Assessing the Application of Physiologically Based Pharmacokinetic Models in Acute Chemical Incidents
Abstract
:1. Introduction
- Type of toxic substances: chemical, biological, radiological, or medical;
- Categories of affected population (age, employment);
- Location of event (classified according to the North American Industry Classification System [NAICS]);
- Level of personal protective equipment used—four levels ranging from most to least protective;
- Routes of chemical release: volatilization, spill, fire, or explosion;
- Season of year: spring, summer, fall, or winter;
- Time and duration of the incident: either from 6:00 pm to 5:59 am or from 6:00 am to 5:59 pm.
Computational Tools for Environmental Chemical Incidents and Chemical Risk Assessment
- Fate and transport modeling and simulation: atmospheric dispersion, hydrodynamic, and fate and transport models help predict how chemicals move through air, water, and soil, facilitating informed decision-making.
- Data analysis and visualization: Geographic Information Systems (GIS), remote sensing technologies, and environmental databases offer essential data visualization and analysis, enhancing situational awareness and emergency response planning.
- Decision Support Systems (DSS): real-time monitoring systems, early warning systems, and risk assessment tools like ALOHA and RMP simulate chemical release scenarios, aiding in rapid response and mitigation strategies.
- Physiologically based pharmacokinetic (PBPK) modeling: PBPK models are helpful in assessing and linking chemical exposure to the human body. In the context of chemical incidents, these models are employed to predict the body burden of chemical exposures.
2. Methods
2.1. NTSIP Data
2.1.1. Case Study
2.1.2. Train Derailment
2.2. ATSDR PBPK Modeling Tool
- A few hours after the derailment (Table S2);
- The subsequent 24 h post-derailment (Tables S3 and S4).
3. Results
3.1. NTSIP and Train Derailment Data
3.2. ATSDR PBPK Model Tool
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duncan, M.A.; Drociuk, D.; Belflower-Thomas, A.; Van Sickle, D.; Gibson, J.J.; Youngblood, C.; Daley, W.R. Follow-up assessment of health consequences after a chlorine release from a train derailment--Graniteville, SC, 2005. J. Med. Toxicol. 2011, 7, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, A.; Numazawa, S. Simulation-based risk assessment for the leakage of toxic substances in a chemical plant and the effects on the human body: Ethanol as a working model. J. Toxicol. Sci. 2023, 48, 285–298. [Google Scholar] [CrossRef]
- Hunault, C.C.; Boerleider, R.Z.; Hof, B.G.; Kliest, J.J.; Meijer, M.; Nijhuis, N.J.; de Vries, I.; Meulenbelt, J. Review of acute chemical incidents as a first step in evaluating the usefulness of physiologically based pharmacokinetic models in such incidents. Clin. Toxicol. 2014, 52, 121–128. [Google Scholar] [CrossRef]
- Konkle, S.; Kevin Horton, D.; Orr, M. The Assessment of Chemical Exposures (Ace) Program: Toolkit Advances and Recent Investigations. J. Environ. Health 2023, 86, 36–44. [Google Scholar]
- Orr, M.F.; Wu, J.; Sloop, S.L. Acute Chemical Incidents Surveillance-Hazardous Substances Emergency Events Surveillance, Nine States, 1999–2008. MMWR Surveill. Summ. 2015, 64, 1–9. [Google Scholar]
- Rubin, G.J.; Chowdhury, A.K.; Amlôt, R. How to communicate with the public about chemical, biological, radiological, or nuclear terrorism: A systematic review of the literature. Biosecur. Bioterror. 2012, 10, 383–395. [Google Scholar] [CrossRef]
- van Asselt, E.D.; Twenhöfel, C.J.; Duranova, T.; Smetsers, R.C.; Bohunova, J.; Müller, T. Facilitating the Decision-Making Process After a Nuclear Accident: Case Studies in the Netherlands and Slovakia. Integr. Environ. Assess. Manag. 2021, 17, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Van Sickle, D.; Wenck, M.A.; Belflower, A.; Drociuk, D.; Ferdinands, J.; Holguin, F.; Svendsen, E.; Bretous, L.; Jankelevich, S.; Gibson, J.J.; et al. Acute health effects after exposure to chlorine gas released after a train derailment. Am. J. Emerg. Med. 2009, 27, 1–7. [Google Scholar] [CrossRef]
- Duncan, M.A.; Orr, M.F. Toolkit for Epidemiologic Response to an Acute Chemical Release. Disaster Med. Public Health Prep. 2016, 10, 631–632. [Google Scholar] [CrossRef]
