The Potential Release of Chemicals from Crumb Rubber Infill Material—A Literature Review
Abstract
1. Introduction
2. Search Strategy and Literature Review
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Visualisation and Data
3. Results
3.1. Qualitative Synthesis
3.2. Bioaccessibility Study Characteristics as Reported by Scientific Literature
3.3. Volatile Organic Compounds (VOCs) as Reported by Scientific Literature
3.4. Polycyclic Aromatic Hydrocarbons (PAHs) as Reported by Scientific Literature
3.5. Phthalates as Reported by Scientific Literature
3.6. Other Components as Reported by Scientific Literature
3.7. Metal(Loid)s as Reported by Scientific Literature
3.8. Bioaccessibility Study Characteristics as Reported by Gray Literature
3.9. Volatile Organic Compounds (VOCs) as Reported by Gray Literature
3.10. Semi-Volatile Organic Compounds (SVOCs) as Reported by Gray Literature
3.11. Metal(Loid)s as Reported by Gray Literature
3.12. Phthalates as Reported by Gray Literature
3.13. Other Components as Reported by Gray Literature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6PPD | N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine |
6PPD-quinone | N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone |
Ag | Silver |
Al | Aluminium |
AP | Acetophenone |
As | Arsenic |
B[α]P | Benzo[a]pyrene |
Ba | Barium |
Be | Beryllium |
BPA | Bisphenol A |
BTZ | Benzothiazole |
BZL | 2-Benzothiazolone |
CBS | N-Cyclohexylbenzothiazole-2-sulfenamide |
Cd | Cadmium |
Co | Cobalt |
Cr | Chromium |
Cu | Copper |
DAD | Diode Array Detection |
DI-SPME | Direct Solid Phase Microextraction |
DMBA | 1,3-Dimethylbutylamine |
DPPD | N,N′-Diphenyl-1,4-phenylenediamine |
DPG | 1,3-Diphenyl guanidine |
DTG | 1,3 Di-o-tolylguanidine |
ECHA | European Chemicals Agency |
ELTs | End-of-Life Tyres |
EPA | Environmental Protection Agency |
EPDM | Ethylene Propylene Diene Monomer |
ETU | Ethylene thiourea |
Fe | Iron |
GC–MS | Gas Chromatography coupled with Mass Spectrometry |
Hg | Mercury |
HMMM | Hexamethoxymethylmelamine |
HPLC | High-Performance Liquid Chromatography |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
IPPD | 4-Isopropylaminodiphenylamine |
LOD | Limit of Detection |
LOQ | Limit of Quantification |
MBT(Z) | 2-Mercaptobenzothiazole |
Mg | Magnesium |
MIBK | Methyl Isobutyl Ketone |
Mn | Manganese |
Ni | Nickel |
NR | Natural Rubber |
OEHHA | California Office of Environmental Health Hazard Assessment |
PAHs | Polycyclic Aromatic Hydrocarbons |
PCBs | Polychlorinated Biphenyls; PCTs = Post-Consumer Tyres |
Pb | Lead |
PHN | Phenanthrene |
PI | Phthalimide |
REACH | Registration, Evaluation, Authorisation and Restriction of Chemicals |
RIVM | National Institute for Public Health and the Environment |
Sb | Antimony |
SBR | Styrene Butadiene Rubber |
Se | Selenium |
SPE | Solid-Phase Extraction |
Sr | Strontium |
SVOCs | Semi-Volatile Aromatic Hydrocarbons |
TEP | Triethyl Phosphate |
Tl | Thallium |
TPE | Thermoplastic Elastomer |
UAE | Ultrasound-Assisted Extraction |
V | Vanadium |
VOCs | Volatile Organic Compounds |
WHO | World Health Organisation |
