Neurotoxic Effects of Pesticides: Implications for Neurodegenerative and Neurobehavioral Disorders
Abstract
:1. Introduction
2. RASFF Insights
3. Neurotoxicity of Pesticides
3.1. OPPs
3.2. OCPs
3.3. Carbamates
3.4. Pyrethroids
3.5. Neonicotinoids
4. Neurodegenerative Disease
4.1. Parkinson’s Disease
Pesticide | Experimental Model | Outcome | Reference |
---|---|---|---|
Paraquat Maneb | Mice | Microglial activation Neuroinflammation + neurodegeneration—NADPH oxidase activation | [61] |
Paraquat | Murine microglial line BV2 cells | Microglial activation ↑ Pro-inflammatory cytokines Neuroinflammation—HSP60/TLR4 signaling | [74] |
Paraquat | Mice (PD) | Postmortem brain samples—↑ astrocytic senescence Elimination of senescent cells Neurodegeneration | [75] |
Paraquat | Neuro-2a cells | (−) Cell proliferation Induced cell death | [66] |
Paraquat | SH-SY5Y cells | (−) Cell viability Mitochondrial damage Cell apoptosis in A549 cells | [76] |
Paraquat | Mice (n = 10) | (−) Proliferation of NPCs in hippocampus Changes in cell differentiation pathways | [66] |
Paraquat | Zebrafish (n = 24) | Mitochondrial dysfunction Upregulation of stress-related genes | [77] |
Azamethiphos Chlorpyrifos Dieldrin Heptachlor | Rats Phaeochromocytoma cell line PC-12 (Total = 2000 cells) | Developmental neurotoxicity—neurite outgrowth, transcriptional changes Neurite outgrowth—induction of gap-43 | [78] |
Rotenone | Rats (PD) | MicroRNA dysregulation Loss of TH (+) cells Microgliosis | [79] |
Rotenone Tebufenpyrad | CRL-2690 cells Rats | Dopaminergic neuronal cell death—complex 1 inhibition ↑ Mitochondrial fission and ↓ mitochondrial fusion—impairing MFN2 function Impaired autolysosomal function in ECGs | [80] |
Maneb | SH-SY5Y cells Human A53T α-synuclein transgenic mice | ↓ Cell viability Neurotransmitter reduction Neurotransmitter signaling alteration Dopaminergic neuronal cell death AEP inhibitor CP11-mitigated maneb-induced neurotoxicity | [81] |
Deltamethrin | Wistar rats | ↑ SOD activity ↑ Glutathione S-transferase activity ↑ MDA acid level ↓ Mitochondrial respiration—in the striatum and hippocampus | [82] |
Fipronil | Sprague–Dawley Rat | Neurotoxic effect on nigrostriatal dopaminergic neurons | [83] |
4.2. Alzheimer’s Disease
5. Neurodevelopmental Disabilities
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RASFF | Rapid Alert System for Food and Feed |
AD | Alzheimer’s Disease |
PD | Parkinson’s Disease |
MRLs | Maximum Residue Limits |
HBGVs | Health-Based Guidance Values |
ADI | Acceptable Daily Intake |
HBM | Human Biomonitoring |
UL | Upper Intake Level |
GAPs | Good Agricultural Practices |
AChE | Acetylcholinesterase |
OPPs | Organophosphate Pesticides |
OCPs | Organochlorine Pesticides |
IL-1 α | Interleukin-1 alpha |
IL-1 β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
TNF-α | Tumor Necrosis Factor-α |
DDT | Dichlorodiphenyltrichloroethane |
VGSCs | Voltage-Gated Sodium Channels |
GABAA | Gamma-Aminobutyric Acid |
NAChRs | Nicotinic Acetylcholine Receptors |
TAC | Total Antioxidant Capacity |
MDA | Malondialdehyde |
PCs | Protein Carbonyls |
ROS | Reactive Oxygen Species |
DNA | Deoxyribonucleic Acid |
MPP+ | 1-Methyl-4-phenylpyridinium |
JNK | c-Jun N-Terminal Kinase |
NO | Nitric Oxide |
SOD | Superoxide Dismutase |
GST | Glutathione-S-Transferase |
CpGs | Cytosine–Guanine Sites |
SNP | Single-Nucleotide Polymorphisms |
DMPs | Differentially Methylated Sites |
PEX19 | Peroxisomal Prostaglandin D2 Synthase Biogenesis Factor 19 |
WNT16 | Wingless-Type Integration Site Family Member 16 |
ENTPD8 | Ectonucleoside Triphosphate Diphosphohydrolase 8 |
DOPAL | 3,4-Dihydroxyphenylacetaldehyde |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
HSP60 | Heat Shock Protein 60 |
TLR4 | Toll-Like Receptor 4 |
AEP | Asparagine Endopeptidase |
Akt | Serine/Threonine Protein Kinase |
NPCs | Neural Progenitor Cells |
EGCs | Enteric Glial Cells |
HCB | Hexachlorobenzene |
NFTs | Neurofibrillary Tangles |
Aβ | Amyloid beta |
GPx | Glutathione Peroxidase |
PON1 | Paraoxonase 1 |
HCH | Gamma-Hexachlorocyclohexane |
PSD93 | Postsynaptic Density 93 |
PP2A | Protein Phosphatase-2A |
GSK-3β | Glycogen Synthase Kinase-3 beta |
CAT | Catalase |
APP | Amyloid Precursor Protein |
APL2 | Amyloid Precursor-Like Protein 2 |
PFC | Prefrontal Cortex |
MAO-A | Monoamine Oxidase-A |
ASD | Autism Spectrum Disorder |
ADHD | Attention Deficit Hyperactivity Disorder |
IQ | Intelligence Quotient |
DAP | Dialkyl Phosphate |
GFAP | Glial Fibrillary Acidic Protein |
OPFRs | Organophosphate Flame Retardants |
UCHL1 | Ubiquitin C-Terminal Hydrolase L1 |
BDNF | Brain-Derived Neurotrophic Factor |
MRI | Magnetic Resonance Imaging |
6-CINA | 6-Chloronicotinic acid |
IM | Imidacloprid |
AC | Acetamiprid |
TH | Thiamethoxam |
DIC | Dichlorvos |
ATZ | Atrazine |
LPO | Lipid Peroxidation |
CMD | Combination Exposure |
DAT | Dopamine Transporter |
TH | Tyrosine Hydroxylase |
SNpc | Substantia Nigra Pars Compacta |
VTA | Ventral Tegmental Area |
References
- Botnaru, A.A.; Lupu, A.; Morariu, P.C.; Pop, O.L.; Nedelcu, A.H.; Morariu, B.A.; Cioancă, O.; Di Gioia, M.L.; Lupu, V.V.; Avasilcai, L.; et al. Balancing Health and Sustainability: Assessing the Benefits of Plant-Based Diets and the Risk of Pesticide Residues. Nutrients 2025, 17, 727. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gutiérrez, A.; Guevara, J.; Rubio, C.; Calvillo-Velasco, M.; Silva-Adaya, D.; Retana-Márquez, S.; Espinosa, B.; Martínez-Valenzuela, C.; Rubio-Osornio, M. Clothianidin and Thiacloprid Mixture Administration Induces Degenerative Damage in the Dentate Gyrus and Alteration in Short-Term Memory in Rats. J. Toxicol. 2021, 2021, 9983201. [Google Scholar] [CrossRef] [PubMed]
