. 2016, 96, 65–74. [Google Scholar] [CrossRef]
- Guo, J.; Lin, K.; Deng, J.; Fu, X.; Xu, Z. Polybrominated Diphenyl Ethers in Indoor Air during Waste TV Recycling Process. J. Hazard. Mater. 2015, 283, 439–446. [Google Scholar] [CrossRef]
- Available online: https://Iris.Epa.Gov/AdvancedSearch/?Keyword=pbde (accessed on 13 August 2025).
- Ferro, A.R.; Kopperud, R.J.; Hildemann, L.M. Elevated Personal Exposure to Particulate Matter from Human Activities in a Residence. J. Expo. Anal. Environ. Epidemiol. 2004, 14, S34–S40. [Google Scholar] [CrossRef]

| Warmer Period (N = 15) | Colder Period (N = 15) | |||
|---|---|---|---|---|
| Compound | Detection Frequency/% | Range (Median *) | Detection Frequency/% | Range (Median *) |
| BDE-28 | 40 | <LOD–0.010 | 53 | <LOD–0.084 (0.006) |
| BDE-47 | 100 | 0.026–0.069 (0.042) | 100 | 0.031–0.231 (0.054) |
| BDE-99 | 47 | <LOD–0.100 | 80 | <LOD–0.340 (0.084) |
| BDE-100 | 13 | <LOD–0.035 | 67 | <LOD–0.191 (0.016) |
| BDE-153 | 0 | 13 | <LOD–3.171 | |
| BDE-154 | 0 | 20 | <LOD–0.357 | |
| BDE-183 | 0 | 0 | ||
| ΣPBDEs | 100 | 0.026–0.193 (0.071) | 100 | 0.033–3.904 (0.177) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klinčić, D.; Jagić Nemčić, K.; Jakovljević, I.; Lovrić Štefiček, M.J.; Dvoršćak, M. Polybrominated Diphenyl Ethers (PBDEs) in PM1 of Residential Indoor Air: Levels, Seasonal Variability, and Inhalation Exposure Assessment. J. Xenobiot. 2025, 15, 195. https://doi.org/10.3390/jox15060195
Klinčić D, Jagić Nemčić K, Jakovljević I, Lovrić Štefiček MJ, Dvoršćak M. Polybrominated Diphenyl Ethers (PBDEs) in PM1 of Residential Indoor Air: Levels, Seasonal Variability, and Inhalation Exposure Assessment. Journal of Xenobiotics. 2025; 15(6):195. https://doi.org/10.3390/jox15060195
Chicago/Turabian StyleKlinčić, Darija, Karla Jagić Nemčić, Ivana Jakovljević, Marija Jelena Lovrić Štefiček, and Marija Dvoršćak. 2025. "Polybrominated Diphenyl Ethers (PBDEs) in PM1 of Residential Indoor Air: Levels, Seasonal Variability, and Inhalation Exposure Assessment" Journal of Xenobiotics 15, no. 6: 195. https://doi.org/10.3390/jox15060195
APA StyleKlinčić, D., Jagić Nemčić, K., Jakovljević, I., Lovrić Štefiček, M. J., & Dvoršćak, M. (2025). Polybrominated Diphenyl Ethers (PBDEs) in PM1 of Residential Indoor Air: Levels, Seasonal Variability, and Inhalation Exposure Assessment. Journal of Xenobiotics, 15(6), 195. https://doi.org/10.3390/jox15060195