Zn | Zinc |
References
- Dabic-Miletic, S.; Simic, V.; Karagoz, S. End-of-life tire management: A critical review. Environ. Sci. Pollut. Res. 2021, 28, 68053–68070. [Google Scholar] [CrossRef]
- Astutus Research. End of Life Tires in Europe; Astutus Research: Hampshire, UK, 2022. [Google Scholar]
- Armada, D.; Llompart, M.; Celeiro, M.; Garcia-Castro, P.; Ratola, N.; Dagnac, T.; de Boer, J. Global evaluation of the chemical hazard of recycled tire crumb rubber employed on worldwide synthetic turf football pitches. Sci. Total Environ. 2022, 812, 152542. [Google Scholar] [CrossRef]
- ECHA. Annex XV Report on An Evaluation of the Possible Health Risks of Recycled Rubber Granules Used as Infill in Synthetic Turf Sports Fields; European Chemicals Agency: Helsinki, Finland, 2017. [Google Scholar]
- Cheng, H.; Hu, Y.; Reinhard, M. Environmental and health impacts of artificial turf: A review. Env. Sci. Technol. 2014, 48, 2114–2129. [Google Scholar] [CrossRef] [PubMed]
- Hann, S.; Sherrington, C.; Jamieson, O.; Hickman, M.; Kershaw, P.; Bapasola, A.; Cole, G. Investigating Options for Reducing Releases in the Aquatic Environment of Microplastics Emitted by (But Not Intentionally Added in) Products; ICF and Eunomia for DG Environment of the European Commission: Brussels, Belgium, 2018. [Google Scholar]
- ECHA. Annex XV Restriction Report—Proposal for a Restriction on Eight Polycyclic Aromatic Hydrocarbons (PAHs) in Granules and Mulches Used as Infill Material in Synthetic Turf Pitches and in Loose Form on Playgrounds and in Sport Applications; European Chemicals Agency: Helsinki, Finland, 2018. [Google Scholar]
- Braun, R.C.; Mandal, P.; Nwachukwu, E.; Stanton, A. The role of turfgrasses in environmental protection and their benefits to humans: Thirty years later. Crop Sci. 2024, 64, 2909–2944. [Google Scholar] [CrossRef]
- Marsili, L.; Coppola, D.; Bianchi, N.; Maltese, S.; Bianchi, M.; Fossi, M.C. Release of polycyclic aromatic hydrocarbons and heavy metals from rubber crumb in synthetic turf fields: Preliminary hazard assessment for athletes. J. Environ. Anal. Toxicol. 2015, 5, 1. [Google Scholar]
- van Huijgevoort, M.H.J.; Cirkel, D.G.; Voeten, J.G.W.F. Climate adaptive solution for artificial turf in cities: Integrated rainwater storage and evaporative cooling. Front. Sustain. Cities 2024, 6, 1399858. [Google Scholar] [CrossRef]
- Kuitunen, I.; Immonen, V.; Pakarinen, O.; Mattila, V.M.; Ponkilainen, V.T. Incidence of football injuries sustained on artificial turf compared to grass and other playing surfaces: A systematic review and meta-analysis. eClinicalMedicine 2023, 59, 101956. [Google Scholar] [CrossRef] [PubMed]
- Gould, H.P.; Lostetter, S.J.; Samuelson, E.R.; Guyton, G.P. Lower Extremity Injury Rates on Artificial Turf Versus Natural Grass Playing Surfaces: A Systematic Review. Am. J. Sports Med. 2023, 51, 1615–1621. [Google Scholar] [CrossRef]
- Schneider, K.; de Hoogd, M.; Madsen, M.P.; Haxaire, P.; Bierwisch, A.; Kaiser, E. ERASSTRI—European Risk Assessment Study on Synthetic Turf Rubber Infill—Part 1: Analysis of infill samples. Sci. Total Environ. 2020, 718, 137174. [Google Scholar] [CrossRef]
