Enhancing Differential Diagnosis Related to Oxidative Stress, Nitrous Oxide, and Nutrition by Rapid Plasma Homocysteine Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Sample Collection and Handling
2.3. Vitamin B12 Measurement
2.4. Homocysteine Measurement Techniques
2.4.1. Mass Spectrometry
2.4.2. Immunoassay Technique
2.5. Data Analysis
3. Results
3.1. Characterization of the Population
3.2. Isolated Serum Vitamin B12 Levels Is Not a Good Marker for Nitrous Oxide Abuse
3.3. Significant Increase in Plasma Homocysteine Levels in Cases of Nitrous Oxide Abuse
3.4. Comparison between Mass Spectrometry and Immunoassay Could Diverge in High Homocysteine Values
3.5. Good Correlation in Low and Moderate Values until 30 µmol/L for Screening and Differential Diagnosis
3.6. Performances of Homocysteine Immunoassay Method
Dynamic Range
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgess, K.; Bennett, C.; Mosnier, H.; Kwatra, N.; Bethel, F.; Jadavji, N.M. The Antioxidant Role of One-Carbon Metabolism on Stroke. Antioxidants 2020, 9, 1141. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Brożek, J.; Szczeklik, A. Homocysteine and Thrombosis: From Basic Science to Clinical Evidence. Thromb. Haemost. 2005, 94, 907–915. [Google Scholar] [CrossRef]
- McCaddon, A.; Miller, J.W. Homocysteine—A Retrospective and Prospective Appraisal. Front. Nutr. 2023, 10, 1179807. [Google Scholar] [CrossRef] [PubMed]
- González-Lamuño, D.; Arrieta-Blanco, F.J.; Fuentes, E.D.; Forga-Visa, M.T.; Morales-Conejo, M.; Peña-Quintana, L.; Vitoria-Miñana, I. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients 2024, 16, 135. [Google Scholar] [CrossRef]
- Grzych, G. Biological markers and metabolic impact of chronic nitrous oxide consumption. Ann. Biol. Clin. 2022, 80, 209–212. [Google Scholar] [CrossRef]
- Grzych, G.; Deheul, S.; Gernez, E.; Davion, J.-B.; Dobbelaere, D.; Carton, L.; Kim, I.; Guichard, J.C.; Girot, M.; Humbert, L.; et al. Comparison of Biomarker for Diagnosis of Nitrous Oxide Abuse: Challenge of Cobalamin Metabolic Parameters, a Retrospective Study. J. Neurol. 2023, 270, 2237–2245. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.; Noyce, A.J.; Gernez, E.; El Khoury, J.M.; Garcon, G.; Cavalier, E.; Antherieu, S.; Grzych, G. Nitrous oxide abuse direct measurement for diagnosis and follow-up: Update on kinetics and impact on metabolic pathways. Clin. Chem. Lab. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Deacon, R.; Perry, J.; Lumb, M.; Chanarin, I.; Minty, B.; Halsey, M.J.; Nunn, J.F. Selective inactivation of vitamin b12 in rats by nitrous oxide. Lancet 1978, 312, 1023–1024. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Osborne, M.L.; Kolhouse, J.F.; Binder, M.J.; Podell, E.R.; Utley, C.S.; Abrams, R.S.; Allen, R.H. Nitrous Oxide Has Multiple Deleterious Effects on Cobalamin Metabolism and Causes Decreases in Activities of Both Mammalian Cobalamin-Dependent Enzymes in Rats. J. Clin. Investig. 1981, 67, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Fortanier, E.; Berling, E.; Zanin, A.; Guillou, A.L.; Micaleff, J.; Nicolas, G.; Lozeron, P.; Attarian, S. How to Distinguish Guillain-Barré Syndrome from Nitrous Oxide-Induced Neuropathy: A 2-Year, Multicentric, Retrospective Study. Eur. J. Neurol. 2023, 30, 3296–3306. [Google Scholar] [CrossRef]