- Lindstrom, I.; Lantto, J.; Karvala, K.; Soini, S.; Ylinen, K.; Suojalehto, H.; Suuronen, K. Occupations and exposure events in acute and subacute irritant-induced asthma. Occup. Environ. Med. 2021, 78, 793–800. [Google Scholar] [CrossRef]
- Lopez, V.; Chamoux, A.; Tempier, M.; Thiel, H.; Ughetto, S.; Trousselard, M.; Naughton, G.; Dutheil, F. The long-term effects of occupational exposure to vinyl chloride monomer on microcirculation: A cross-sectional study 15 years after retirement. BMJ Open 2013, 3, e002785. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Assessment of Chemical Exposures (ACE) Program. 2024. Available online: https://atsdr.cdc.gov/ace/php/about/index.html (accessed on 3 December 2024).
- Kielhorn, J.; Melber, C.; Wahnschaffe, U.; Aitio, A.; Mangelsdorf, I. Vinyl chloride: Still a cause for concern. Environ. Health Perspect. 2000, 108, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Sudweeks, S.; Elgethun, K.; Abadin, H.; Zarus, G.; Irvin, E. Applied toxicology at the Agency for Toxic Substances and Disease Registry (ATSDR). Encycl. Toxicol. 2023, 1, 761–767. [Google Scholar]
- Ruiz, P.; Loizou, G. Editorial: Application of computational tools to health and environmental sciences, Volume II. Front. Pharmacol. 2022, 13, 1102431. [Google Scholar] [CrossRef]
- Ruiz, P.; Zarus, G.; Desai, S. Computational Modeling Approaches Applied to Public and Environmental Health. J. Environ. Health 2024, 87, 32–35. [Google Scholar]
- Hall, H.I.; Pricegreen, P.A.; Dhara, V.R.; Kaye, W.E. Health-Effects Related to Releases of Hazardous Substances on the Superfund Priority List. Chemosphere 1995, 31, 2455–2461. [Google Scholar] [CrossRef]
- Ostrowski, S.R.; Wilbur, S.; Chou, C.H.S.J.; Pohl, H.R.; Stevens, Y.W.; Allred, P.M.; Roney, N.; Fay, M.; Tylenda, C.A. Agency for Toxic Substances and Disease Registry’s 1997 priority list of hazardous substances. Latent effects-carcinogenesis, neurotoxicology, and developmental deficits in humans and animals. Toxicol. Ind. Health 1999, 15, 602–644. [Google Scholar] [CrossRef]
- Melnikova, N.; Wu, J.; Ruiz, P.; Orr, M.F. National Toxic Substances Incidents Program-Nine States, 2010–2014. MMWR Surveill. Summ. 2020, 69, 1–10. [Google Scholar] [CrossRef]
- Hubal, E.A.C.; Wetmore, B.A.; Wambaugh, J.F.; El-Masri, H.; Sobus, J.R.; Bahadori, T. Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 11–20. [Google Scholar] [CrossRef]
- Aylward, L.L.; Kirman, C.R.; Blount, B.C.; Hays, S.M. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)–application of steady-state PBPK model solutions. Regul. Toxicol. Pharmacol. 2010, 58, 33–44. [Google Scholar] [CrossRef]
- Fierens, T.; Van Holderbeke, M.; Standaert, A.; Cornelis, C.; Brochot, C.; Ciffroy, P.; Johansson, E.; Bierkens, J. Multimedia & PBPK modelling with MERLIN-Expo versus biomonitoring for assessing Pb exposure of pre-school children in a residential setting. Sci. Total Environ. 2016, 568, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.A.; Rovira, J.; Sharma, R.P.; Schuhmacher, M.; Kumar, V. Reconstruction of phthalate exposure and DINCH metabolites from biomonitoring data from the EXHES cohort of Tarragona, Spain: A case study on estimated vs reconstructed DEHP using the PBPK model. Environ. Res. 2020, 186, 109534. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.P.; Schuhmacher, M.; Kumar, V. The development of a pregnancy PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data. Sci. Total Environ. 2018, 624, 55–68. [Google Scholar] [CrossRef]
- Mumtaz, M.M.; Ray, M.; Crowell, S.R.; Keys, D.; Fisher, J.; Ruiz, P. Translational Research to Develop a Human Pbpk Models Tool Kit-Volatile Organic Compounds (Vocs). J. Toxicol. Environ. Health A 2012, 75, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.M.; Worley, R.R.; Leonard, J.A.; Fisher, J.W. Challenges Associated with Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. Toxicol. Sci. 2018, 162, 341–348. [Google Scholar] [CrossRef]
- Valcke, M.; Krishnan, K. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants. J. Appl. Toxicol. 2014, 34, 227–240. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Vinyl Chloride; Toxicological Profiles; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2024.
