Pathophysiology and Etiology of Brainstem-Related Dysphagia
Abstract
1. Introduction
2. Basic Physiology and Anatomy Phases of Swallowing and Brainstem Control
- 1.
- Afferent and Descending Input Level
- 2.
- Organizational or Premotor Level (The Core CPG Network)
- 3.
- Efferent Output Level
3. Electromyographic Evaluation of Brainstem Function
- Submental/Suprahyoid EMG (SM-EMG): records the onset and duration of pharyngeal swallowing. These muscles fire synchronously at the initiation of oropharyngeal swallowing. Surface electrodes are typically placed 1 cm lateral to the midline on both sides beneath the chin.
- Laryngeal Movement Monitoring: a piezoelectric sensor positioned between the thyroid and cricoid cartilages tracks vertical laryngeal motion during swallowing. Alternatively, surface EEG electrodes may be placed above the thyroid cartilage to monitor timing of laryngeal elevation during the pharyngeal phase.
- Cricopharyngeal Sphincter EMG (CP-EMG): EMG activity of the UES can be recorded using a concentric needle electrode inserted percutaneously and directed postero-medially in the neck.
- Perioral and Masseter EMG for spontaneous swallowing: surface electrodes placed on the lip muscles and masseter are used to assess spontaneous swallowing.
4. Pathophysiology of Disease Brainstem Lesions and Dysphagia
Clinical and Instrumental Findings
5. Therapies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALS | amyotrophic lateral sclerosis |
| BoNT-A | neurobotulinum toxin A |
| CP | cricopharyngeal |
| CP-EMG | cricopharyngeal electromyography |
| CPG | central pattern generator |
| DSG | dorsal swallowing group |
| EEG | electroencephalogram |
| EMG | electromyography |
| FEES | flexible endoscopic evaluation of swallowing |
| GPC | central pattern generator |
| LMI | lateral medullary infarction |
| MMI | medial medullary infarction |
| NA | nucleus ambiguus |
| ND | neurogenic dysphagia |
| NTS | nucleus tractus solitarius |
| PEG | percutaneous endoscopic gastrostomy |
| REM | rapid eye movement |
| rTMS | repetitive transcranial magnetic stimulation |
| SM-EMG | submental/suprahyoid electromyography |
| SS | spontaneous swallowing |
| tDCS | transcranial direct current stimulation |
| UES | upper esophageal sphincter |
| VSG | ventral swallowing group |
References
- Meng, N.H.; Wang, T.G.; Lien, I.N. Dysphagia in Patients with Brainstem Stroke: Incidence and Outcome. Am. J. Phys. Med. Rehabil. 2000, 79, 170–175. [Google Scholar] [CrossRef]
- Lang, I.M. Brain Stem Control of the Phases of Swallowing. Dysphagia 2009, 24, 333–348. [Google Scholar] [CrossRef]
- Jean, A. Brain Stem Control of Swallowing: Neuronal Network and Cellular Mechanisms. Physiol. Rev. 2001, 81, 929–969. [Google Scholar] [CrossRef]
- Jean, A.; Dallaorta, M. Electrophysiologic Characterization of the Swallowing Pattern Generator in the Brainstem. GI Motil. 2006, 9, 1–37. [Google Scholar]
- Ertekin, C.; Aydogdu, I. Neurophysiology of Swallowing. Neurophysiol. Clin. 2003, 114, 2226–2244. [Google Scholar] [CrossRef]
- Ertekin, C. Voluntary Versus Spontaneous Swallowing in Man. Dysphagia 2011, 26, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.P. Mastication and Its Control by the Brain Stem. Crit. Rev. Oral Biol. Med. 1991, 2, 33–64. [Google Scholar] [CrossRef]