- Paris, A.; Lake, L.; Joseph, A.; Workman, A.; Walton, J.; Hayton, T.; Evangelou, N.; Lilleker, J.B.; Ayling, R.M.; Nicholl, D.; et al. Nitrous Oxide-Induced Subacute Combined Degeneration of the Cord: Diagnosis and Treatment. Pract. Neurol. 2023, 23, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Patyjewicz, M.; Mair, D.; Zaloum, S.A.; Onen, B.; Walton, J.; Dobson, R.; Joerres, C.; Shah, A.M.; MacCallum, P.; Massey, T.H.; et al. Recreational Nitrous Oxide and Thrombotic Events: A Case Series. BMJ Neurol. Open 2024, 6, e000619. [Google Scholar] [CrossRef] [PubMed]
- Božič-Mijovski, M. Hyperhomocysteinemia Thrombophilia. Clin. Chem. Lab. Med. (CCLM) 2010, 48, S89–S95. [Google Scholar] [CrossRef] [PubMed]
- Korczowska-Łącka, I.; Hurła, M.; Banaszek, N.; Kobylarek, D.; Szymanowicz, O.; Kozubski, W.; Dorszewska, J. Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases. Mol. Neurobiol. 2023, 60, 4132–4149. [Google Scholar] [CrossRef]
- Liu, L.; Su, X.; Zhao, L.; Li, J.; Xu, W.; Yang, L.; Yang, Y.; Gao, Y.; Chen, K.; Gao, Y.; et al. Association of Homocysteine and Risks of Long-Term Cardiovascular Events and All-Cause Death among Older Patients with Obstructive Sleep Apnea: A Prospective Study. J. Nutr. Health Aging 2022, 26, 879–888. [Google Scholar] [CrossRef]
- Antonelli, G.; Marinova, M.; Artusi, C.; Plebani, M. Mass Spectrometry or Immunoassay: Est Modus in Rebus. Clin. Chem. Lab. Med. (CCLM) 2017, 55, 1243–1245. [Google Scholar] [CrossRef]
- Gernez, E.; Deheul, S.; Tard, C.; Joncquel, M.; Douillard, C.; Grzych, G. Plasma Methionine and Clinical Severity in Nitrous Oxide Consumption. Toxics 2023, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Zaloum, S.A.; Paris, A.; Mair, D.; Gutteridge, C.; Ayling, R.M.; Onen, B.L.; Walton, J.; Workman, A.; Villanueva, N.; Noyce, A.J. Evaluation of an Ambulatory Care Pathway for Patients with Nitrous Oxide-Induced Myeloneuropathy. BMJ Neurol. Open 2024, 6, e000737. [Google Scholar] [CrossRef]
- Frontiera, M.S.; Stabler, S.P.; Kolhouse, J.F.; Allen, R.H. Regulation of Methionine Metabolism: Effects of Nitrous Oxide and Excess Dietary Methionine. J. Nutr. Biochem. 1994, 5, 28–38. [Google Scholar] [CrossRef]
- Gernez, E.; Lee, G.R.; Niguet, J.-P.; Zerimech, F.; Bennis, A.; Grzych, G. Nitrous Oxide Abuse: Clinical Outcomes, Pharmacology, Pharmacokinetics, Toxicity and Impact on Metabolism. Toxics 2023, 11, 962. [Google Scholar] [CrossRef]