- NOAA 2011. ALOHA (Areal Locations of Hazardous Atmospheres) (Fact Sheet). Available online: http://response.restoration.noaa.gov/aloha (accessed on 3 December 2024).
- NOAA 2012. ALOHA Text Summary and Toxic Threat Zone. National Oceanic and Atmospheric Administration. From: National Transportation Safety Board Public Hearing, Conrail Derailment in Paulsboro, NJ with Vinyl Chloride Release, Group 3 Exhibit AH,“NOAA—Areal Locations of Hazds Atm. (ALOHA) Plume Model for Vinyl Chloride,”Docket ID DCA13MR002. 2012.
- IMAAC 2012. Train Derailment Containing Vinyl Chloride in Paulsboro, NJ (30 November 2012). Interagency Modeling and Atmospheric Center. From: National Transportation Safety Board Public Hearing, Conrail Derailment in Paulsboro, NJ with Vinyl Chloride Release, Group 3 Exhibit BC, “Interagency Modeling and Atmospheric Center (IMAAC) Exposure Map,” Docket ID DCA13MR002. 2012.
- Department of Health for the State of New Jersey; McGreevy, K. Health Consultation Air Quality in Paulsboro, New Jersey Following a Train Derailment and Vinyl Chloride Gas Release; Department of Health for the State of New Jersey: Trenton, NJ, USA, 2014; Volume 42.
- Shumate, A.M.; Taylor, J.; McFarland, E.; Tan, C.; Duncan, M.A. Medical Response to a Vinyl Chloride Release From a Train Derailment: New Jersey, 2012. Disaster Med. Public Health Prep. 2017, 11, 538–544. [Google Scholar] [CrossRef]
- Ruiz, P.; Ray, M.; Fisher, J.; Mumtaz, M. Development of a human Physiologically Based Pharmacokinetic (PBPK) Toolkit for environmental pollutants. Int. J. Mol. Sci. 2011, 12, 7469–7480. [Google Scholar] [CrossRef]
- Mumtaz, M.; Fisher, J.; Blount, B.; Ruiz, P. Application of physiologically based pharmacokinetic models in chemical risk assessment. J. Toxicol. 2012, 2012, 904603. [Google Scholar] [CrossRef]
- Purchase, I.F.; Stafford, J.; Paddle, G.M. Vinyl chloride: An assessment of the risk of occupational exposure. Food Chem. Toxicol. 1987, 25, 187–202. [Google Scholar] [CrossRef]
- Reitz, R.H.; Gargas, M.L.; Andersen, M.E.; Provan, W.M.; Green, T.L. Predicting cancer risk from vinyl chloride exposure with a physiologically based pharmacokinetic model. Toxicol. Appl. Pharmacol. 1996, 137, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.; Kumar, V. The Role of “Physiologically Based Pharmacokinetic Model (PBPK)” New Approach Methodology (NAM) in Pharmaceuticals and Environmental Chemical Risk Assessment. Int. J. Environ. Res. Public Health 2023, 20, 3473. [Google Scholar] [CrossRef] [PubMed]
- Boerleider, R.Z.; Olie, J.D.; van Eijkeren, J.C.; Bos, P.M.; Hof, B.G.; de Vries, I.; Bessems, J.G.; Meulenbelt, J.; Hunault, C.C. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure. Toxicol. Lett. 2015, 232, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jaberi-Douraki, M.; He, C.; Jin, S.; Yang, R.S.H.; Fisher, J.W.; Riviere, J.E. Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples. Toxicol. Sci. 2017, 158, 23–35. [Google Scholar] [CrossRef]
- (ATSDR) Agency for Toxic Substances and Disease Registry. Substance Priority List 2022. Available online: https://www.atsdr.cdc.gov/programs/substance-priority-list.html (accessed on 3 December 2024).