- Pronk, M.E.J.; Woutersen, M.; Herremans, J.M.M. Synthetic turf pitches with rubber granulate infill: Are there health risks for people playing sports on such pitches? J. Expo. Sci. Environ. Epidemiol. 2020, 30, 567–584. [Google Scholar] [CrossRef]
- NTP. NTP Research Report on Synthetic Turf/Recycled Tire Crumb Rubber: Characterization of the Biological Activity of Crumb Rubber In Vitro; National Toxicology Program, Public Health Service, U.S Department of Health and Human Services: Research Triangle Park, NC, USA, 2019. [Google Scholar]
- De Groot, G.M.; Oomen, A.G.; Mennen, M.G. Playing Sports on Synthetic Turf Pitches with Rubber Granulate: Scientific Background Document; National Institute for Public Health and the Environment (RIVM): Bilthoven, The Netherlands, 2017. [Google Scholar]
- EPA; ATSDR; CDC. Synthetic Turf Field Recycled Tire Crumb Rubber Research Under the Federal Research Action Plan FINAL REPORT PART 1 vol 1; U.S. Environmental Protection Agency/Office of Research and Development (EPA/ORD), Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (CDC/ATSDR): Washington, DC, USA, 2019. [Google Scholar]
- Gomes, F.O.; Rocha, M.R.; Alves, A.; Ratola, N. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches. J. Hazard. Mater. 2021, 409, 124998. [Google Scholar] [CrossRef]
- Ginsberg, G.; Toal, B.; Simcox, N.; Bracker, A.; Golembiewski, B.; Kurland, T.; Hedman, C. Human Health Risk Assessment of Synthetic Turf Fields Based Upon Investigation of Five Fields in Connecticut. J. Toxicol. Environ. Health Part A 2011, 74, 1150–1174. [Google Scholar] [CrossRef]
- Zuccaro, P.; Thompson, D.C.; de Boer, J.; Watterson, A.; Wang, Q.; Tang, S.; Shi, X.; Llompart, M.; Ratola, N.; Vasiliou, V. Artificial turf and crumb rubber infill: An international policy review concerning the current state of regulations. Environ. Chall. 2022, 9, 100620. [Google Scholar] [CrossRef]
- Perkins, A.N.; Inayat-Hussain, S.H.; Deziel, N.C.; Johnson, C.H.; Ferguson, S.S.; Garcia-Milian, R.; Thompson, D.C.; Vasiliou, V. Evaluation of potential carcinogenicity of organic chemicals in synthetic turf crumb rubber. Environ. Res. 2019, 169, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Birkholz, D.A.; Belton, K.L.; Guidotti, T.L. Toxicological Evaluation for the Hazard Assessment of Tire Crumb for Use in Public Playgrounds. J. Air Waste Manag. Assoc. 2003, 53, 903–907. [Google Scholar] [CrossRef]
- Schneider, K.; Bierwisch, A.; Kaiser, E. ERASSTRI—European risk assessment study on synthetic turf rubber infill—Part 3: Exposure and risk characterisation. Sci. Total Environ. 2020, 718, 137721. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. 2023. Available online: https://eur-lex.europa.eu/eli/reg/2006/1907/oj/eng (accessed on 10 September 2025).
- Simmons, K.; Latham, K.; OLO Report 2024-12. A Comparison of Natural Grass and Synthetic Turf Athletic Fields in Montgomery County. 2024. Available online: https://www.montgomerycountymd.gov/OLO/Resources/Files/2024_reports/OLOReport2024-12.pdf (accessed on 10 September 2025).