- Rohlman, D.S.; Olson, J.R.; Ismail, A.A.; Bonner, M.R.; Abdel Rasoul, G.; Hendy, O. Identifying and Preventing the Neurotoxic Effects of Pesticides. In Advances in Neurotoxicology; Elsevier Inc: New York, NY, USA, 2022; ISBN 9780128191767. [Google Scholar]
- Nagy, K.; Duca, R.C.; Lovas, S.; Creta, M.; Scheepers, P.T.J.; Godderis, L.; Ádám, B. Systematic Review of Comparative Studies Assessing the Toxicity of Pesticide Active Ingredients and Their Product Formulations. Environ. Res. 2020, 181, 108926. [Google Scholar] [CrossRef] [PubMed]
- Finhler, S.; Marchesan, G.P.; Corona, C.F.; Nunes, A.T.; De Oliveira, K.C.S.; de Moraes, A.T.; Soares, L.C.; Lima, F.O.; Dalmolin, C.; Benvegnú, D.M. Influence of Pesticide Exposure on Farmers’ Cognition: A Systematic Review. J. Neurosci. Rural Pract. 2023, 14, 574–581. [Google Scholar] [CrossRef]
- Bopp, S.K.; Barouki, R.; Brack, W.; Dalla Costa, S.; Dorne, J.L.C.M.; Drakvik, P.E.; Faust, M.; Karjalainen, T.K.; Kephalopoulos, S.; van Klaveren, J.; et al. Current EU Research Activities on Combined Exposure to Multiple Chemicals. Environ. Int. 2018, 120, 544–562. [Google Scholar] [CrossRef]
- Hsieh, N.H.; Kwok, E.S.C. Biomonitoring-Based Risk Assessment of Pyrethroid Exposure in the U.S. Population: Application of High-Throughput and Physiologically Based Kinetic Models. Toxics 2025, 13, 216. [Google Scholar] [CrossRef]
- Tsatsakis, A.M.; Docea, A.O.; Calina, D.; Buga, A.M.; Zlatian, O.; Gutnikov, S.; Kostoff, R.N.; Aschner, M. Hormetic Neurobehavioral Effects of Low Dose Toxic Chemical Mixtures in Real-Life Risk Simulation (RLRS) in Rats. Food Chem. Toxicol. 2019, 125, 141–149. [Google Scholar] [CrossRef]
- Brouwer, M.; Huss, A.; van der Mark, M.; Nijssen, P.C.G.; Mulleners, W.M.; Sas, A.M.G.; van Laar, T.; de Snoo, G.R.; Kromhout, H.; Vermeulen, R.C.H. Environmental Exposure to Pesticides and the Risk of Parkinson’s Disease in the Netherlands. Environ. Int. 2017, 107, 100–110. [Google Scholar] [CrossRef]
- Islam, M.S.; Azim, F.; Saju, H.; Zargaran, A.; Shirzad, M.; Kamal, M.; Fatema, K.; Rehman, S.; Azad, M.A.M.; Ebrahimi-Barough, S. Pesticides and Parkinson’s Disease: Current and Future Perspective. J. Chem. Neuroanat. 2021, 115, 101966. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural Effects of Developmental Toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Samsel, A.; Seneff, S. Glyphosate, Pathways to Modern Diseases III: Manganese, Neurological Diseases, and Associated Pathologies. Surg. Neurol. Int. 2015, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Kanwar Rajawat, N.; Bhardwaj, K.; Mathur, N. Risk of Parkinson Disease Associated with Pesticide Exposure and Protection by Probiotics. Mater. Today Proc. 2022, 69, A1–A11. [Google Scholar] [CrossRef]
- Roberts, J.R.; Dawley, E.H.; Reigart, J.R. Children’s Low-Level Pesticide Exposure and Associations with Autism and ADHD: A Review. Pediatr. Res. 2019, 85, 234–241. [Google Scholar] [CrossRef]
- Sánchez, R.M.; Bermeo Losada, J.F.; Marín Martínez, J.A. The Research Landscape Concerning Environmental Factors in Neurodevelopmental Disorders: Endocrine Disrupters and Pesticides—A Review. Front. Neuroendocrinol. 2024, 73, 101132. [Google Scholar] [CrossRef] [PubMed]
- Aloizou, A.-M.; Siokas, V.; Vogiatzi, C.; Peristeri, E.; Docea, A.O.; Petrakis, D.; Provatas, A.; Folia, V.; Chalkia, C.; Vinceti, M.; et al. Pesticides, Cognitive Functions and Dementia: A Review. Toxicol. Lett. 2020, 326, 31–51. [Google Scholar] [CrossRef]
- Bjørling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential Developmental Neurotoxicity of Pesticides Used in Europe. Environ. Health 2008, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Kori, R.K.; Singh, M.K.; Jain, A.K.; Yadav, R.S. Neurochemical and Behavioral Dysfunctions in Pesticide Exposed Farm Workers: A Clinical Outcome. Indian J. Clin. Biochem. 2018, 33, 372–381. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Ngowi, A.V.; Mng’anya, S.; Willis, S.E.; Salmon, J.P.; Tyrell, K.F.; Williamson, S.; Eddleston, M.; Stuart, A.M. Assessment of Unintentional Acute Pesticide Poisoning (UAPP) Amongst Cotton Farmers in Tanzania. Toxics 2025, 13, 300. [Google Scholar] [CrossRef]
- Sindhu, S.; Manickavasagan, A. Nondestructive Testing Methods for Pesticide Residue in Food Commodities: A Review. Compr. Rev. Food Sci Food Saf. 2023, 22, 1226–1256. [Google Scholar] [CrossRef]
- More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hougaard Bennekou, S.; Koutsoumanis, K.; Machera, K.; Naegeli, H.; Nielsen, S.; et al. Statement on the Derivation of Health-Based Guidance Values (HBGVs) for Regulated Products That Are Also Nutrients. EFSA J. 2021, 19, e06479. [Google Scholar] [CrossRef]
- Chung, S.W. How Effective Are Common Household Preparations on Removing Pesticide Residues from Fruit and Vegetables? A Review. J. Sci. Food Agric. 2018, 98, 2857–2870. [Google Scholar] [CrossRef] [PubMed]
- Szarka, A.; Búčiková, K.; Kostić, I.; Hrouzková, S. Development of a Multiresidue QuEChERS–DLLME—Fast GC–MS Method for Determination of Selected Pesticides in Yogurt Samples. Food Anal. Methods 2020, 13, 1829–1841. [Google Scholar] [CrossRef]
- Lüth, S.; Boone, I.; Kleta, S.; Al Dahouk, S. Analysis of RASFF Notifications on Food Products Contaminated with Listeria Monocytogenes Reveals Options for Improvement in the Rapid Alert System for Food and Feed. Food Control. 2019, 96, 479–487. [Google Scholar] [CrossRef]
- Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Marchese, E.; Medina Pastor, P. The 2022 European Union Report on Pesticide Residues in Food. EFSA J. 2024, 22, e8753. [Google Scholar] [CrossRef]
- European Commission. Rapid Alert System for Food and Feed (RASFF). Available online: https://food.ec.europa.eu/food-safety/rasff_en (accessed on 30 December 2024).