- Burk, T.; Zarus, G. Community Exposures to Chemicals Through Vapor Intrusion: A Review of Past Agency for Toxic Substances and Disease Registry Public Health Evaluations. J. Environ. Health 2013, 75, 36–41. [Google Scholar]
- Clewell, H.J.; Gentry, P.R.; Covington, T.R.; Sarangapani, R.; Teeguarden, J.G. Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Toxicol. Sci. 2004, 79, 381–393. [Google Scholar] [CrossRef]
- Fisher, J.W.; Mahle, D.; Abbas, R. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol. Appl. Pharmacol. 1998, 152, 339–359. [Google Scholar] [CrossRef]
- Marino, D.J. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications. Toxicol. Mech. Methods 2005, 15, 137–154. [Google Scholar] [CrossRef]
Chemical Category | Examples | Frequency | % |
---|---|---|---|
* Volatile organic compounds (VOCs) | Propane, benzene, ethylene, vinyl chloride | 3074 | 19.9 |
Other inorganic substances | Mercury, lithium, sulfur dioxide, hydrogen peroxide | 1905 | 12.3 |
Other | Methamphetamine, diesel fuel, asbestos, carbon dioxide | 1836 | 11.9 |
Acids | Hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid | 1765 | 11.4 |
Hydrocarbons | Butane, oil, natural gas | 1373 | 8.9 |
Bases | Amines, calcium oxide, alkaline hydroxide | 1241 | 8 |
Carbon monoxide | Carbon monoxide | 720 | 4.7 |
Ammonia | Ammonia, ammonium peroxide | 670 | 4.3 |
Agriculture chemicals, pesticides | Ethylene oxide, methylene chloride, nitrobenzene, urea | 659 | 4.3 |
Oxy-organics | Ethylene glycol, propylene glycol, phenol, citric acid | 501 | 3.2 |
Mixture across the chemical category | Mixtures | 482 | 3.1 |
Chlorine | Chlorine, bleach, sodium hypochlorite | 456 | 2.9 |
Polymers | Teflon, polyethylene, fiberglass resin, polypropylene | 202 | 1.3 |
Paints and dyes | Paint, ink | 175 | 1.1 |
Hetero-organics | Aniline, acrylamide | 149 | 1 |
Unable to determine | N/A | 95 | 0.6 |
PCBs | Polychlorinated Biphenyls (PCBs), congeners | 62 | 0.4 |
Formulations | Peroxyacetic acid, concrete admixtures, bioxide | 59 | 0.4 |
Missing substance category | N/A | 45 | 0.3 |
Year | Frequency | % | |||
---|---|---|---|---|---|
2010 | 2978 | 22 | |||
2011 | 3128 | 23.1 | |||
2012 | 3139 | 23.2 | |||
2013 | 3131 | 23.1 | |||
2014 | 1153 | 8.5 | |||
Number of chemicals involved | Frequency | % | |||
One | 12,679 | 82 | |||
Two | 870 | 5.6 | |||
>2 | 1920 | 12.4 | |||
Release Types | Event Type | # of Events | # of Events w/Injuries | # of Injuries | # of Fatalities |
Spill (liquid or solid) | F | 3283 | 357 | 791 | 2 |
T | 4104 | 161 | 257 | 23 | |
Volatilization/aerosolized (vapor) | F | 4136 | 837 | 2671 | 69 |
T | 420 | 46 | 95 | 17 | |