- Ramsperger, A.F.R.M.; Bergamaschi, E.; Panizzolo, M.; Fenoglio, I.; Barbero, F.; Peters, R.; Undas, A.; Purker, S.; Giese, B.; Lalyer, C.R.; et al. Nano- and microplastics: A comprehensive review on their exposure routes, translocation, and fate in humans. NanoImpact 2023, 29, 100441. [Google Scholar] [CrossRef] [PubMed]
- Panizzolo, M.; Martins, V.H.; Ghelli, F.; Squillacioti, G.; Bellisario, V.; Garzaro, G.; Bosio, D.; Colombi, N.; Bono, R.; Bergamaschi, E. Biomarkers of oxidative stress, inflammation, and genotoxicity to assess exposure to micro- and nanoplastics. A literature review. Ecotoxicol. Environ. Saf. 2023, 267, 115645. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef]
- Grundy, M.M.L.; Moughan, P.J.; Wilde, P.J. Bioaccessibility and associated concepts: Need for a consensus. Trends Food Sci. Technol. 2024, 145, 104373. [Google Scholar] [CrossRef]
- Cortés, A.; González, I.; Vergara, P. Effect assessment of chelators on bioaccessible and total chromium extraction in soils polluted by chromite processing wastes. Chemosphere 2021, 263, 128042. [Google Scholar] [CrossRef]
- Armada, D.; Martinez-Fernandez, A.; Celeiro, M.; Dagnac, T.; Llompart, M. Assessment of the bioaccessibility of PAHs and other hazardous compounds present in recycled tire rubber employed in synthetic football fields. Sci. Total Environ. 2023, 857, 159485. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, T.; Sakai, S.; Obama, T.; Kubota, R.; Inoue, K.; Ikarashi, Y. Characterization of synthetic turf rubber granule infill in Japan: Rubber additives and related compounds. Sci. Total Environ. 2022, 840, 156716. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yang, J.-Y.; Kim, H.-H.; Yeo, I.-Y.; Shin, D.-C.; Lim, Y.-W. Health Risk Assessment of Lead Ingestion Exposure by Particle Sizes in Crumb Rubber on Artificial Turf Considering Bioavailability. Env. Anal. Health Toxicol. 2012, 27, e2012005. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-H.; Lim, Y.-W.; Kim, S.-D.; Yeo, I.-Y.; Shin, D.-C.; Yang, J.-Y. Health Risk Assessment for Artificial Turf Playgrounds in School Athletic Facilities: Multi-route Exposure Estimation for Use Patterns. Asian J. Atmos. Environ. 2012, 6, 206–221. [Google Scholar] [CrossRef]
- Kubota, R.; Obama, T.; Kawakami, T.; Sakai, S.; Inoue, K.; Ikarashi, Y. Characterization of synthetic turf rubber granule infill in Japan: Total content and migration of metals. Sci. Total Environ. 2022, 842, 156705. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, N.; Zhou, X.; Ge, A.; Wang, Y.; Su, S.; Lai, Y.; Yu, R.; Wang, Z. Heavy metal release from two typical tire microplastics under different simulated environments and bioavailability assessment in China. Environ. Pollut. 2025, 383, 126804. [Google Scholar] [CrossRef]
- Nishi, I.; Kawakami, T.; Sakai, S.; Obama, T.; Kubota, R.; Inoue, K.; Ikarashi, Y. Characterization of synthetic turf rubber granule infill in Japan: Polyaromatic hydrocarbons and related compounds. Sci. Total Environ. 2022, 842, 156684. [Google Scholar] [CrossRef]
- Pavilonis, B.T.; Weisel, C.P.; Buckley, B.; Lioy, P.J. Bioaccessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers. Risk Anal. 2014, 34, 44–55. [Google Scholar] [CrossRef]
- Schneider, K.; de Hoogd, M.; Haxaire, P.; Philipps, A.; Bierwisch, A.; Kaiser, E. ERASSTRI—European Risk Assessment Study on Synthetic Turf Rubber Infill—Part 2: Migration and monitoring studies. Sci. Total Environ. 2020, 718, 137173. [Google Scholar] [CrossRef]
- Sóñora, S.; Duque-Villaverde, A.; Armada, D.; Dagnac, T.; Llompart, M. In vitro human oral bioaccessibility assessment of hazardous chemicals, including N, N′-substituted-p-phenylenediamines, coming from recycled tire crumb rubber. Chemosphere 2024, 367, 143534. [Google Scholar] [CrossRef]
