Optimal Sound Presentation Level for Sound Localization Testing in Unilateral Conductive Hearing Loss
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Audiological Testing
2.3. Evaluation Procedures
3. Results
3.1. Sound Field Audiometry
3.2. Sound Localization Test
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UCHL | Unilateral Conductive Hearing Loss |
CCHA | Cartilage Conduction Hearing Aids |
RMS | Root Mean Square |
AC | Air Conduction |
IA | Interaural Attenuation |
References
- Iwasaki, S.; Sano, H.; Nishio, S.; Takumi, Y.; Okamoto, M.; Usami, S.; Ogawa, K. Hearing handicap in adults with unilateral deafness and bilateral hearing loss. Otol. Neurotol. 2013, 34, 644–649. [Google Scholar] [CrossRef]
- Zavdy, O.; Fostick, L.; Fink, N.; Danin, S.; Levin, A.; Lipschitz, N.; Hilly, O. The effect of hearing aids on sound localization in mild unilateral conductive hearing loss. J. Am. Acad. Audiol. 2022, 33, 357–363. [Google Scholar] [CrossRef]
- Andrews, J.; Kopacz, A.A.; Hohman, M.H. Ear Microtia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563243/ (accessed on 1 March 2024).
- Sun, P.H.; Hsu, S.C.; Chen, H.R.; Chou, H.H.; Lin, H.Y.; Chan, K.C. Audiological performance and subjective satisfaction of the ADHEAR system in experienced pediatric users with unilateral microtia and aural atresia. Int. J. Pediatr. Otorhinolaryngol. 2025, 188, 112210. [Google Scholar] [CrossRef]
- Mylanus, E.A.; van der Pouw, K.C.; Snik, A.F.; Cremers, C.W. Intraindividual comparison of the bone-anchored hearing aid and air-conduction hearing aids. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 271–276. [Google Scholar] [CrossRef]
- Nishimura, T.; Hosoi, H.; Saito, O.; Miyamae, R.; Shimokura, R.; Yamanaka, T.; Kitahara, T.; Levitt, H. Cartilage conduction is characterized by vibrations of the cartilaginous portion of the ear canal. PLoS ONE 2015, 10, e0120135. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, H.; Nishimura, T.; Shimokura, R.; Kitahara, T. Cartilage conduction as the third pathway for sound transmission. Auris Nasus Larynx 2019, 46, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, S.; Nishimura, T.; Hosoi, H.; Saito, O.; Shimokura, R.; Morimoto, C.; Kitahara, T. Benefits of Cartilage Conduction Hearing Aids for Speech Perception in Unilateral Aural Atresia. Audiol. Res. 2021, 11, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Shimada, A.; Nakano, S.; Kondo, E.; Takeyama, T.; Fukuda, J.; Udaka, J.; Okamoto, H.; Takeda, N. Effects of FM system fitted into the normal hearing ear or cartilage conduction hearing aid fitted into the affected ear on speech-in-noise recognition in Japanese children with unilateral congenital aural atresia. J. Med. Investig. 2020, 67, 131–138. [Google Scholar] [CrossRef]
- Nishimura, T.; Hosoi, H.; Shimokura, R.; Kitahara, T. Cartilage Conduction Hearing Aids in Clinical Practice. Audiol. Res. 2023, 13, 506–515. [Google Scholar] [CrossRef]
- Nishiyama, T.; Oishi, N.; Ogawa, K. Who are good adult candidates for cartilage conduction hearing aids? Eur. Arch. Otorhinolaryngol. 2021, 278, 1789–1798. [Google Scholar] [CrossRef]