- Ménétrier, T.; Denimal, D. Vitamin B12 Status in Recreational Users of Nitrous Oxide: A Systematic Review Focusing on the Prevalence of Laboratory Abnormalities. Antioxidants 2023, 12, 1191. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Sharma, P.K.; Chatterjee, B.; Bissa, B.; Nattarayan, V.; Ramasamy, S.; Bhat, A.; Lal, M.; Samaddar, S.; Banerjee, S.; et al. Defective quality control autophagy in Hyperhomocysteinemia promotes ER stress and consequent neuronal apoptosis through proteotoxicity. Cell Commun. Signal. CCS 2023, 21, 258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lv, Y.; Luo, X.; Weng, X.; Qi, J.; Bai, X.; Zhao, C.; Zeng, M.; Bao, X.; Dai, X.; et al. Homocysteine promotes atherosclerosis through macrophage pyroptosis via endoplasmic reticulum stress and calcium disorder. Mol. Med. 2023, 29, 73. [Google Scholar] [CrossRef] [PubMed]
- Lentz, S.R. Mechanisms of homocysteine-induced atherothrombosis. J. Thromb. Haemost. JTH 2005, 3, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- Aydın, E.F.; Özcan, H.; Yılmaz, S.; Aşkın, S.; Koca Laçin, T.; Topu, E.N. Homocysteine, hopelessness, rumination, affective temperaments, and clinical course in patients with bipolar disorder-1. Nord. J. Psychiatry 2024, 78, 465–476. [Google Scholar] [CrossRef]
- Guéant, J.L.; Guéant-Rodriguez, R.M.; Kosgei, V.J.; Coelho, D. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B12 metabolism. Crit. Rev. Biochem. Mol. Biol. 2022, 57, 133–155. [Google Scholar] [CrossRef]
- Akchiche, N.; Bossenmeyer-Pourié, C.; Kerek, R.; Martin, N.; Pourié, G.; Koziel, V.; Helle, D.; Alberto, J.M.; Ortiou, S.; Camadro, J.M.; et al. Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2012, 26, 3980–3992. [Google Scholar] [CrossRef]
- Liang, X.; Huang, D.; Bi, Y.; He, Y.; Mao, T.; Liu, Q.; Hu, G.; Tong, J.; Chen, L.; Wang, Y.; et al. The impact of folic acid/VB12 deficiency on essential hypertension in children and adolescents: From a nested case-control and a cohort study. J. Hum. Hypertens. 2024, 1–7. [Google Scholar] [CrossRef]
- Shukla, S.; Shrivastava, D. Unraveling the Link Between Serum Homocysteine Levels and Nutrient Deficiency in Subfertility: A Comprehensive Review. Cureus 2023, 15, e49296. [Google Scholar] [CrossRef]
- Shiri, P.; Rezaeian, S.; Abdi, A.; Jalilian, M.; Khatony, A. Risk factors for thrombosis in dialysis patients: A comprehensive systematic review and meta-analysis. J. Vasc. Nurs. Off. Publ. Soc. Peripher. Vasc. Nurs. 2024, 42, 165–176. [Google Scholar] [CrossRef]
- Kim, M.; Shin, S.; Yoo, E.; Kang, J.H.; Sung, E.; Kim, C.H.; Shin, H.; Lee, M.Y. Serum Homocysteine Levels and All-Cause and Cause-Specific Mortality in Korean Adult Men: A Cohort Study. Nutrients 2024, 16, 2759. [Google Scholar] [CrossRef] [PubMed]
- Nexo, E.; Parkner, T. Vitamin B12-Related Biomarkers. Food Nutr. Bull. 2024, 45 (Suppl. 1), S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Wirthensohn, M.; Wehrli, S.; Ljungblad, U.W.; Huemer, M. Biochemical, Nutritional, and Clinical Parameters of Vitamin B12 Deficiency in Infants: A Systematic Review and Analysis of 292 Cases Published between 1962 and 2022. Nutrients 2023, 15, 4960. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 deficiency. Nature reviews. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Stabler, S.P. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med. 2013, 368, 149–160. [Google Scholar] [CrossRef]