- Abd El-Moneim Ibrahim, K.; Mohamed Abdelrahman, S.; Elhakim, H.K.A.; Ali Ragab, E. Single or Combined Exposure to Chlorpyrifos and Cypermethrin Provoke Oxidative Stress and Downregulation in Monoamine Oxidase and Acetylcholinesterase Gene Expression of the Rat’s Brain. Environ. Sci. Pollut. Res. 2020, 27, 12692–12703. [Google Scholar] [CrossRef]
- Villar, D.; Schaeffer, D.J. Chlorpyrifos Should Be Banned in Agriculture and Livestock Production in Colombia. Rev. Colomb. de Cienc. Pecu. 2022, 35, 61–67. [Google Scholar] [CrossRef]
- Vellingiri, B.; Chandrasekhar, M.; Sri Sabari, S.; Gopalakrishnan, A.V.; Narayanasamy, A.; Venkatesan, D.; Iyer, M.; Kesari, K.; Dey, A. Neurotoxicity of Pesticides—A Link to Neurodegeneration. Ecotoxicol. Environ. Saf. 2022, 243, 113972. [Google Scholar] [CrossRef]
- Shrot, S.; Tauber, M.; Shiyovich, A.; Milk, N.; Rosman, Y.; Eisenkraft, A.; Kadar, T.; Kassirer, M.; Cohen, Y. Early Brain Magnetic Resonance Imaging Can Predict Short and Long-Term Outcomes after Organophosphate Poisoning in a Rat Model. Neuro Toxicology 2015, 48, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.R.; Fitsanakis, V.; Westerink, R.H.S.; Kanthasamy, A.G. Neurotoxicity of Pesticides. Acta Neuropathol. 2019, 138, 343–362. [Google Scholar] [CrossRef]
- Lotti, M.; Moretto, A. Organophosphate-Induced Delayed Polyneuropathy. Toxicol. Rev. 2005, 24, 37–49. [Google Scholar] [CrossRef]
- Karaboga, S.; Severac, F.; Collins, E.M.S.; Stab, A.; Davis, A.; Souchet, M.; Hervé, G. Organophosphate Toxicity Patterns: A New Approach for Assessing Organophosphate Neurotoxicity. J. Hazard. Mater. 2024, 470, 134236. [Google Scholar] [CrossRef]
- Lorke, D.E.; Oz, M. A Review on Oxidative Stress in Organophosphate-Induced Neurotoxicity. Int. J. Biochem. Cell Biol. 2025, 180, 106735. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, N. Neurological Syndromes Following Organophosphate Poisoning. Neurol. India. 2000, 48, 308–313. [Google Scholar]
- Ding, Q.; Fang, S.; Chen, X.; Wang, Y.; Li, J.; Tian, F.; Xu, X.; Attali, B.; Xie, X.; Gao, Z. TRPA1 Channel Mediates Organophosphate-Induced Delayed Neuropathy. Cell Discov. 2017, 3, 1–15. [Google Scholar] [CrossRef]
- Faria, M.; Fuertes, I.; Prats, E.; Abad, J.L.; Padrós, F.; Gomez-Canela, C.; Casas, J.; Estevez, J.; Vilanova, E.; Piña, B.; et al. Analysis of the Neurotoxic Effects of Neuropathic Organophosphorus Compounds in Adult Zebrafish. Sci Rep. 2018, 8, 4844. [Google Scholar] [CrossRef]
- Chung, Y.-L.; Hou, Y.-C.; Wang, I.-K.; Lu, K.-C.; Yen, T.-H. Organophosphate Pesticides and New-Onset Diabetes Mellitus: From Molecular Mechanisms to a Possible Therapeutic Perspective. World J. Diabetes 2021, 12, 1818–1831. [Google Scholar] [CrossRef]
- Sousa, S.; Rede, D.; Cruz Fernandes, V.; Pestana, D.; Faria, G.; Delerue-Matos, C.; Calhau, C.; Fernandes Domingues, V. Accumulation of Organophosphorus Pollutants in Adipose Tissue of Obese Women—Metabolic Alterations. Environ. Res. 2023, 239, 117337. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Mehrpour, O.; Forouzanfar, F.; Roshanravan, B.; Samarghandian, S. Oxidative Stress and Mitochondrial Dysfunction in Organophosphate Pesticide-Induced Neurotoxicity and Its Amelioration: A Review. Environ. Sci. Pollut. Res. 2020, 27, 24799–24814. [Google Scholar] [CrossRef]
- Sanguos, C.L.; Suárez, O.L.; Martínez-Carballo, E.; Couce, M.L. Postnatal Exposure to Organic Pollutants in Maternal Milk in North-Western Spain. Environ. Pollut. 2023, 318, 120903. [Google Scholar] [CrossRef]
- Brahmand, M.B.; Yunesian, M.; Nabizadeh, R.; Nasseri, S.; Alimohammadi, M.; Rastkari, N. Evaluation of Chlorpyrifos Residue in Breast Milk and Its Metabolite in Urine of Mothers and Their Infants Feeding Exclusively by Breast Milk in North of Iran. J. Environ. Health Sci Eng. 2019, 17, 817–825. [Google Scholar] [CrossRef]
- Şahin, G.; Uskun, E.; Ay, R.; Nayir, T. Determination of the Residue Levels of Some Commonly Used Organophosphorus Pesticides in Breast Milk Bazı Sık Kullanılan Organofosfatlı Pestisitlerin Anne Sütünde Kalıntılarının Belirlenmesi. Ankara Med. J. 2017, 17, 9–20. [Google Scholar]
- Lee, D.H.; Jung, K.Y.; Choi, Y.H.; Cheon, Y.J. Body Mass Index as a Prognostic Factor in Organophosphate-Poisoned Patients. Am. J. Emerg. Med. 2014, 32, 693–696. [Google Scholar] [CrossRef]
- Kanthasamy, A.; Jin, H.; Charli, A.; Vellareddy, A.; Kanthasamy, A. Environmental Neurotoxicant-Induced Dopaminergic Neurodegeneration: A Potential Link to Impaired Neuroinflammatory Mechanisms. Pharmacol. Ther. 2019, 197, 61–82. [Google Scholar] [CrossRef]
- Mirarchi, A.; Albi, E.; Arcuri, C. Microglia Signatures: A Cause or Consequence of Microglia-Related Brain Disorders? Int. J. Mol. Sci. 2024, 25, 10951. [Google Scholar] [CrossRef]
- Hernández, A.F.; Romero-Molina, D.; Gonzalez-Alzaga, B.; López-Flores, I.; Lacasaña, M. Changes in Molecular Biomarkers of Neurotoxicity in Newborns Following Prenatal Exposure to Organophosphate Compounds. Chemosphere 2025, 374, 144204. [Google Scholar] [CrossRef]