- Tsuboi, A.; Kolta, A.; Chen, C.C.; Lund, J.P. Neurons of the Trigeminal Main Sensory Nucleus Participate in the Generation of Rhythmic Motor Patterns. Eur. J. Neurosci. 2003, 17, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, C.; Eryaşar, G.; Gürgör, N.; Arıcı, Ş.; Secil, Y.; Kurt, T. Orbicularis Oculi Muscle Activation during Swallowing in Humans. Exp. Brain Res. 2013, 224, 79–91. [Google Scholar] [CrossRef]
- Uludag, I.F.; Tiftikcioglu, B.I.; Ertekin, C. Spontaneous Swallowing during All-Night Sleep in Patients with Parkinson Disease in Comparison with Healthy Control Subjects. Sleep 2016, 39, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, M.; Yüceyar, N.; Ertekin, C.; Celebi, G.; Ertaş, M.; Kalayci, T.; Aydoĝdu. An electronic device measuring the frequency of spontaneous swallowing: Digital phagometer. Dysphagia 1996, 11, 259–264. [Google Scholar] [CrossRef]
- Crary, M.A.; Sura, L.; Carnaby, G. Validation and Demonstration of an Isolated Acoustic Recording Technique to Estimate Spontaneous Swallow Frequency. Dysphagia 2013, 28, 86–94. [Google Scholar] [CrossRef]
- Afkari, S. Measuring Frequency of Spontaneous Swallowing. Australas. Phys. Eng. Sci. Med. 2007, 30, 313–317. [Google Scholar]
- Sato, K.; Nakashima, T. Human Adult Deglutition during Sleep. Ann. Otol. Rhinol. Laryngol 2006, 115, 334–339. [Google Scholar] [CrossRef]
- Thach, B.T. Can We Breathe and Swallow at the Same Time? J. Appl. Physiol. 2005, 99, 1633. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, C. Electrophysiological Evaluation of Oropharyngeal Dysphagia in Parkinson’s Disease. J. Mov. Disord. 2014, 7, 31–56. [Google Scholar] [CrossRef]
- Guidotti, L.; Españo, D.; Tomsen, N.; Clavé, P.; Ortega, O. Spontaneous Swallowing Frequency in the Evaluation of Swallowing Function. Expert. Rev. Gastroenterol. Hepatol. 2025, 19, 985–1005. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larruy, M.; Tomsen, N.; Guanyabens, N.; Palomeras, E.; Clavé, P.; Nascimento, W. Spontaneous Swallowing Frequency in Post-Stroke Patients with and Without Oropharyngeal Dysphagia: An Observational Study. Dysphagia 2023, 38, 200–210. [Google Scholar] [CrossRef]
- Ertekin, C. Neurogenic Dysphagia in Brainstem Disorders and EMG Evaluation. J. Basic Clin. Health Sci. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Ertekin, C.; Aydogdu, I.; Yuceyar, N. Piecemeal Deglutition and Dysphagia Limit in Normal Subjects and in Patients with Swallowing Disorders. J. Neurol. Neurosurg. Psychiatry 1996, 61, 491–496. [Google Scholar] [CrossRef]
- Aydogdu, I.; Kiylioglu, N.; Tarlaci, S.; Tanriverdi, Z.; Alpaydin, S.; Acarer, A.; Baysal, L.; Arpaci, E.; Yuceyar, N.; Secil, Y.; et al. Diagnostic Value of “Dysphagia Limit” for Neurogenic Dysphagia: 17years of Experience in 1278 Adults. Neurophysiol. Clin. 2015, 126, 634–643. [Google Scholar] [CrossRef]
- Roldan-Vasco, S.; Orozco-Duque, A.; Orozco-Arroyave, J.R. Swallowing Disorders Analysis Using Surface EMG Biomarkers and Classification Models. Digit. Signal Process. 2023, 133, 103815. [Google Scholar] [CrossRef]
- Nordio, S.; Arcara, G.; Berta, G.; Dellai, A.; Brisotto, C.; Koch, I.; Cazzador, D.; Aspidistria, M.; Ventura, L.; Turolla, A.; et al. Biofeedback as an Adjunctive Treatment for Post-Stroke Dysphagia: A Pilot-Randomized Controlled Trial. Dysphagia 2022, 37, 1207–1216. [Google Scholar] [CrossRef]
