The Effect of Resveratrol on Gamma Globin Gene Expression in Patients with Beta Thalassemia: The Role of Adaptation to Cellular Stress
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Selection
2.2. Cell Culture
2.3. Erythroid Lineage Maturation and Apoptosis
2.4. Quantitative RT-PCR
2.5. Statistical Analysis
3. Results
3.1. Classifying the Patients as a Responder and Non-Responder to Resveratrol
3.2. Gene Expression Analysis
3.3. Flow Cytometry Analysis of Erythroid Maturation and Apoptosis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Gamez, A.; Sarkissian, C.N.; Straub, M.; Patch, M.G.; Han, G.W.; Striepeke, S.; Fitzpatrick, P.; Scriver, C.R.; Stevens, R.C. Structure-based chemical modification strategy for enzyme replacement treatment of phenylketonuria. Mol. Genet. Metab. 2005, 86, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Mumtaz, S.; Shakir, H.A.; Khan, M.; Tahir, H.M.; Mumtaz, S.; Mughal, T.A.; Hassan, A.; Kazmi, S.A.R.; Sadia; et al. Current status of beta-thalassemia and its treatment strategies. Mol. Genet. Genom. Med. 2021, 9, e1788. [Google Scholar]
- Khandros, E.; Kwiatkowski, J.L. Beta Thalassemia: Monitoring and New Treatment Approaches. Hematol. Oncol. Clin. N. Am. 2019, 33, 339–353. [Google Scholar] [CrossRef]
- Motta, I.; Bou-Fakhredin, R.; Taher, A.T.; Cappellini, M.D. Beta thalassemia: New therapeutic options beyond transfusion and iron chelation. Drugs 2020, 80, 1053–1063. [Google Scholar]
- Musallam, K.M.; Taher, A.T.; Cappellini, M.D.; Sankaran, V.G. Clinical experience with fetal hemoglobin induction therapy in patients with beta-thalassemia. Blood 2013, 121, 2199–2212; quiz 2372. [Google Scholar] [CrossRef]
- Porter, J.B.; Cappellini, M.D.; Kattamis, A.; Viprakasit, V.; Musallam, K.M.; Zhu, Z.; Taher, A.T. Iron overload across the spectrum of non-transfusion-dependent thalassaemias: Role of erythropoiesis, splenectomy and transfusions. Br. J. Haematol. 2017, 176, 288–299. [Google Scholar] [CrossRef]
- Chaichompoo, P.; Qillah, A.; Sirankapracha, P.; Kaewchuchuen, J.; Rimthong, P.; Paiboonsukwong, K.; Fucharoen, S.; Svasti, S.; Worawichawong, S. Abnormal red blood cell morphological changes in thalassaemia associated with iron overload and oxidative stress. J. Clin. Pathol. 2019, 72, 520–524. [Google Scholar] [CrossRef]
- Taher, A.T.; Saliba, A.N. Iron overload in thalassemia: Different organs at different rates. Hematol. Am. Soc. Hematol. Educ. Program 2017, 2017, 265–271. [Google Scholar] [CrossRef]
- Doerfler, P.A.; Feng, R.; Li, Y.; Palmer, L.E.; Porter, S.N.; Bell, H.W.; Crossley, M.; Pruett-Miller, S.M.; Cheng, Y.; Weiss, M.J. Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. Nat. Genet. 2021, 53, 1177–1186. [Google Scholar]
- Platt, O.S.; Orkin, S.H.; Dover, G.; Beardsley, G.P.; Miller, B.; Nathan, D.G. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Investig. 1984, 74, 652–656. [Google Scholar] [CrossRef]
- el-Hazmi, M.A.; al-Momen, A.; Kandaswamy, S.; Huraib, S.; Harakati, M.; al-Mohareb, F.; Warsy, A.S. On the use of hydroxyurea/erythropoietin combination therapy for sickle cell disease. Acta Haematol. 1995, 94, 128–134. [Google Scholar] [PubMed]
- Lockamy, V.L.; Huang, J.; Shields, H.; Ballas, S.K.; King, S.B.; Kim-Shapiro, D.B. Urease enhances the formation of iron nitrosyl hemoglobin in the presence of hydroxyurea. Biochim. Biophys. Acta 2003, 1622, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Youssry, I.; Abdel-Salam, A.; Ismail, R.; Bou-Fakhredin, R.; Mohamed Samy, R.; Ezz El-Deen, F.; Taher, A.T. Enhancing Effect of Hydroxyurea on Hb F in Sickle Cell Disease: Ten-Year Egyptian Experience. Hemoglobin 2017, 41, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Haghpanah, S.; Zarei, T.; Eshghi, P.; Zekavat, O.; Bordbar, M.; Hoormand, M.; Karimi, M. Efficacy and safety of resveratrol, an oral hemoglobin F-augmenting agent, in patients with beta-thalassemia intermedia. Ann. Hematol. 2018, 97, 1919–1924. [Google Scholar] [CrossRef] [PubMed]
