Next Article in Journal
Iron load
Previous Article in Journal
The Molecular and Cellular Basis of Iron Toxicity in Iron Overload (IO) Disorders. Diagnostic and Therapeutic Approaches
 
 
Thalassemia Reports is published by MDPI from Volume 12 Issue 1 (2022). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with PAGEPress.
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Genetic/Metabolic Effect of Iron Metabolism and Rare Anemias

by
Clara Camaschella
Vita-Salute University and San Raffaele Scientific Institute, 20132 Milan, Italy
Thalass. Rep. 2013, 3(s1), e4; https://doi.org/10.4081/thal.2013.s1.e4
Submission received: 18 February 2013 / Revised: 19 March 2013 / Accepted: 23 March 2013 / Published: 26 March 2013

Abstract

Advances in iron metabolism have allowed a novel classification of iron disorders and to identify previously unknown diseases. These disorders include genetic iron overload (hemochromatosis) and inherited iron-related anemias, in some cases accompanied by iron overload. Rare inherited anemias may affect the hepcidin pathway, iron absorption, transport, utilization and recycling. Among the genetic iron-related anemias the most common form is likely the iron-refractory iron-deficiency anemia (IRIDA), due to mutations of the hepcidin inhibitor TMPRSS6 encoding the serine protease matriptase-2. IRIDA is characterized by hepcidin up-regulation, decrease iron absorption and macrophage recycling and by microcytic- hypochromic anemia, unresponsive to oral iron. High serum hepcidin levels may suggest the diagnosis, which requires demonstrating the causal TMPRSS6 mutations by gene sequencing. Other rare microcytic hypochromic anemias associated with defects of iron transport-uptake are the rare hypotransferrinemia, and DMT1 and STEAP3 mutations. The degree of anemia is variable and accompanied by secondary iron overload even in the absence of blood transfusions. This is due to the iron-deficient or expanded erythropoiesis that inhibits hepcidin transcription, increases iron absorption, through the erythroid regulator, as in untransfused beta-thalassemia. Sideroblastic anemias are due to decreased mitochondrial iron utilization for heme or sulfur cluster synthesis. Their diagnosis requires demonstrating ringed sideroblasts by Perl’s staining of the bone marrow smears. The commonest X-linked form is due to deltaamino- levulinic-synthase-2-acid (ALAS2) mutations. The recessive, more severe form, affects SLC25A38, which encodes a potential mitochondrial importer of glycine, an amino acid essential for ALA synthesis and thus results in heme deficiency. Two disorders affect iron/sulfur cluster biogenesis: deficiency of the ATP-binding cassette B7 (ABCB7) causes X-linked sideroblastic anemia/ataxia, likely impairing the activity of ferrochelatase, which is an iron/sulfur-cluster- dependent enzyme. A recessive form affects GLRX5, a protein involved in the iron/sulfur cluster biogenesis. Aceruloplasminemia is a rare recessive syndrome characterized by anemia, diabetes, retinal degeneration, ataxia and other neurological symptoms, low serum iron but high serum ferritin, due to decreased iron recycling from macrophages and other cells. The study of these rare conditions has greatly contributed to our understanding of iron transport, utilization and recycling. Their distinction is clinically essential in order to plan the best treatment.

Share and Cite

MDPI and ACS Style

Camaschella, C. Genetic/Metabolic Effect of Iron Metabolism and Rare Anemias. Thalass. Rep. 2013, 3, e4. https://doi.org/10.4081/thal.2013.s1.e4

AMA Style

Camaschella C. Genetic/Metabolic Effect of Iron Metabolism and Rare Anemias. Thalassemia Reports. 2013; 3(s1):e4. https://doi.org/10.4081/thal.2013.s1.e4

Chicago/Turabian Style

Camaschella, Clara. 2013. "Genetic/Metabolic Effect of Iron Metabolism and Rare Anemias" Thalassemia Reports 3, no. s1: e4. https://doi.org/10.4081/thal.2013.s1.e4

Article Metrics

Back to TopTop