- Alyanak, B.; İnanır, M.; Sade, S.I.; Kablanoğlu, S. Efficacy of Game-Based EMG-Biofeedback Therapy in Post-Stroke Dysphagia: A Randomized Controlled Trial. Dysphagia 2025. [Google Scholar] [CrossRef]
- Warnecke, T.; Labeit, B.; Schroeder, J.; Reckels, A.; Ahring, S.; Lapa, S.; Claus, I.; Muhle, P.; Suntrup-Krueger, S.; Dziewas, R. Neurogenic Dysphagia: Systematic Review and Proposal of a Classification System. Neurology 2021, 96, e876–e889. [Google Scholar] [CrossRef] [PubMed]
- Pizzorni, N.; Ginocchio, D.; Bianchi, F.; Feroldi, S.; Vedrodyova, M.; Mora, G.; Schindler, A. Association between Maximum Tongue Pressure and Swallowing Safety and Efficacy in Amyotrophic Lateral Sclerosis. Neurogastroenterol. Motil. 2020, 32, e13859. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Norrving, B.; Cronqvist, S. Lateral Medullary Infarction: Prognosis in an Unselected Series. Neurology 1991, 41, 244. [Google Scholar] [CrossRef]
- Jang, S.H.; Kim, M.S. Dysphagia in Lateral Medullary Syndrome: A Narrative Review. Dysphagia 2021, 36, 329–338. [Google Scholar] [CrossRef]
- Arnold, M.; Liesirova, K.; Broeg-Morvay, A.; Meisterernst, J.; Schlager, M.; Mono, M.L.; El-Koussy, M.; Kägi, G.; Jung, S.; Sarikaya, H. Dysphagia in Acute Stroke: Incidence, Burden and Impact on Clinical Outcome. PLoS ONE 2016, 11, e0148424. [Google Scholar] [CrossRef]
- Aydogdu, I.; Ertekin, C.; Tarlaci, S.; Turman, B.; Kiylioglu, N.; Secil, Y. Dysphagia in Lateral Medullary Infarction (Wallenberg’s Syndrome): An Acute Disconnection Syndrome in Premotor Neurons Related to Swallowing Activity? Stroke 2001, 32, 2081–2087. [Google Scholar] [CrossRef]
- Cohen, D.L.; Roffe, C.; Beavan, J.; Blackett, B.; Fairfield, C.A.; Hamdy, S.; Havard, D.; McFarlane, M.; McLauglin, C.; Randall, M.; et al. Post-Stroke Dysphagia: A Review and Design Considerations for Future Trials. Int. J. Stroke 2016, 11, 399–411. [Google Scholar] [CrossRef]
- Alamer, A.; Melese, H.; Nigussie, F. Effectiveness of Neuromuscular Electrical Stimulation on Post-Stroke Dysphagia: A Systematic Review of Randomized Controlled Trials. Clin. Interv. Aging 2020, 15, 1521–1531. [Google Scholar] [CrossRef]
- Ntakou, E.A.; Nasios, G.; Nousia, A.; Siokas, V.; Messinis, L.; Dardiotis, E. Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke—Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare 2022, 10, 2401. [Google Scholar] [CrossRef] [PubMed]
- Sasegbon, A.; Cheng, I.; Zhang, M.; Hamdy, S. Advances in the Use of Neuromodulation for Neurogenic Dysphagia: Mechanisms and Therapeutic Application of Pharyngeal Electrical Stimulation, Transcranial Magnetic Stimulation, and Transcranial Direct Current Stimulation. Am. J. Speech-Lang. Pathol. 2020, 29, 1044–1064. [Google Scholar] [CrossRef]
- Wang, T.; Dong, L.; Cong, X.; Luo, H.; Li, W.; Meng, P.; Wang, Q. Comparative Efficacy of Non-Invasive Neurostimulation Therapies for Poststroke Dysphagia: A Systematic Review and Meta-Analysis. Neurophysiol. Clin. 2021, 51, 493–506. [Google Scholar] [CrossRef]
- Khedr, E.M.; Abo-Elfetoh, N. Therapeutic Role of rTMS on Recovery of Dysphagia in Patients with Lateral Medullary Syndrome and Brainstem Infarction. J. Neurol. Neurosurg. Psychiatry 2010, 81, 495–499. [Google Scholar] [CrossRef]