- Kosaryan, M.; Zafari, M.; Alipur, A.; Hedayatizadeh-Omran, A. The effect and side effect of hydroxyurea therapy on patients with beta-thalassemia: A systematic review to December 2012. Hemoglobin 2014, 38, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Kosaryan, M.; Vahidshahi, K.; Karami, H.; Ehteshami, S. Effect of hydroxyurea on thalassemia major and thalassemia intermedia in Iranian patients. Pak. J. Med. Sci. 2009, 25, 74–78. [Google Scholar]
- Menzel, S.; Thein, S.L. Genetic Modifiers of Fetal Haemoglobin in Sickle Cell Disease. Mol. Diagn. Ther. 2019, 23, 235–244. [Google Scholar] [CrossRef]
- Hanif, T.B.; Ahmed, S.; Anwar, J.; Kazmi, S.K. XmnI polymorphism and disease severity in patients with beta thalassemia from northern Pakistan. J. Ayub Med. Coll. Abbottabad 2015, 27, 13–16. [Google Scholar]
- Motovali-Bashi, M.; Ghasemi, T. Role of XmnIgG Polymorphism in Hydroxyurea Treatment and Fetal Hemoglobin Level at Isfahanian Intermediate beta-Thalassemia Patients. Iran. Biomed. J. 2015, 19, 177–182. [Google Scholar]
- Pourfarzad, F.; von Lindern, M.; Azarkeivan, A.; Hou, J.; Kia, S.K.; Esteghamat, F.; van Ijcken, W.; Philipsen, S.; Najmabadi, H.; Grosveld, F. Hydroxyurea responsiveness in beta-thalassemic patients is determined by the stress response adaptation of erythroid progenitors and their differentiation propensity. Haematologica 2013, 98, 696–704. [Google Scholar] [CrossRef]
- Fard, A.D.; Hosseini, S.A.; Shahjahani, M.; Salari, F.; Jaseb, K. Evaluation of Novel Fetal Hemoglobin Inducer Drugs in Treatment of beta-Hemoglobinopathy Disorders. Int. J. Hematol. Oncol. Stem Cell Res. 2013, 7, 47–54. [Google Scholar] [PubMed]
- Fibach, E.; Bianchi, N.; Borgatti, M.; Prus, E.; Gambari, R. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood 2003, 102, 1276–1281. [Google Scholar] [CrossRef] [PubMed]
- Mischiati, C.; Sereni, A.; Lampronti, I.; Bianchi, N.; Borgatti, M.; Prus, E.; Fibach, E.; Gambari, R. Rapamycin-mediated induction of gamma-globin mRNA accumulation in human erythroid cells. Br. J. Haematol. 2004, 126, 612–621. [Google Scholar] [CrossRef] [PubMed]
- El-Beshlawy, A.; Hamdy, M.; El Ghamrawy, M. Fetal globin induction in beta-thalassemia. Hemoglobin 2009, 33 (Suppl. S1), S197–S203. [Google Scholar] [CrossRef]
- Birrell, M.A.; McCluskie, K.; Wong, S.; Donnelly, L.E.; Barnes, P.J.; Belvisi, M.G. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism. FASEB J. 2005, 19, 840–841. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insult. Phytother. Res. 2010, 24 (Suppl. S1), S11–S14. [Google Scholar] [CrossRef]
- Franco, S.S.; De Falco, L.; Ghaffari, S.; Brugnara, C.; Sinclair, D.A.; Matte, A.; Iolascon, A.; Mohandas, N.; Bertoldi, M.; An, X.; et al. Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica 2014, 99, 267–275. [Google Scholar] [CrossRef]
- Bosquesi, P.L.; Melchior, A.C.B.; Pavan, A.R.; Lanaro, C.; de Souza, C.M.; Rusinova, R.; Chelucci, R.C.; Barbieri, K.P.; dos Santos Fernandes, G.F.; Carlos, I.Z. Synthesis and evaluation of resveratrol derivatives as fetal hemoglobin inducers. Bioorganic Chem. 2020, 100, 103948. [Google Scholar]
- Akhavan-Niaki, H.; Derakhshandeh-Peykar, P.; Banihashemi, A.; Mostafazadeh, A.; Asghari, B.; Ahmadifard, M.R.; Azizi, M.; Youssefi, A.; Elmi, M.M. A comprehensive molecular characterization of beta thalassemia in a highly heterogeneous population. Blood Cells Mol. Dis. 2011, 47, 29–32. [Google Scholar] [CrossRef]