- López-Merino, E.; Cuartero, M.I.; Esteban, J.A.; Briz, V. Perinatal Exposure to Pesticides Alters Synaptic Plasticity Signaling and Induces Behavioral Deficits Associated with Neurodevelopmental Disorders. Cell Biol. Toxicol. 2023, 39, 2089–2111. [Google Scholar] [CrossRef]
- Dhaini, H.R. Neuroinflammation: Modulating Pesticide-Induced Neurodegeneration. In Encyclopedia of Neuroscience; Springer: Berlin/Heidelberg, Germany, 2009; pp. 2734–2739. [Google Scholar]
- Costa, L.; Giordano, G.; Guizzetti, M.; Vitalone, A. Neurotoxicity of Pesticides: A Brief Review. Front. Biosci. 2008, 13, 1240–1249. [Google Scholar] [CrossRef]
- Rosman, Y.; Makarovsky, I.; Bentur, Y.; Shrot, S.; Dushnistky, T.; Krivoy, A. Carbamate Poisoning: Treatment Recommendations in the Setting of a Mass Casualties Event. Am J. Emerg. Med. 2009, 27, 1117–1124. [Google Scholar] [CrossRef]
- Ragouc-Sengler, C.; Tracqui, A.; Chavonnet, A.; Daijardin, J.B.; Simonetti, M.; Kintz, P.; Pileire, B. Aldicarb Poisoning. Hum. Exp. Toxicol. 2000, 19, 657–662. [Google Scholar] [CrossRef]
- Sinha, V.; Shrivastava, S. Cypermethrin: An Emerging Pollutant and Its Adverse Effect on Fish Health and Some Preventive Approach—A Review. Indian J. Microbiol. 2024, 64, 48–58. [Google Scholar] [CrossRef]
- Tarazona, J.V.; Cattaneo, I.; Niemann, L.; Pedraza-Diaz, S.; González-Caballero, M.C.; de Alba-Gonzalez, M.; Cañas, A.; Dominguez-Morueco, N.; Esteban-López, M.; Castaño, A.; et al. A Tiered Approach for Assessing Individual and Combined Risk of Pyrethroids Using Human Biomonitoring Data. Toxics 2022, 10, 451. [Google Scholar] [CrossRef]
- Souza, M.F.; Medeiros, K.A.A.L.; Lins, L.C.R.F.; Bispo, J.M.M.; Gois, A.M.; Freire, M.A.M.; Marchioro, M.; Santos, J.R. Intracerebroventricular Injection of Deltamethrin Increases Locomotion Activity and Causes Spatial Working Memory and Dopaminergic Pathway Impairment in Rats. Brain Res. Bull. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Singh, T.B.; Kaur, M.; Tyagi, D.; Ahmad, I.; Kaur, G.; Afzal, S.M.; Jauhar, M. An Evidence Based Comprehensive Review on Thiacloprid, a Pesticide Residue, Induced Toxicity: Unveiling Hazard to Human Health. Environ. Toxicol. Pharmacol. 2024, 110, 104532. [Google Scholar] [CrossRef]
- Cresto, N.; Forner-Piquer, I.; Baig, A.; Chatterjee, M.; Perroy, J.; Goracci, J.; Marchi, N. Pesticides at Brain Borders: Impact on the Blood-Brain Barrier, Neuroinflammation, and Neurological Risk Trajectories. Chemosphere 2023, 324, 138251. [Google Scholar] [CrossRef]
- Sriapha, C.; Trakulsrichai, S.; Tongpoo, A.; Pradoo, A.; Rittilert, P.; Wananukul, W. Acute Imidacloprid Poisoning in Thailand. Ther. Clin. Risk Manag. 2020, 16, 1081–1088. [Google Scholar] [CrossRef]
- Aloizou, A.-M.; Siokas, V.; Sapouni, E.-M.; Sita, N.; Liampas, I.; Brotis, A.G.; Rakitskii, V.N.; Burykina, T.I.; Aschner, M.; Bogdanos, D.P.; et al. Parkinson’s Disease and Pesticides: Are MicroRNAs the Missing Link? Sci. Total Environ. 2020, 744, 140591. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E. Parkinson’s Disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, C.; Wang, K.; Liu, X.; Wang, H.; Che, Y.; Sun, F.; Zhou, X.; Zhao, X.; Wang, Q. Paraquat and Maneb Co-Exposure Induces Noradrenergic Locus Coeruleus Neurodegeneration through NADPH Oxidase-Mediated Microglial Activation. Toxicology 2017, 380, 1–10. [Google Scholar] [CrossRef]
- Tsalenchuk, M.; Gentleman, S.M.; Marzi, S.J. Linking Environmental Risk Factors with Epigenetic Mechanisms in Parkinson’s Disease. NPJ Park. Dis. 2023, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, L.-G.; Bodin, L. Occupational Exposures and Neurodegenerative Diseases—A Systematic Literature Review and Meta-Analyses. Int. J. Environ. Res. Public Health 2019, 16, 337. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Abushouk, A.I.; Gabr, M.; Negida, A.; Abdel-Daim, M.M. Parkinson’s Disease and Pesticides: A Meta-Analysis of Disease Connection and Genetic Alterations. Biomed. Pharmacother. 2017, 90, 638–649. [Google Scholar] [CrossRef]
- Ullah, I.; Zhao, L.; Hai, Y.; Fahim, M.; Alwayli, D.; Wang, X.; Li, H. Metal Elements and Pesticides as Risk Factors for Parkinson’s Disease—A Review. Toxicol. Rep. 2021, 8, 607–616. [Google Scholar] [CrossRef]
- Li, K.; Cheng, X.; Jiang, J.; Wang, J.; Xie, J.; Hu, X.; Huang, Y.; Song, L.; Liu, M.; Cai, L.; et al. The Toxic Influence of Paraquat on Hippocampal Neurogenesis in Adult Mice. Food Chem. Toxicol. 2017, 106, 356–366. [Google Scholar] [CrossRef]
- Baltazar, M.T.; Dinis-Oliveira, R.J.; de Lourdes Bastos, M.; Tsatsakis, A.M.; Duarte, J.A.; Carvalho, F. Pesticides Exposure as Etiological Factors of Parkinson’s Disease and Other Neurodegenerative Diseases—A Mechanistic Approach. Toxicol. Lett. 2014, 230, 85–103. [Google Scholar] [CrossRef]
- Ngo, K.J.; Paul, K.C.; Wong, D.; Kusters, C.D.J.; Bronstein, J.M.; Ritz, B.; Fogel, B.L. Lysosomal Genes Contribute to Parkinson’s Disease near Agriculture with High Intensity Pesticide Use. NPJ Park. Dis. 2024, 10, 87. [Google Scholar] [CrossRef]