- Nishiyama, T.; Oishi, N.; Ogawa, K. Efficacy of cartilage conduction hearing aids in children. Int. J. Pediatr. Otorhinolaryngol. 2021, 142, 110628. [Google Scholar] [CrossRef]
- Nishiyama, T.; Hayashi, S.; Oishi, N. A novel auricular prosthesis which incorporates a cartilage conduction hearing aid based on 3D data processing technique: A preclinical evaluation. Eur. Arch. Otorhinolaryngol. 2022, 279, 3741–3744. [Google Scholar] [CrossRef]
- Nairn, E.M.; Chen, A.S.; Nishimura, T.; Berezovsky, A.; Stucken, E.Z. Hearing outcomes of a new cartilage conduction device vs bone conduction devices. Otolaryngol. Head Neck Surg. 2023, 168, 821–828. [Google Scholar] [CrossRef]
- Suwento, R.; Widodo, D.W.; Airlangga, T.J.; Alviandi, W.; Watanuki, K.; Nakanowatari, N.; Hosoi, H.; Nishimura, T. Clinical Trial for Cartilage Conduction Hearing Aid in Indonesia. Audiol. Res. 2021, 11, 410–417. [Google Scholar] [CrossRef]
- Agterberg, M.J.; Snik, A.F.; Hol, M.K.; Van Wanrooij, M.M.; Van Opstal, A.J. Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: Improved directional hearing with a bone-conduction device. Hear. Res. 2012, 286, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kumpik, D.P.; King, A.J. A review of the effects of unilateral hearing loss on spatial hearing. Hear. Res. 2019, 372, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Arras, T.; Snapp, H.; Sangen, A.; Snels, C.; Kuntz, I.; Theune, T.; Kheirkhah, K.; Zarowski, A.; Wesarg, T.; van Wieringen, A.; et al. Instant improvement in monaural spatial hearing abilities through cognitive feedback. Exp. Brain Res. 2022, 240, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Snapp, H.; Vogt, K.; Agterberg, M.J.H. Bilateral bone conduction stimulation provides reliable binaural cues for localization. Hear. Res. 2020, 388, 107881. [Google Scholar] [CrossRef]
- Sanchez Jimenez, A.; Willard, K.J.; Bajo, V.M.; King, A.J.; Nodal, F.R. Persistence and generalization of adaptive changes in auditory localization behavior following unilateral conductive hearing loss. Front. Neurosci. 2023, 17, 1067937. [Google Scholar] [CrossRef]
- Kodera, K.; Hosoi, H.; Manabe, T.; Kanda, Y.; Shiraishi, K.; Sugiuchi, T.; Suzuki, K.; Tauchi, H.; Nishimura, T.; Matsuhira, T. The guideline for adaptation tests to hearing aids. Audiol. Jpn. 2010, 53, 708–726. [Google Scholar]
- Kitoh, R.; Moteki, H.; Nishio, S.; Shinden, S.; Kanzaki, S.; Iwasaki, S.; Ogawa, K.; Usami, S. The effects of cochlear implantation in Japanese single-sided deafness patients: Five case reports. Acta Otolaryngol. 2016, 136, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Isogai, Y. Importance of the Law of Interaural Attenuation (IA) for Air-conduction. Audiol. Jpn. 2002, 45, 45–54. [Google Scholar] [CrossRef]
- Yu, C.; Wang, W.; Jiang, Y.; Zhang, X.; Liu, Y.; Wang, P.; Ni, X.; Zhong, M.; Liu, Y.; Liu, Y. Improved binaural hearing effects and sound source localization in listeners with simulated unilateral conductive hearing loss: Effect of a bone conduction device. Ear Nose Throat J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Mertens, G.; Gilles, A.; Bouzegta, R.; Van de Heyning, P. A prospective randomized crossover study in single sided deafness on the new non-invasive adhesive bone conduction hearing system. Otol. Neurotol. 2018, 39, 940–949. [Google Scholar] [CrossRef]