- Ansari, S.H.; Shamsi, T.S.; Munzir, S.; Khan, M.T.; Erum, S.; Perveen, K.; Farzana, T.; Ashraf, M.; Mehboob, T.; Moinuddin, M. Ggamma-Xmn I polymorphism: A significant determinant of beta-thalassemia treatment without blood transfusion. J. Pediatr. Hematol. Oncol. 2013, 35, e153–e156. [Google Scholar] [CrossRef]
- Miri-Moghaddam, E.; Bahrami, S.; Naderi, M.; Bazi, A.; Karimipoor, M. Xmn1-158 gammaGVariant in B-Thalassemia Intermediate Patients in South-East of Iran. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 165–171. [Google Scholar] [PubMed]
- Kumar, R.; Kaur, A.; Agarwal, S. Influence of Xmn 1(G)gamma (HBG2 c.-211 C --> T) Globin Gene Polymorphism on Phenotype of Thalassemia Patients of North India. Indian J. Hematol. Blood Transfus. 2014, 30, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Jalali, H.; Mahdavi, M.R.; Roshan, P.; Kosaryan, M.; Karami, H.; Mahdavi, M. Alpha thalassemia gene mutations in neonates from Mazandaran, Iran, 2012. Hematology 2014, 19, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Italia, K.Y.; Jijina, F.J.; Merchant, R.; Panjwani, S.; Nadkarni, A.H.; Sawant, P.M.; Nair, S.B.; Ghosh, K.; Colah, R.B. Response to hydroxyurea in beta thalassemia major and intermedia: Experience in western India. Clin. Chim. Acta 2009, 407, 10–15. [Google Scholar] [CrossRef]
- Dixit, A.; Chatterjee, T.C.; Mishra, P.; Choudhry, D.R.; Mahapatra, M.; Tyagi, S.; Kabra, M.; Saxena, R.; Choudhry, V.P. Hydroxyurea in thalassemia intermedia—A promising therapy. Ann. Hematol. 2005, 84, 441–446. [Google Scholar] [CrossRef]
- Panigrahi, I.; Dixit, A.; Arora, S.; Kabra, M.; Mahapatra, M.; Choudhry, V.P.; Saxena, R. Do alpha deletions influence hydroxyurea response in thalassemia intermedia? Hematology 2005, 10, 61–63. [Google Scholar] [CrossRef]
- Traeger-Synodinos, J.; Vrettou, C.; Sofocleous, C.; Zurlo, M.; Finotti, A.; Gambari, R. Impact of α-Globin Gene Expression and α-Globin Modifiers on the Phenotype of β-Thalassemia and Other Hemoglobinopathies: Implications for Patient Management. Int. J. Mol. Sci. 2024, 25, 3400. [Google Scholar] [CrossRef]
- Leberbauer, C.; Boulme, F.; Unfried, G.; Huber, J.; Beug, H.; Mullner, E.W. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood 2005, 105, 85–94. [Google Scholar] [CrossRef]
- Mahdavi, M.R.; Pourfarzad, F.; Kosaryan, M.; Akbari, M.T. In Vitro Hb Production in B-thalassemia Patients Is Not a Predictor of Clinical Responsiveness to Hydroxyurea. Iran. J. Public Health 2017, 46, 948. [Google Scholar]
- Fibach, E.; Prus, E.; Bianchi, N.; Zuccato, C.; Breveglieri, G.; Salvatori, F.; Finotti, A.; Lipucci di Paola, M.; Brognara, E.; Lampronti, I.; et al. Resveratrol: Antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and beta-thalassemia patients. Int. J. Mol. Med. 2012, 29, 974–982. [Google Scholar] [CrossRef]
- Rodrigue, C.M.; Arous, N.; Bachir, D.; Smith-Ravin, J.; Romeo, P.H.; Galacteros, F.; Garel, M.C. Resveratrol, a natural dietary phytoalexin, possesses similar properties to hydroxyurea towards erythroid differentiation. Br. J. Haematol. 2001, 113, 500–507. [Google Scholar] [PubMed]
- Theodorou, A.; Phylactides, M.; Forti, L.; Cramarossa, M.R.; Spyrou, P.; Gambari, R.; Thein, S.L.; Kleanthous, M. The investigation of resveratrol and analogs as potential inducers of fetal hemoglobin. Blood Cells Mol. Dis. 2016, 58, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Macari, E.R.; Schaeffer, E.K.; West, R.J.; Lowrey, C.H. Simvastatin and t-butylhydroquinone suppress KLF1 and BCL11A gene expression and additively increase fetal hemoglobin in primary human erythroid cells. Blood 2013, 121, 830–839. [Google Scholar] [CrossRef]