- Paul, K.C.; Chuang, Y.-H.; Cockburn, M.; Bronstein, J.M.; Horvath, S.; Ritz, B. Organophosphate Pesticide Exposure and Differential Genome-Wide DNA Methylation. Sci. Total Environ. 2018, 645, 1135–1143. [Google Scholar] [CrossRef]
- Schaffner, S.L.; Casazza, W.; Artaud, F.; Konwar, C.; Merrill, S.M.; Domenighetti, C.; Schulze-Hentrich, J.M.; Lesage, S.; Brice, A.; Corvol, J.C.; et al. Genetic Variation and Pesticide Exposure Influence Blood DNA Methylation Signatures in Females with Early-Stage Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 98. [Google Scholar] [CrossRef]
- Go, R.C.P.; Corley, M.J.; Ross, G.W.; Petrovitch, H.; Masaki, K.H.; Maunakea, A.K.; He, Q.; Tiirikainen, M.I. Genome-Wide Epigenetic Analyses in Japanese Immigrant Plantation Workers with Parkinson’s Disease and Exposure to Organochlorines Reveal Possible Involvement of Glial Genes and Pathways Involved in Neurotoxicity. BMC Neurosci. 2020, 21, 1–18. [Google Scholar] [CrossRef]
- Luo, X.-G.; Chen, S.-D. The Changing Phenotype of Microglia from Homeostasis to Disease. Transl. Neurodegener. 2012, 1, 9. [Google Scholar] [CrossRef]
- Casida, J.E.; Ford, B.; Jinsmaa, Y.; Sullivan, P.; Cooney, A.; Goldstein, D.S. Benomyl, Aldehyde Dehydrogenase, DOPAL, and the Catecholaldehyde Hypothesis for the Pathogenesis of Parkinsons Disease. Chem. Res. Toxicol. 2014, 27, 1359–1361. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, J.; Xu, Y.; Zhang, X. Paraquat-Induced Inflammatory Response of Microglia through HSP60/TLR4 Signaling. Hum. Exp. Toxicol. 2018, 37, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Chinta, S.J.; Woods, G.; Demaria, M.; Rane, A.; Zou, Y.; McQuade, A.; Rajagopalan, S.; Limbad, C.; Madden, D.T.; Campisi, J.; et al. Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson’s Disease. Cell Rep. 2018, 22, 930–940. [Google Scholar] [CrossRef]
- Sun, D.-Z.; Song, C.-Q.; Xu, Y.-M.; Wang, R.; Liu, W.; Liu, Z.; Dong, X.-S. Involvement of PINK1/Parkin-Mediated Mitophagy in Paraquat- Induced Apoptosis in Human Lung Epithelial-like A549 Cells. Toxicol. Vitr. 2018, 53, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Souders, C.L.; Zhao, Y.H.; Martyniuk, C.J. Paraquat Affects Mitochondrial Bioenergetics, Dopamine System Expression, and Locomotor Activity in Zebrafish (Danio Rerio). Chemosphere 2018, 191, 106–117. [Google Scholar] [CrossRef]
- Christen, V.; Rusconi, M.; Crettaz, P.; Fent, K. Developmental Neurotoxicity of Different Pesticides in PC-12 Cells in Vitro. Toxicol. Appl. Pharmacol. 2017, 325, 25–36. [Google Scholar] [CrossRef]
- Horst, C.H.; Schlemmer, F.; de Aguiar Montenegro, N.; Domingues, A.C.M.; Ferreira, G.G.; da Silva Ribeiro, C.Y.; de Andrade, R.R.; Del Bel Guimarães, E.; Titze-de-Almeida, S.S.; Titze-de-Almeida, R. Signature of Aberrantly Expressed MicroRNAs in the Striatum of Rotenone-Induced Parkinsonian Rats. Neurochem. Res. 2018, 43, 2132–2140. [Google Scholar] [CrossRef]
- Palanisamy, B.N.; Sarkar, S.; Malovic, E.; Samidurai, M.; Charli, A.; Zenitsky, G.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Environmental Neurotoxic Pesticide Exposure Induces Gut Inflammation and Enteric Neuronal Degeneration by Impairing Enteric Glial Mitochondrial Function in Pesticide Models of Parkinson’s Disease: Potential Relevance to Gut-Brain Axis Inflammation in Parkinson’s Disease Pathogenesis. Int. J. Biochem. Cell Biol. 2022, 147, 106225. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Fang, Y.; Du, Z.; Yan, Z.; Yuan, X.; Dai, L.; Yu, T.; Xiong, M.; Tian, Y.; et al. Exposure to the Environmentally Toxic Pesticide Maneb Induces Parkinson’s Disease-like Neurotoxicity in Mice: A Combined Proteomic and Metabolomic Analysis. Chemosphere 2022, 308, 136344. [Google Scholar] [CrossRef]
- Gasmi, S.; Rouabhi, R.; Kebieche, M.; Boussekine, S.; Salmi, A.; Toualbia, N.; Taib, C.; Bouteraa, Z.; Chenikher, H.; Henine, S.; et al. Effects of Deltamethrin on Striatum and Hippocampus Mitochondrial Integrity and the Protective Role of Quercetin in Rats. Environ. Sci. Pollut. Res. 2017, 24, 16440–16457. [Google Scholar] [CrossRef] [PubMed]
- Bharatiya, R.; Bratzu, J.; Lobina, C.; Corda, G.; Cocco, C.; De Deurwaerdere, P.; Argiolas, A.; Melis, M.R.; Sanna, F. The Pesticide Fipronil Injected into the Substantia Nigra of Male Rats Decreases Striatal Dopamine Content: A Neurochemical, Immunohistochemical and Behavioral Study. Behav. Brain Res. 2020, 384, 112562. [Google Scholar] [CrossRef]
- Roy Sarkar, S.; Banerjee, S. Gut Microbiota in Neurodegenerative Disorders. J. Neuroimmunol. 2019, 328, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kulcsarova, K.; Bang, C.; Berg, D.; Schaeffer, E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson’s Disease. J. Park. Dis. 2023, 13, 1079–1106. [Google Scholar] [CrossRef]
- Zhao, Z.; Ning, J.; Bao, X.Q.; Shang, M.; Ma, J.; Li, G.; Zhang, D. Fecal Microbiota Transplantation Protects Rotenone-Induced Parkinson’s Disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway through the Microbiota-Gut-Brain Axis. Microbiome 2021, 9, 1–27. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, X.; Ye, Y.; Yan, X.; Cheng, Y.; Zhao, L.; Chen, F.; Ling, Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Front. Immunol. 2022, 13, 937555. [Google Scholar] [CrossRef] [PubMed]