- Gawliczek, T.; Munzinger, F.; Anschuetz, L.; Caversaccio, M.; Kompis, M.; Wimmer, W. Unilateral and bilateral audiological benefit with an adhesively attached, noninvasive bone conduction hearing system. Otol. Neurotol. 2018, 39, 1025–1030. [Google Scholar] [CrossRef]
- Asp, F.; Reinfeldt, S. Horizontal sound localisation accuracy in individuals with conductive hearing loss: Effect of the bone conduction implant. Int. J. Audiol. 2018, 57, 657–664. [Google Scholar] [CrossRef]
- Vyskocil, E.; Liepins, R.; Kaider, A.; Blineder, M.; Hamzavi, S. Sound localization in patients with congenital unilateral conductive hearing loss with a transcutaneous bone conduction implant. Otol. Neurotol. 2017, 38, 318–324. [Google Scholar] [CrossRef]
125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | 8000 Hz | |
---|---|---|---|---|---|---|---|
Condition 1 | 36.1 ± 13.6 | 40.6 ± 12.4 | 40.0 ± 12.5 | 40.0 ± 15.4 | 43.3 ± 12.5 | 49.4 ± 12.6 | 53.9 ± 11.1 |
Condition 2 | 46.1 ± 8.2 | 51.1 ± 8.6 | 57.2 ± 7.6 | 60.6 ± 9.7 | 58.9 ± 8.6 | 68.9 ± 4.9 | 47.2 ± 6.7 |
Condition | Center Presentation Level (dB SPL) | ||
---|---|---|---|
45 | 55 | 65 | |
1 | 37.6 ± 19.4 | 24.3 ± 17.7 | 30.5 ± 23.4 |
2 | 80.7 ± 20.1 | 78.0 ± 23.0 | 80.1 ± 23.4 |
2-1 | 44.7 ± 23.2 | 53.7 ± 21.7 | 53.0 ± 23.4 |
Condition | Presentation Level (dB SPL) | ||||||
---|---|---|---|---|---|---|---|
40 | 45 | 50 | 55 | 60 | 65 | 70 | |
1 | 45.3 ± 17.5 | 39.1 ± 18.1 | 29.5 ± 13.1 | 19.3 ± 12.3 | 27.9 ± 21.3 | 36.4 ± 32.4 | 36.1 ± 34.0 |
2 | 67.4 ± 16.8 | 65.1 ± 18.7 | 62.9 ± 19.5 | 58.1 ± 20.9 | 63.8 ± 18.6 | 64.0 ± 18.2 | 65.3 ± 22.1 |
2-1 | 27.5 ± 18.0 | 34.5 ± 16.0 | 35.9 ± 19.9 | 40.8 ± 25.3 | 35.8 ± 23.2 | 28.6 ± 28.4 | 29.2 ± 29.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahara, M.; Nishiyama, T.; Fumiiri, Y.; Kitama, T.; Hosoya, M.; Shimanuki, M.N.; Ueno, M.; Wakabayashi, T.; Ozawa, H.; Oishi, N. Optimal Sound Presentation Level for Sound Localization Testing in Unilateral Conductive Hearing Loss. Audiol. Res. 2025, 15, 95. https://doi.org/10.3390/audiolres15040095
Takahara M, Nishiyama T, Fumiiri Y, Kitama T, Hosoya M, Shimanuki MN, Ueno M, Wakabayashi T, Ozawa H, Oishi N. Optimal Sound Presentation Level for Sound Localization Testing in Unilateral Conductive Hearing Loss. Audiology Research. 2025; 15(4):95. https://doi.org/10.3390/audiolres15040095
Chicago/Turabian StyleTakahara, Miki, Takanori Nishiyama, Yu Fumiiri, Tsubasa Kitama, Makoto Hosoya, Marie N. Shimanuki, Masafumi Ueno, Takeshi Wakabayashi, Hiroyuki Ozawa, and Naoki Oishi. 2025. "Optimal Sound Presentation Level for Sound Localization Testing in Unilateral Conductive Hearing Loss" Audiology Research 15, no. 4: 95. https://doi.org/10.3390/audiolres15040095
APA StyleTakahara, M., Nishiyama, T., Fumiiri, Y., Kitama, T., Hosoya, M., Shimanuki, M. N., Ueno, M., Wakabayashi, T., Ozawa, H., & Oishi, N. (2025). Optimal Sound Presentation Level for Sound Localization Testing in Unilateral Conductive Hearing Loss. Audiology Research, 15(4), 95. https://doi.org/10.3390/audiolres15040095