- Tian, X.; Yang, Q.; Zhao, Y.; Cao, D.; Liu, Y.; Guo, Y.; Cui, W.; Hu, L.; Yin, Y.; Cai, Y.; et al. Comprehensive Multidimensional Analysis of Metal(loid)-Containing Dust in Plastic Sports Facilities: Insights into the Potential Sources and Health Risks. Environ. Sci. Technol. 2024, 58, 23212–23221. [Google Scholar] [CrossRef]
- Winz, R.; Yu, L.L.; Sung, L.-P.; Tong, Y.J.; Chen, D. Assessing children’s potential exposures to harmful metals in tire crumb rubber by accelerated photodegradation weathering. Sci. Rep. 2023, 13, 13877. [Google Scholar] [CrossRef]
- Zhang, J.; Han, I.-K.; Zhang, L.; Crain, W. Hazardous chemicals in synthetic turf materials and their bioaccessibility in digestive fluids. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 600–607. [Google Scholar] [CrossRef]
- Highsmith, R.; Thomas, K.W.; Williams, R.W. A Scoping-Level Field Monitoring Study of Synthetic Turf Fields and Playgrounds; U.S. Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- Lioy, P.J.; Weisel, C. Crumb Infill and Turf Characterization for Trace Elements and Organic Materials; Environmental and Occupational Health Sciences Institute Robert Wood Johnson Medical School: Piscataway, NJ, USA, 2011. [Google Scholar]
- OEHHA. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products; California Environmental Protection Agency’s Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2007. [Google Scholar]
- European Commmission. Commission Regulation (EU) 2023/2055 of 25 September 2023 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Synthetic Polymer Microparticles. 2023. Available online: https://eur-lex.europa.eu/eli/reg/2023/2055/oj/eng (accessed on 10 September 2025).
- Geidne, S.; Quennerstedt, M.; Eriksson, C. The youth sports club as a health-promoting setting: An integrative review of research. Scand. J. Public Health 2013, 41, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Physical Activity 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Strain, T.; Flaxman, S.; Guthold, R.; Semenova, E.; Cowan, M.; Riley, L.M.; Bull, F.C.; Stevens, G.A.; Abdul Raheem, R.; Agoudavi, K.; et al. National, regional, and global trends in insufficient physical activity among adults from 2000 to 2022: A pooled analysis of 507 population-based surveys with 5·7 million participants. Lancet Glob. Health 2024, 12, e1232–e1243. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child. Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Etzel, R.A. The special vulnerability of children. Int. J. Hyg. Environ. Health 2020, 227, 113516. [Google Scholar] [CrossRef]
- Watterson, A. Artificial turf, crumb rubber infills and linked public health, sustainability and environmental concerns. Br. J. Sports Med. 2025, 59, 1315. [Google Scholar] [CrossRef]
- Murphy, M.; Warner, G.R. Health impacts of artificial turf: Toxicity studies, challenges, and future directions. Environ. Pollut. 2022, 310, 119841. [Google Scholar] [CrossRef]
- Ryan-Ndegwa, S.; Zamani, R.; Martins, T. Exploring the Human Health Impact of Artificial Turf Worldwide: A Systematic Review. Environ. Health Insights 2024, 18, 11786302241306291. [Google Scholar] [CrossRef]
- van Rooij, J.G.M.; Jongeneelen, F.J. Hydroxypyrene in urine of football players after playing on artificial sports field with tire crumb infill. Int. Arch. Occup. Environ. Health 2010, 83, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.e.; Wang, J.; Wang, J.; Yu, D.; Zhan, Y.; Liu, Z. Emerging Health Risks of Crumb Rubber: Inhalation of Environmentally Persistent Free Radicals via Saliva During Artificial Turf Activities. Environ. Sci. Technol. 2023, 57, 21005–21015. [Google Scholar] [CrossRef] [PubMed]