- Abou Diwan, M.; Lahimer, M.; Bach, V.; Gosselet, F.; Khorsi-Cauet, H.; Candela, P. Impact of Pesticide Residues on the Gut-Microbiota–Blood–Brain Barrier Axis: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 6147. [Google Scholar] [CrossRef]
- Dardiotis, E.; Aloizou, A.-M.; Sakalakis, E.; Siokas, V.; Koureas, M.; Xiromerisiou, G.; Petinaki, E.; Wilks, M.; Tsatsakis, A.; Hadjichristodoulou, C.; et al. Organochlorine Pesticide Levels in Greek Patients with Parkinson’s Disease. Toxicol. Rep. 2020, 7, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Su, Y.; Cai, S.; Yao, Y.; Chen, X. Environmental and Occupational Exposure to Organochlorine Pesticides Associated with Parkinson’s Disease Risk: A Systematic Review and Meta-Analysis Based on Epidemiological Evidence. Public Health 2024, 237, 374–386. [Google Scholar] [CrossRef]
- Yadav, B.; Kaur, S.; Yadav, A.; Verma, H.; Kar, S.; Sahu, B.K.; Pati, K.R.; Sarkar, B.; Dhiman, M.; Mantha, A.K. Implications of Organophosphate Pesticides on Brain Cells and Their Contribution toward Progression of Alzheimer’s Disease. J. Biochem. Mol. Toxicol. 2024, 38, e23660. [Google Scholar] [CrossRef]
- Khemka, S.; Reddy, A.; Garcia, R.I.; Jacobs, M.; Reddy, R.P.; Roghani, A.K.; Pattoor, V.; Basu, T.; Sehar, U.; Reddy, P.H. Role of Diet and Exercise in Aging, Alzheimer’s Disease, and Other Chronic Diseases. Ageing Res. Rev. 2023, 91, 102091. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Li, Y.; Fang, R.; Liu, Z.; Jiang, L.; Zhang, J.; Li, H.; Liu, C.; Li, F. The Association between Toxic Pesticide Environmental Exposure and Alzheimer’s Disease: A Scientometric and Visualization Analysis. Chemosphere 2021, 263, 128238. [Google Scholar] [CrossRef]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.L. Neuropathological Mechanisms Associated with Pesticides in Alzheimer’s Disease. Toxics 2020, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2018 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2018, 14, 367–429. [Google Scholar] [CrossRef]
- Ruiz-González, C.; Román, P.; Rueda-Ruzafa, L.; Cardona, D.; Requena, M.; Alarcón, R. Environmental Pesticide Exposure and Alzheimer’s Disease in Southern Spain: A Cross-Sectional Study. Psychiatry Res. 2024, 337, 115932. [Google Scholar] [CrossRef]
- Kiani, Z.; Asadikaram, G.; Faramarz, S.; Salimi, F.; Ebrahimi, H. Pesticide Exposure and Alzheimer’s Disease: A Case-Control Study. Curr. Alzheimer Res. 2023, 19, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, L.; Abnous, K.; Razavi, B.M.; Hosseinzadeh, H. Crocin-Protected Malathion-Induced Spatial Memory Deficits by Inhibiting TAU Protein Hyperphosphorylation and Antiapoptotic Effects. Nutr. Neurosci. 2020, 23, 221–236. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M.; Moselhy, A.A.A.; Said, E.N.; Ismail, T.A.; Di Cerbo, A.; Pugliese, N.; Ahmed, M.M. The Neonicotinoid Thiacloprid Interferes with the Development, Brain Antioxidants, and Neurochemistry of Chicken Embryos and Alters the Hatchling Behavior: Modulatory Potential of Phytochemicals. Biology 2022, 11, 73. [Google Scholar] [CrossRef]
- Afshari, S.; Sarailoo, M.; Asghariazar, V.; Safarzadeh, E.; Dadkhah, M. Persistent Diazinon Induced Neurotoxicity: The Effect on Inhibitory Avoidance Memory Performance, Amyloid Precursor Proteins, and TNF-α Levels in the Prefrontal Cortex of Rats. Hum. Exp. Toxicol. 2024, 43, 09603271241235408. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Simon, J.M.; Hu, W.; Moy, S.S.; Harper, K.M.; Liu, C.-W.; Lu, K.; Zylka, M.J. Developmental Pyrethroid Exposure and Age Influence Phenotypes in a Chd8 Haploinsufficient Autism Mouse Model. Sci. Rep. 2022, 12, 5555. [Google Scholar] [CrossRef]
- Gama, J.; Neves, B.; Pereira, A. Chronic Effects of Dietary Pesticides on the Gut Microbiome and Neurodevelopment. Front. Microbiol. 2022, 13, 931440. [Google Scholar] [CrossRef] [PubMed]
- Karam, S.M.; Barros, A.J.D.; Matijasevich, A.; Dos Santos, I.S.; Anselmi, L.; Barros, F.; Leistner-Segal, S.; Félix, T.M.; Riegel, M.; Maluf, S.W.; et al. Intellectual Disability in a Birth Cohort: Prevalence, Etiology, and Determinants at the Age of 4 Years. Public Health Genom. 2016, 19, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R.; Lane, A.L.; Werner, B.A.; McLees, S.E.; Fletcher, T.S.; Frye, R.E. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol. Diagn. Ther. 2022, 26, 483–495. [Google Scholar] [CrossRef]
- Curtis, M.A.; Dhamsania, R.K.; Branco, R.C.; Guo, J.-D.; Creeden, J.; Neifer, K.L.; Black, C.A.; Winokur, E.J.; Andari, E.; Dias, B.G.; et al. Developmental Pyrethroid Exposure Causes a Neurodevelopmental Disorder Phenotype in Mice. PNAS Nexus 2023, 2, pgad085. [Google Scholar] [CrossRef]