Fire | F | 120 | 40 | 103 | 1 |
T | 14 | 5 | 10 | 1 | |
Explosion | F | 101 | 63 | 126 | 6 |
T | 7 | 5 | 9 | 0 | |
Radiation | F | 3 | 0 | 0 | |
Multiple released | F | 1034 | 309 | 940 | 49 |
T | 255 | 43 | 109 | 20 | |
Not applicable, threatened release, release type unknown | T | 18 | 3 | 4 | 2 |
F | 34 | 5 | 19 | 0 |
Vinyl Chloride (ppm) | Arterial Blood Concentration (mg/L) | Vinyl Chloride (ppm) | Arterial Blood Concentration (mg/L) | |
---|---|---|---|---|
Date | Outside the Evacuation Area | Inside the Evacuation Area | ||
December 1 | 0.19 | 0.0005 | 5.7 | 0.014 |
December 2 | 3.04 | 0.008 | 13.11 | 0.033 |
December 3 | 57 | 0.142 | 39.71 | 0.1 |
December 4 | 12.92 | 0.032 | 1649.2 | 4.7 |
December 5 | 1.33 | 0.003 | 0.19 | 0.0005 |
December 6 | 0.19 | 0.0005 | 1.4 | 0.003 |
AEGL1 | AEGL2 | AEGL3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Air Levels (ppm) | CA (mg/L) | CV (mg/L) | CX (mg/L) | Air Levels (ppm) | CA (mg/L) | CV (mg/L) | CX (mg/L) | Air Levels (ppm) | CA (mg/L) | CV (mg/L) | CX (mg/L) |
10 min | 450 | 0.99 | 0.57 | 0.86 | 2800 | 6.81 | 4.93 | 5.87 | 12,000 | 29.68 | 22.28 | 25.59 |
30 min | 310 | 0.72 | 0.47 | 0.62 | 1600 | 4.11 | 3.32 | 3.55 | 6800 | 18.04 | 15.37 | 15.55 |
60 min | 250 | 0.6 | 0.42 | 0.52 | 1200 | 3.18 | 2.70 | 2.74 | 4800 | 13.23 | 11.98 | 11.41 |
4 h | 140 | 0.11 | 0.25 | 0.09 | 820 | 0.82 | 1.85 | 0.71 | 3400 | 3.97 | 8.95 | 3.42 |
8 h | 70 | 0.17 | 0.13 | 0.15 | 820 | 2.19 | 1.89 | 1.89 | 3400 | 9.65 | 9.11 | 8.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boone, S.; Sun, W.; Gonnabathula, P.; Wu, J.; Orr, M.F.; Mumtaz, M.M.; Ruiz, P. Assessing the Application of Physiologically Based Pharmacokinetic Models in Acute Chemical Incidents. J. Xenobiot. 2025, 15, 42. https://doi.org/10.3390/jox15020042
Boone S, Sun W, Gonnabathula P, Wu J, Orr MF, Mumtaz MM, Ruiz P. Assessing the Application of Physiologically Based Pharmacokinetic Models in Acute Chemical Incidents. Journal of Xenobiotics. 2025; 15(2):42. https://doi.org/10.3390/jox15020042
Chicago/Turabian StyleBoone, Sydney, Wenjie Sun, Pavani Gonnabathula, Jennifer Wu, Maureen F. Orr, M. Moiz Mumtaz, and Patricia Ruiz. 2025. "Assessing the Application of Physiologically Based Pharmacokinetic Models in Acute Chemical Incidents" Journal of Xenobiotics 15, no. 2: 42. https://doi.org/10.3390/jox15020042
APA StyleBoone, S., Sun, W., Gonnabathula, P., Wu, J., Orr, M. F., Mumtaz, M. M., & Ruiz, P. (2025). Assessing the Application of Physiologically Based Pharmacokinetic Models in Acute Chemical Incidents. Journal of Xenobiotics, 15(2), 42. https://doi.org/10.3390/jox15020042