- Macari, E.R.; Lowrey, C.H. Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood 2011, 117, 5987–5997. [Google Scholar] [CrossRef]
- Qian, X.; Chen, J.; Zhao, D.; Guo, L.; Qian, X. Plastrum testudinis induces gamma-globin gene expression through epigenetic histone modifications within the gamma-globin gene promoter via activation of the p38 MAPK signaling pathway. Int. J. Mol. Med. 2013, 31, 1418–1428. [Google Scholar] [CrossRef]
- Chou, Y.C.; Chen, R.L.; Lai, Z.S.; Song, J.S.; Chao, Y.S.; Shen, C.K. Pharmacological Induction of Human Fetal Globin Gene in Hydroxyurea-Resistant Primary Adult Erythroid Cells. Mol. Cell Biol. 2015, 35, 2541–2553. [Google Scholar] [CrossRef]
- Grigg, A. Effect of hydroxyurea on sperm count, motility and morphology in adult men with sickle cell or myeloproliferative disease. Intern. Med. J. 2007, 37, 190–192. [Google Scholar] [CrossRef]
- Kinney, T.R.; Helms, R.W.; O’Branski, E.E.; Ohene-Frempong, K.; Wang, W.; Daeschner, C.; Vichinsky, E.; Redding-Lallinger, R.; Gee, B.; Platt, O.S.; et al. Safety of hydroxyurea in children with sickle cell anemia: Results of the HUG-KIDS study, a phase I/II trial. Pediatric Hydroxyurea Group. Blood 1999, 94, 1550–1554. [Google Scholar]
- Zhang, Y.; Paikari, A.; Sumazin, P.; Ginter Summarell, C.C.; Crosby, J.R.; Boerwinkle, E.; Weiss, M.J.; Sheehan, V.A. Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood 2018, 132, 321–333. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Wang, S.; Zhang, Q.; Zheng, J.; Yang, Y.; Qi, H.; Qu, H.; Zhang, Z.; Liu, F.; et al. Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish. Biochem. Biophys. Res. Commun. 2015, 460, 923–930. [Google Scholar] [CrossRef]
- Renault, T.T.; Dejean, L.M.; Manon, S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech. Ageing Dev. 2017, 161, 201–210. [Google Scholar] [CrossRef]
- Reshi, L.; Wang, H.V.; Hui, C.F.; Su, Y.C.; Hong, J.R. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells. Fish. Shellfish Immunol. 2017, 61, 120–129. [Google Scholar] [CrossRef]
Primer Name | Sequence (5′→3′) | Product Length (bp) |
---|---|---|
USP 14 F | AACGCTAAAGGATGATGATTGGG | 103 |
USP 14 R | TTTGGCTGAGGGTTCTTCTGG | |
γ-globin F | AGGTGCTGACTTCCTTGGG | 174 |
γ-globin R | GGGTGAATTCTTTGCCGAA | |
Foxo3 F | CGTTGCGTGCCCTACTTC | 128 |
Foxo3 R | CTCTTGCCAGTTCCCTCATTC | |
Bclxl F | ACCTGAATGACCACCTAGAGC | 121 |
Bclxl R | CAGCGGTTGAAGCGTTCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalali, H.; Mahdavi, M.R.; Kosaryan, M.; Najafi, A.; Aliasgharian, A.; Salehifar, E. The Effect of Resveratrol on Gamma Globin Gene Expression in Patients with Beta Thalassemia: The Role of Adaptation to Cellular Stress. Thalass. Rep. 2024, 14, 71-80. https://doi.org/10.3390/thalassrep14030009
Jalali H, Mahdavi MR, Kosaryan M, Najafi A, Aliasgharian A, Salehifar E. The Effect of Resveratrol on Gamma Globin Gene Expression in Patients with Beta Thalassemia: The Role of Adaptation to Cellular Stress. Thalassemia Reports. 2024; 14(3):71-80. https://doi.org/10.3390/thalassrep14030009
Chicago/Turabian StyleJalali, Hossein, Mohammad Reza Mahdavi, Mehrnoush Kosaryan, Ahmad Najafi, Aily Aliasgharian, and Ebrahim Salehifar. 2024. "The Effect of Resveratrol on Gamma Globin Gene Expression in Patients with Beta Thalassemia: The Role of Adaptation to Cellular Stress" Thalassemia Reports 14, no. 3: 71-80. https://doi.org/10.3390/thalassrep14030009
APA StyleJalali, H., Mahdavi, M. R., Kosaryan, M., Najafi, A., Aliasgharian, A., & Salehifar, E. (2024). The Effect of Resveratrol on Gamma Globin Gene Expression in Patients with Beta Thalassemia: The Role of Adaptation to Cellular Stress. Thalassemia Reports, 14(3), 71-80. https://doi.org/10.3390/thalassrep14030009