- Brown, A.S.; Cheslack-Postava, K.; Rantakokko, P.; Kiviranta, H.; Hinkka-Yli-Salomäki, S.; McKeague, I.W.; Surcel, H.-M.; Sourander, A. Association of Maternal Insecticide Levels With Autism in Offspring From a National Birth Cohort. Am. J. Psychiatry 2018, 175, 1094–1101. [Google Scholar] [CrossRef]
- Rowe, C.; Gunier, R.; Bradman, A.; Harley, K.G.; Kogut, K.; Parra, K.; Eskenazi, B. Residential Proximity to Organophosphate and Carbamate Pesticide Use during Pregnancy, Poverty during Childhood, and Cognitive Functioning in 10-Year-Old Children. Environ. Res. 2016, 150, 128–137. [Google Scholar] [CrossRef] [PubMed]
- González-Alzaga, B.; Hernández, A.F.; Rodríguez-Barranco, M.; Gómez, I.; Aguilar-Garduño, C.; López-Flores, I.; Parrón, T.; Lacasaña, M. Pre- and Postnatal Exposures to Pesticides and Neurodevelopmental Effects in Children Living in Agricultural Communities from South-Eastern Spain. Environ. Int. 2015, 85, 229–237. [Google Scholar] [CrossRef]
- Rauh, V.A.; Perera, F.P.; Horton, M.K.; Whyatt, R.M.; Bansal, R.; Hao, X.; Liu, J.; Barr, D.B.; Slotkin, T.A.; Peterson, B.S. Brain Anomalies in Children Exposed Prenatally to a Common Organophosphate Pesticide. Proc. Natl. Acad. Sci. USA. 2012, 109, 7871–7876. [Google Scholar] [CrossRef]
- Rauh, V.A.; Garcia, W.E.; Whyatt, R.M.; Horton, M.K.; Barr, D.B.; Louis, E.D. Prenatal Exposure to the Organophosphate Pesticide Chlorpyrifos and Childhood Tremor. Neuro Toxicol. 2015, 51, 80–86. [Google Scholar] [CrossRef]
- Hertz-Picciotto, I.; Sass, J.B.; Engel, S.; Bennett, D.H.; Bradman, A.; Eskenazi, B.; Lanphear, B.; Whyatt, R. Organophosphate Exposures during Pregnancy and Child Neurodevelopment: Recommendations for Essential Policy Reforms. PLoS Med 2018, 15, e1002671. [Google Scholar] [CrossRef]
- He, M.; Lin, Y.; Zhang, X.; Wang, S.; Yang, X.; Cui, F.; Sheng, X. 6-Chloronicotinic Acid Induces Toxicity in Mouse Neural Stem Cells via the C3ar1 Signaling. J. Appl. Toxicol. 2025, 45, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Sevim, Ç.; Akpınar, E.; Aksu, E.H.; Ömür, A.D.; Yıldırım, S.; Kara, M.; Bolat, İ.; Tsatsakis, A.; Mesnage, R.; Golokhvast, K.S.; et al. Reproductive Effects of S. Boulardii on Sub-Chronic Acetamiprid and Imidacloprid Toxicity in Male Rats. Toxics 2023, 11, 170. [Google Scholar] [CrossRef]
- Ramirez-Cando, L.J.; Guzmán-Vallejos, M.S.; Aguayo, L.G.; Vera-Erazo, F.D.; Ballaz, S.J. Neurocytotoxicity of Imidacloprid- and Acetamiprid-Based Comercial Insecticides over the Differentiation of SH-SY5Y Neuroblastoma Cells. Heliyon 2023, 9, e15840. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Lu, Y.; Zhao, Z.; Hoogenboom, R.L.A.P.; Zhang, Q.; Liu, X.; Song, W.; Guan, S.; Song, W.; Rao, Q. Assessing the Combined Toxicity Effects of Three Neonicotinoid Pesticide Mixtures on Human Neuroblastoma SK-N-SH and Lepidopteran Sf-9 Cells. Food Chem. Toxicol. 2020, 145, 111632. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Jhamtani, R.C.; Dahiya, M.S.; Agarwal, R. Oxidative Injury Caused by Individual and Combined Exposure of Neonicotinoid, Organophosphate and Herbicide in Zebrafish. Toxicol. Rep. 2017, 4, 240–244. [Google Scholar] [CrossRef]
- Mariani, A.; Comolli, D.; Fanelli, R.; Forloni, G.; De Paola, M. Neonicotinoid Pesticides Affect Developing Neurons in Experimental Mouse Models and in Human Induced Pluripotent Stem Cell (IPSC)-Derived Neural Cultures and Organoids. Cells 2024, 13, 1295. [Google Scholar] [CrossRef]
- Lee, C.L.M.; Brabander, C.J.; Nomura, Y.; Kanda, Y.; Yoshida, S. Embryonic Exposure to Acetamiprid Insecticide Induces CD68-Positive Microglia and Purkinje Cell Arrangement Abnormalities in the Cerebellum of Neonatal Rats. Toxicol. Appl. Pharmacol. 2025, 495, 117215. [Google Scholar] [CrossRef]
- Singh, A.K.; Tiwari, M.N.; Upadhyay, G.; Patel, D.K.; Singh, D.; Prakash, O.; Singh, M.P. Long Term Exposure to Cypermethrin Induces Nigrostriatal Dopaminergic Neurodegeneration in Adult Rats: Postnatal Exposure Enhances the Susceptibility during Adulthood. Neurobiol. Aging 2012, 33, 404–415. [Google Scholar] [CrossRef]
- Richardson, J.R.; Taylor, M.M.; Shalat, S.L.; Guillot, T.S.; Caudle, W.M.; Hossain, M.M.; Mathews, T.A.; Jones, S.R.; Cory-Slechta, D.A.; Miller, G.W. Developmental Pesticide Exposure Reproduces Features of Attention Deficit Hyperactivity Disorder. FASEB J. 2015, 29, 1960–1972. [Google Scholar] [CrossRef]
- Souza, M.F.; Freire, M.A.M.; Medeiros, K.A.A.L.; Lins, L.C.R.F.; Bispo, J.M.M.; Gois, A.M.; Leal, P.C.; Engelberth, R.C.G.J.; Ribeiro, A.M.; Silva, R.H.; et al. Deltamethrin Intranasal Administration Induces Memory, Emotional and Tyrosine Hydroxylase Immunoreactivity Alterations in Rats. Brain Res. Bull. 2018, 142, 297–303. [Google Scholar] [CrossRef]
- Hawkey, A.B.; Pippen, E.; Kenou, B.; Holloway, Z.; Slotkin, T.A.; Seidler, F.J.; Levin, E.D. Persistent Neurobehavioral and Neurochemical Anomalies in Middle-Aged Rats after Maternal Diazinon Exposure. Toxicology 2022, 472, 153189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-Y.; Wu, Y.-Y.; Xia, B.; Dai, M.-Z.; Huang, Y.-F.; Yang, H.; Li, C.-Q.; Li, P. Fenobucarb-Induced Developmental Neurotoxicity and Mechanisms in Zebrafish. Neuro Toxicol. 2020, 79, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Chao, Y.S.; Chen, W.Z.; Dong, J.Y. Mother Gestational Exposure to Organophosphorus Pesticide Induces Neuron and Glia Loss in Daughter Adult Brain. J. Environ. Sci. Health Part B 2017, 52, 77–83. [Google Scholar] [CrossRef] [PubMed]
