Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro LDH Activity
2.2. Exposure of Hydra to Polystyrene Nanoparticles
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, J.C.; Park, B.J.; Palace, V.P. Microplastics in aquatic environments: Implications for Canadian ecosystems. Environ. Pollut. 2016, 218, 269–280. [Google Scholar]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [PubMed] [Green Version]
- Scott Lambert, S.; Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 2016, 145, 265–268. [Google Scholar]
- Gagné, F.; Gagnon, C.; Blaise, C. Aquatic Nanotoxicology: A review. Curr. Top. Toxicol. 2007, 4, 51–64. [Google Scholar]
- Wegner, A.; Besseling, E.; Foekema, E.M.; Kamermans, P.; Koelmans, A.A. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ. Toxicol. Chem. 2012, 31, 2490–2497. [Google Scholar] [PubMed]
- Gagné, F.; Auclair, J.; Quinn, B. Detection of polystryrene nanoplastics in biological samples based on the solvatochromic properties of Nile Red: Application in Hydra attenuata exposed to nanoplastics. Environ. Sci. Pollut. Res. 2019, 26, 33524–33531. [Google Scholar]
- Gagné, F.; Auclair, J.; André, C. Polystyrene nanoparticles induce anisotropic effects in subcellular fraction of the digestive system of freshwater mussels. Curr. Top. Toxicol. 2019, 15, 43–48. [Google Scholar]
- Mao, B.H.; Tsai, J.C.; Chen, C.W.; Yan, S.J.; Wang, Y.J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016, 10, 1021–1040. [Google Scholar]
- Zhang, X.; Pandiakumar, A.K.; Hamers, R.J.; Murphy, C.J. Quantification of lipid corona formation on colloidal nanoparticles from lipid vesicles. Anal. Chem. 2018, 90, 14387–14394. [Google Scholar]
- Marsh, R.E.; Tuszynski, J.A. Fractal Michaelis-Menten kinetics under steady state conditions: Application to Mibefradil. Pharm. Res. 2006, 23, 2760–2767. [Google Scholar]
- Schnell, S.; Turner, T.E. Reaction kinetics in intracellular environments with macromolecular crowding simulations and rate laws. Prog. Biophys. Mol. Biol. 2004, 85, 235–260. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.M. Fractal pharmacokinetics. Comput. Math. Methods Med. 2010, 11, 161–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopelman, R. Fractal reaction kinetics. Science 1988, 241, 4873–4879. [Google Scholar] [CrossRef] [PubMed]
- Aranda, J.S.; Salgado, E.; Munoz-Diosdao, A. Multifractality in intracellular enzymatic reactions. J. Theor. Biol. 2006, 240, 209–217. [Google Scholar] [CrossRef]
- Arnold, H.; Henning, R.; Pette, D. Quantitative comparison of the binding of various glycolytic enzymes to F-actin and the interaction of aldolase with G-actin. Eur. J. Biochem. 1971, 22, 121–126. [Google Scholar] [CrossRef]
- Haidekker, M.A.; Brady, T.P.; Lichlyter, D.; Theodorakis, E.A. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probe. Bioorg. Chem. 2005, 33, 415–425. [Google Scholar] [CrossRef]
- Lal, A.A.; Korn, E.D.; Brenner, S.L. Rate constants for actin polymerization in ATP determined using cross-linked actin trimers as nuclei. J. Biol. Chem. 1984, 259, 8794–8800. [Google Scholar]
- Auclair, J.; Quinn, B.; Peyrot, C.; Wilkinson, K.J.; Gagné, F. Detection, biophysical effects, and toxicity of polystyrene nanoparticles to the cnidarian Hydra attenuata. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef]
- Blaise, C.; Kusui, T. Acute toxicity assessment of industrial effluents with a microplate-based Hydra attenuata assay. Environ. Toxicol. Water Qual. 1997, 12, 53–60. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Schepers, H.E.; van Beek, J.H.G.M.; Bassingthwaighte, J.B. Four methods to estimate the fractal dimension from self-affine signals. IEEE Eng. Med. Biol. 2002, 11, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Mo, J.; Huang, A.; Zhang, M.; Ma, L. Effects of interaction with gene carrier polyethyleneimines on conformation and enzymatic activity of pig heart lactate dehydrogenase. Spectrochim Acta A Mol. Biomol. Spect. 2018, 204, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhadin, N.; Callender, R. Dynamics of protein ligand binding on multiple time scales: NADH binding to lactate dehydrogenase. Biochemistry 2001, 40, 3767–3773. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Figueiredo, N.; Carvalho, F.; Carvalho, C.; Guilhermino, L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Banaee, M.; Soltanian, S.; Sureda, A.; Gholamhosseini, A.; Haghi, B.N.; Akhlaghi, M.; Derikvandy, A. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 2019, 236, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Zhang, N.; Jin, S.R.; Chen, Z.Z.; Gao, J.Z.; Liu, Y.; Liu, H.P.; Xu, Z. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid. Aquat. Toxicol. 2018, 195, 67–76. [Google Scholar] [CrossRef]
Conditions | Hurst Exponent | Fractal Dimension D |
---|---|---|
In vitro LDH | ||
Without F-actin | 0.91 ± 0.003 | 1.09 ± 0.01 |
With F-actin | 1.01 ± 0.01 * | 1.00 ± 0.01 * |
NP50 nm | 1.15 ± 0.01 * | 0.85 ± 0.02 * |
NP100 nm | 1.09 ± 0.02 * | 0.91 ± 0.02 * |
Hydra | ||
Controls | 0.74 ± 0.03 | 1.25 ± 0.05 |
1.25 mg/L NP | 0.75 ± 0.03 | 1.25 ± 0.04 |
5 mg/L NP | 0.82 ± 0.04 * | 1.18 ± 0.06 * |
10 mg/L NP | 0.87 ± 0.04 * | 1.13 ± 0.05 * |
20 mg/L NP | 0.93 ± 0.04 * | 1.11 ± 0.05 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auclair, J.; Gagné, F. Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata. J. Xenobiot. 2020, 10, 2-10. https://doi.org/10.3390/jox10010002
Auclair J, Gagné F. Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata. Journal of Xenobiotics. 2020; 10(1):2-10. https://doi.org/10.3390/jox10010002
Chicago/Turabian StyleAuclair, Joelle, and François Gagné. 2020. "Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata" Journal of Xenobiotics 10, no. 1: 2-10. https://doi.org/10.3390/jox10010002
APA StyleAuclair, J., & Gagné, F. (2020). Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata. Journal of Xenobiotics, 10(1), 2-10. https://doi.org/10.3390/jox10010002