- Gullu, E.; Efdal, A.; Gullu, A.; Çetin, İ. Evaluation of blood metal levels of hockey teams after playing on synthetic turf fields. Universa Med. 2023, 42, 255–262. [Google Scholar] [CrossRef]
- Ammar, A.; Bailey, S.J.; Hammouda, O.; Trabelsi, K.; Merzigui, N.; El Abed, K.; Driss, T.; Hökelmann, A.; Ayadi, F.; Chtourou, H.; et al. Effects of Playing Surface on Physical, Physiological, and Perceptual Responses to a Repeated-Sprint Ability Test: Natural Grass Versus Artificial Turf. Int. J. Sports Physiol. Perform. 2019, 14, 1219–1226. [Google Scholar] [CrossRef]
- EPA; ATSDR; CDC. Synthetic Turf Field Recycled Tire Crumb Rubber Research Under the Federal Research Action Plan FINAL REPORT PART 2 vol. 1; U.S. Environmental Protection Agency/Office of Research and Development (EPA/ORD): Washington, DC, USA, 2024. [Google Scholar]
- Menichini, E.; Abate, V.; Attias, L.; De Luca, S.; di Domenico, A.; Fochi, I.; Forte, G.; Iacovella, N.; Iamiceli, A.L.; Izzo, P.; et al. Artificial-turf playing fields: Contents of metals, PAHs, PCBs, PCDDs and PCDFs, inhalation exposure to PAHs and related preliminary risk assessment. Sci. Total Environ. 2011, 409, 4950–4957. [Google Scholar] [CrossRef]
- Graça, C.A.L.; Rocha, F.; Gomes, F.O.; Rocha, M.R.; Homem, V.; Alves, A.; Ratola, N. Presence of metals and metalloids in crumb rubber used as infill of worldwide synthetic turf pitches: Exposure and risk assessment. Chemosphere 2022, 299, 134379. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, J.; Jiang, Y.; Tian, Y.; Zhang, Z. Distribution and Health Risk Assessment of Some Trace Elements in Runoff from Different Types of Athletic Fields. J. Chem. 2021, 2021, 5587057. [Google Scholar] [CrossRef]
- Cao, D.; Gao, W.; Wu, J.; Lv, K.; Xin, S.; Wang, Y.; Jiang, G. Occurrence and Human Exposure Assessment of Short- and Medium-Chain Chlorinated Paraffins in Dusts from Plastic Sports Courts and Synthetic Turf in Beijing, China. Env. Sci. Technol. 2019, 53, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, M.J.; Anderson, E.; Ardo, O.; Chou, M.; Farrow, E.; Glassman, E.L.; Manley, M.; Meisner, H.; Meyers, C.; Morley, N. Mutagenic potential of artificial athletic field crumb rubber at increased temperatures. Ohio J. Sci. 2015, 115, 32–39. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, Y.; Wang, Y.; Liu, J.; Jiang, Y.; Tian, Y.; Zhang, Z.; Tan, C.; Wang, Y.; Li, H.; et al. Occurrence and risk assessment of PAHs from athletic fields under typical rainfall events. Water Sci. Technol. 2023, 87, 2159–2171. [Google Scholar] [CrossRef] [PubMed]
- Samburova, V.; Zielinska, B.; Khlystov, A. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? Toxics 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghelli, F.; El Sherbiny, S.; Squillacioti, G.; Colombi, N.; Bellisario, V.; Bono, R. The Potential Release of Chemicals from Crumb Rubber Infill Material—A Literature Review. J. Xenobiot. 2025, 15, 159. https://doi.org/10.3390/jox15050159
Ghelli F, El Sherbiny S, Squillacioti G, Colombi N, Bellisario V, Bono R. The Potential Release of Chemicals from Crumb Rubber Infill Material—A Literature Review. Journal of Xenobiotics. 2025; 15(5):159. https://doi.org/10.3390/jox15050159
Chicago/Turabian StyleGhelli, Federica, Samar El Sherbiny, Giulia Squillacioti, Nicoletta Colombi, Valeria Bellisario, and Roberto Bono. 2025. "The Potential Release of Chemicals from Crumb Rubber Infill Material—A Literature Review" Journal of Xenobiotics 15, no. 5: 159. https://doi.org/10.3390/jox15050159
APA StyleGhelli, F., El Sherbiny, S., Squillacioti, G., Colombi, N., Bellisario, V., & Bono, R. (2025). The Potential Release of Chemicals from Crumb Rubber Infill Material—A Literature Review. Journal of Xenobiotics, 15(5), 159. https://doi.org/10.3390/jox15050159