Pesticide | Experimental Model | Dosage | Outcome | Reference |
---|---|---|---|---|
Malathion | Rats | 100 mg/kg | Spatial memory deficits Apoptosis in the hippocampus tau hyperphosphorylation ↓ PSD93 levels ↑ TNF-α and IL-6 levels (−) PP2A Activated GSK-3β | [100] |
Thiacloprid | Chicken embryos (Total = 780 eggs) | 0.1–100 µg/egg | ↑ Mortality and abnormalities—dose-dependent ↓ Levels of monoamines and amino acid neurotransmitters ↓ Activities of AChE and Na+/K+-ATPase ↓ Activity of CAT and SOD Downregulated mRNA expression | [101] |
Diazonin | Rats (n = 7) | 2 mg/kg | ↓ APP ↓ APL2 ↑ TNF-α levels in the PFC—5 days post exposure | [102] |
Chlorpyrifos | Rats (Total = 24) | 16.324 mg/kg | ↓ Dopamine ↓ Serotonin ↑ MDA ↑ NO ↓ MAO-A | [27] |
Deltamethrin | Wistar rats | 3 mg/kg/every 3 days, gavage | ↑ Anxiety along with altered cellular adhesion and vasculature development evaluated at 6 and 12 months of age | [103] |
Pesticide | Experimental Model | Outcome | Reference |
---|---|---|---|
Clothianidin + Thiacloprid Mixture | Rats (n = 10) | Histological changes in the brain—loss of tissue architecture, nucleosomal retraction, ↑ Pycnosis in granular neurons Short-term memory deficits Abnormal CNS activity | [2] |
IM + AC + THM | Human neuroblastoma—SK-N-SH Lepidopteran (Sf-9) cells | IM + AC, IM + TH, AC + TH, IM + AC + TH—synergistic effects at <50 mg/L IM + AC and IM + TH—antagonistic effects at higher concentrations IM + AC—antagonism at >0.5 mg/L | [117] |
IM DIC ATZ | Zebrafish (Total = 90) | IMD + DIC + ATZ → highest LPO Antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase)—significantly elevated in the CMD group | [118] |
IM | SH-SY5Y cells | ↓ Cell viability (chronic exposure) ↓ Neurite outgrowth, dose-dependent retraction during differentiation Potential oxidative stress | [116] |
IM | iPSC | ↓ Viability of human iPSC-derived neurons and microglia ↑ Synaptophysin = abnormal synaptogenesis Impaired neurogenesis Cell-type-specific toxicity | [119] |
Acetamiprid | Neonatal Wistar Rats | Glutamate dysregulation Microglial activation Motor impairment Purkinje cell abnormalities | [120] |
Cypermethrin | Rats | Neurodegeneration after 12 weeks Postnatal exposure effect Neurochemical alterations | [121] |
Deltamethrin | Mice | ↑ DAT Hyperactivity Deficits of working memory and attention Impulsive-like behavior | [122] |
Deltamethrin | Mice | ↑ Repetitive behaviors ↑ DAT protein levels ↑ Total striatal dopamine and dopamine metabolites | [107] |
Deltamethrin | Rats (Total = 19) | Cognitive impairment ↑ Locomotor activity ↓ TH immunoreactivity | [55] |
Deltamethrin | Rats (Total = 19) | Memory and emotional impairment ↓ TH immunoreactivity in SNpc and VTA ↑ TH immunoreactivity in dorsal striatum | [123] |
Diazinon | Rats (n = 7) | Decline in inhibitory avoidance memory performance ↓ APP and APLP2 gene expression | [102] |
Diazinon | Rats | Locomotor hyperactivity Region-specific enhancement in dopamine utilization Deficient attentional accuracy | [124] |
Fenobucarb | Zebrafish | Caspase 3 and 9 activation ↑ ROS production Axon degeneration Central nerve and peripheral motor neuron damage | [125] |
Chlorpyrifos | Mice | ↓ Neuron and glia counts in anterior cingulate, prelimbic, and infralimbic areas of mPFC | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botnaru, A.A.; Lupu, A.; Morariu, P.C.; Jităreanu, A.; Nedelcu, A.H.; Morariu, B.A.; Anton, E.; Di Gioia, M.L.; Lupu, V.V.; Dragostin, O.M.; et al. Neurotoxic Effects of Pesticides: Implications for Neurodegenerative and Neurobehavioral Disorders. J. Xenobiot. 2025, 15, 83. https://doi.org/10.3390/jox15030083
Botnaru AA, Lupu A, Morariu PC, Jităreanu A, Nedelcu AH, Morariu BA, Anton E, Di Gioia ML, Lupu VV, Dragostin OM, et al. Neurotoxic Effects of Pesticides: Implications for Neurodegenerative and Neurobehavioral Disorders. Journal of Xenobiotics. 2025; 15(3):83. https://doi.org/10.3390/jox15030083
Chicago/Turabian StyleBotnaru, Alexandra Andreea, Ancuta Lupu, Paula Cristina Morariu, Alexandra Jităreanu, Alin Horatiu Nedelcu, Branco Adrian Morariu, Emil Anton, Maria Luisa Di Gioia, Vasile Valeriu Lupu, Oana Maria Dragostin, and et al. 2025. "Neurotoxic Effects of Pesticides: Implications for Neurodegenerative and Neurobehavioral Disorders" Journal of Xenobiotics 15, no. 3: 83. https://doi.org/10.3390/jox15030083
APA StyleBotnaru, A. A., Lupu, A., Morariu, P. C., Jităreanu, A., Nedelcu, A. H., Morariu, B. A., Anton, E., Di Gioia, M. L., Lupu, V. V., Dragostin, O. M., Vieriu, M., & Morariu, I. D. (2025). Neurotoxic Effects of Pesticides: Implications for Neurodegenerative and Neurobehavioral Disorders. Journal of Xenobiotics, 15(3), 83. https://doi.org/10.3390/jox15030083