- Dong, L.; Pan, X.; Wang, Y.; Bai, G.; Han, C.; Wang, Q.; Meng, P. High-Frequency Cerebellar rTMS Improves the Swallowing Function of Patients with Dysphagia after Brainstem Stroke. Neural Plasticity 2022, 2022, 6259693. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Lyu, Y.; Li, Y.; Gan, L.; Ni, J.; Liu, L.; Xiao, Z. Clinical Study on Swallowing Function of Brainstem Stroke by tDCS. Neurol. Sci 2022, 43, 477–484. [Google Scholar] [CrossRef]
- Jones, C.A.; Colletti, C.M.; Ding, M.C. Post-Stroke Dysphagia: Recent Insights and Unanswered Questions. Curr. Neurol. Neurosci. Rep 2020, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shi, R.; Moreira, P. Post-Stroke Dysphagia: Identifying the Evidence Missing. Front. Med. 2025, 12, 1494645. [Google Scholar] [CrossRef]
- Georgiou, A.M.; Phylactou, P.; Kambanaros, M. The Effectiveness of Transcranial Magnetic Stimulation for Dysphagia in Stroke Patients: An Umbrella Review of Systematic Reviews and Meta-Analyses. Front. Hum. Neurosci. 2024, 18, 1355407. [Google Scholar] [CrossRef]
- Kunieda, K.; Kubo, S.; Fujishima, I. New Swallowing Method to Improve Pharyngeal Passage of a Bolus by Creating Negative Pressure in the Esophagus—Vacuum Swallowing. Am. J. Phys. Med. Rehabil. 2018, 97, e81–e84. [Google Scholar] [CrossRef] [PubMed]
- Plowman, E.K. Is There a Role for Exercise in the Management of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis? J. Speech Lang. Hear. Res. 2015, 58, 1151–1166. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Gu, W.; Li, W.; Wang, J. Quality of Life in Treating Persistent Neurogenic Dysphagia with Cricopharyngeal Myotomy. Dysphagia 2020, 35, 314–320. [Google Scholar] [CrossRef]
- Panebianco, M.; Marchese-Ragona, R.; Masiero, S.; Restivo, D.A. Dysphagia in Neurological Diseases: A Literature Review. Neurol. Sci. 2020, 41, 3067–3073. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, J.; Guan, B.; Xu, J.; Yu, H.; Li, H. The Efficacy and Safety of Catheter Balloon Dilatation in the Treatment of Dysphagia after Stroke: A Protocol for Systematic Review and Meta-Analysis. Medicine 2022, 101, e31460. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Park, C.; Ohn, S.H.; Moon, J.Y.; Chang, W.H.; Park, S. Botulinum Toxin Type A for Poststroke Cricopharyngeal Muscle Dysfunction. Arch. Phys. Med. Rehabil. 2006, 87, 1346–1351. [Google Scholar] [CrossRef]
- Alfonsi, E.; Restivo, D.A.; Cosentino, G.; De Icco, R.; Bertino, G.; Schindler, A.; Todisco, M.; Fresia, M.; Cortese, A.; Prunetti, P.; et al. Botulinum Toxin Is Effective in the Management of Neurogenic Dysphagia. Clinical-Electrophysiological Findings and Tips on Safety in Different Neurological Disorders. Front. Pharmacol. 2017, 8, 80. [Google Scholar] [CrossRef]
- Miyamoto, J.; Niijima, K.; Kubo, Y.; Miyazaki, H.; Iguchi, F. Successful treatment of dysphagia due to Wallenberg syndrome using intermittent air stretching method with balloon catheter: A case report. No Shinkei Geka 2014, 42, 227–231. [Google Scholar]
- Katoh, J.; Hayakawa, M.; Ishihara, K.; Kazumi, T. Swallowing Rehabilitation using Balloon Catheter Treatment Evaluated by Videofluorography in an Elderly Patient with Wallenberg’s Shyndrome. Jpn. J. Geriatr. 2000, 37, 490–494. [Google Scholar] [CrossRef]
- Nair, S.; Surendaran, A.; Menon, J.; Sreedharan, S.; Sylaja, P. Persistent Post-Stroke Dysphagia Treated with Cricopharyngeal Myotomy. Ann. Indian Acad. Neurol. 2016, 19, 249–251. [Google Scholar] [CrossRef] [PubMed]