- Janko, R.K.; Haussmann, I.; Patel, A. Vitamin B12 Status in Vegan and Vegetarian Seventh-Day Adventists: A Systematic Review and Meta-Analysis of Serum Levels and Dietary Intake. Am. J. Health Promot. AJHP 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Fernandes, S.; Oliveira, L.; Pereira, A.; Costa, M.D.C.; Raposo, A.; Saraiva, A.; Magalhães, B. Exploring Vitamin B12 Supplementation in the Vegan Population: A Scoping Review of the Evidence. Nutrients 2024, 16, 1442. [Google Scholar] [CrossRef]
All Patients | No-N2O Consumer | N2O Consumer | |
---|---|---|---|
n | 235 | 216 | 19 |
Age | 45.6 ± 20 | 47.45 ± 19.73 | 24.58 ± 6.91 |
Sex (women/men) | 108/127 | 101/115 | 7/12 |
Homocysteine levels | 47.88 ± 43.96 µmol/L | 43.85 ± 41.35 µmol/L | 93.68 ± 47.86 µmol/L |
Homocysteine min/max | 5/337 µmol/L | 24/167 µmol/L | 5/337 µmol/L |
Vitamin B12 Levels | 477 ± 712 pg/mL | 515 ± 780 pg/mL | 312 ± 213 pg/mL |
Vitamin B12 min/max | 109/5640 pg/mL | 136/5640 pg/mL | 109/768 pg/mL |
Intra-Assay | Inter-Assay | ||||
---|---|---|---|---|---|
Levels | Low Sample | Medium Sample | High Sample | Low QC | Medium QC |
n | 10 | 10 | 10 | 14 | 14 |
Mean (pg/L) | 10.6 | 31.2 | 60.4 | 4.2 | 14.2 |
SD | 0.23 | 0.44 | 0.44 | 0.11 | 0.53 |
%CV | 2.21% | 1.39% | 0.73% | 2.75% | 3.73% |
Plasmas Pooled (n = 4) | HCY (µmol/L) Expected | HCY (µmol/L) Obtained | Recovery |
---|---|---|---|
Pur | 120 | 90.0 | 75% |
1:2 | 60 | 56.0 | 93% |
1:3 | 40 | 39.6 | 99% |
1:4 | 30 | 30.0 | 100% |
1:5 | 24 | 24.6 | 103% |
1:8 | 15 | 13.3 | 89% |
1:16 | 7.5 | 6.6 | 88% |
1:32 | 3.75 | 4.4 | 117% |
1:64 | 1.88 | 2.9 | 156% |
1:100 | 1.2 | 2.5 | 207% |
1:200 | 0.6 | 1.6 | 263% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzych, G.; Zerimech, F.; Touze, B.; Descamps, C.; Bout, M.-A.; Joncquel, M.; Douillard, C.; Kim, I.; Tard, C.; Brousseau, T. Enhancing Differential Diagnosis Related to Oxidative Stress, Nitrous Oxide, and Nutrition by Rapid Plasma Homocysteine Measurement. J. Xenobiot. 2024, 14, 1332-1342. https://doi.org/10.3390/jox14040075
Grzych G, Zerimech F, Touze B, Descamps C, Bout M-A, Joncquel M, Douillard C, Kim I, Tard C, Brousseau T. Enhancing Differential Diagnosis Related to Oxidative Stress, Nitrous Oxide, and Nutrition by Rapid Plasma Homocysteine Measurement. Journal of Xenobiotics. 2024; 14(4):1332-1342. https://doi.org/10.3390/jox14040075
Chicago/Turabian StyleGrzych, Guillaume, Farid Zerimech, Benjamin Touze, Clarence Descamps, Marie-Adélaïde Bout, Marie Joncquel, Claire Douillard, Isabelle Kim, Céline Tard, and Thierry Brousseau. 2024. "Enhancing Differential Diagnosis Related to Oxidative Stress, Nitrous Oxide, and Nutrition by Rapid Plasma Homocysteine Measurement" Journal of Xenobiotics 14, no. 4: 1332-1342. https://doi.org/10.3390/jox14040075
APA StyleGrzych, G., Zerimech, F., Touze, B., Descamps, C., Bout, M. -A., Joncquel, M., Douillard, C., Kim, I., Tard, C., & Brousseau, T. (2024). Enhancing Differential Diagnosis Related to Oxidative Stress, Nitrous Oxide, and Nutrition by Rapid Plasma Homocysteine Measurement. Journal of Xenobiotics, 14(4), 1332-1342. https://doi.org/10.3390/jox14040075