- Verin, E.; Leroi, A.M.; Marie, J.P. Restoration of Normal Swallowing Function in Wallenberg Syndrome by Repetitive Transcranial Magnetic Stimulation and Surgery. Ann. Phys. Rehabil. Med. 2016, 59, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.H.; Tuominen, T.C.; Toohill, R.J. The Risk and Complications of Aspiration Following Cricopharyngeal Myotomy. Am. J. Med. 1997, 103, 61S–63S. [Google Scholar] [CrossRef] [PubMed]


| VASCULAR—BRAINSTEM STROKE | Hemorragic stroke | Lesions of basilar artery or posterior cerebral arteries (PCA) or vertebral arteries or posterior inferior cerebellar artery (PICA) or anterior inferior cerebellar artery (AICA) or small penetrating arteries |
| Ischemic stroke (Wallenberg’s Syndrome) | Dissection of the vertebral artery or atherothrombotic occlusion of posterior inferior cerebellar artery (PICA) | |
| DEMYELINATING | Multiple Sclerosis (MS) | Chronic inflammation from MS damages the myelin sheathes that cover nerves, causing lesions |
| DEGENERATIVE | Kennedy’s disease (or Spinal and Bulbar Muscular Atrophy) | Is a rare, X-linked disorder characterized by degenerative process of anterior horn cell and dorsal root ganglion without upper motor neuron dysfunction |
| Amyotrophic Lateral Sclerosis (ALS) | Brainstem lesions characterized by neuronal loss and gliosis | |
| Parkinson’s disease | Lewy bodies, abnormal protein deposits in brainstem areas | |
| Progressive Bulbar Palsy | Is a variant form of ALS, characterized by degeneration of lower motor neurons of brainstem | |
| MALFORMATION | Arnold-Chiari Syndrome | Compression of brainstem |
| TOXIC | Opioids, sedatives/hipnotics, stimulants, psychedelics | Hypoxic injury for overdose |
| INJURIES | Traumas | Iatrogenic (posterior fossa and skull base surgery) |
| INFECTIONS | Encephalitis or Meningitis | |
| EXPANSIVE PROCESSES | Brainstem Tumors |
| AMYOTROPHIC LATERAL SCLEROSIS (ALS) | BRAINSTEM STROKE | |
| MAIN DYSPHAGIA PHNEOTYPE | Complex swallowing disorder (48% of cases) | Delayed swallowing reflex (53% in infratentorial stroke) and residue in the piriform sinus |
| COMMON FEES FINDINGS |
|
|
| CPG (SWALLOWING CENTRAL PATTERN) |
|
|
| UNIQUE ELECTROPHYSIOOLOGICAL PBSERVATIONS |
|
|
| PROGNOSIS FOR SWALLOWING FUNCTION | Progressive decline; PEG often needed in advances stages | Variable; Lateral medullary infarction may have better prognosis than medial strokes |
| THERAPEUTIC CONSIDERATIONS | Focus on compensatory strategies, PEG, EMG monitoring | Early detection via electrophysiology, FEES, targeted swallowing therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alatri, L.; Marchese, M.R.; Tizio, A.; Galli, J. Pathophysiology and Etiology of Brainstem-Related Dysphagia. Audiol. Res. 2025, 15, 153. https://doi.org/10.3390/audiolres15060153
D’Alatri L, Marchese MR, Tizio A, Galli J. Pathophysiology and Etiology of Brainstem-Related Dysphagia. Audiology Research. 2025; 15(6):153. https://doi.org/10.3390/audiolres15060153
Chicago/Turabian StyleD’Alatri, Lucia, Maria Raffaella Marchese, Angelo Tizio, and Jacopo Galli. 2025. "Pathophysiology and Etiology of Brainstem-Related Dysphagia" Audiology Research 15, no. 6: 153. https://doi.org/10.3390/audiolres15060153
APA StyleD’Alatri, L., Marchese, M. R., Tizio, A., & Galli, J. (2025). Pathophysiology and Etiology of Brainstem-Related Dysphagia. Audiology Research, 15(6), 153. https://doi.org/10.3390/audiolres15060153

