Vestibular Dysfunction and the Leftward Deviation in the New Line Bisection Task Using Three-Dimensionally Transformed Rectangles
Abstract
1. Introduction
2. Materials and Methods
2.1. Standard Protocol Approvals, Registrations, and Participant Consent
2.2. Procedures
2.2.1. New Line Bisecting Task (LBT)
2.2.2. Vestibular Function Examination and Questionnaire
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LBT | Line bisection task |
PN | Pseudoneglect |
GVS | Galvanic vestibular stimulation |
LCD | Liquid crystal display |
CP | Canal paresis |
vHIT | Video head impulse test |
VOR | Vestibulo-ocular reflex |
AUC | Area under the curve |
cVEMP | Cervical vestibular evoked myogenic potential |
oVEMP | Ocular vestibular evoked myogenic potential |
EMG | Electromyographic |
SCM | Sternocleidomastoid muscle |
AR | Asymmetry ratio |
DHI | Dizziness Handicap Inventory |
SDS | Self-rating Depression Scale |
GDS | Geriatric Depression Scale |
HADS | Hospital Anxiety and Depression Scale |
POUNDing | Pulsating, duration of 4–72 h, Unilateral, Nausea, Disabling |
MIDAS | Migraine Disability Assessment |
MANOVA | Multivariate analysis of variance |
ANOVA | Analysis of variance |
Appendix A
Characteristics | Diagnosis | |||||
---|---|---|---|---|---|---|
Sex | n = 40 | Functional (psychogenic) dizziness | 7 | |||
Male | 23 | Vestibular migraine | 3 | |||
Female | 17 | |||||
Age | 56.1 (16.0) | n = 40 | Benign paroxysmal positional vertigo (BPPV) | 8 | ||
Meniere’s disease | ||||||
DHI | 29.1 (23.5) | n = 40 | Definite | 4 | ||
HADS | -A | 6.0 (4.2) | n = 40 | Probable | 5 | |
-D | 6.4 (3.5) | n = 40 | Ramsay Hunt syndrome | 1 | ||
SDS | 40.7 (8.1) | n = 28 | Vestibular neuritis | 5 | ||
GDS | 4.7 (4.6) | n = 12 | Peripheral vestibular dysfunction | 5 | ||
Idiopathic bilateral vestibulopathy (IBV) | 1 | |||||
POUNDing | 1.2 (1.3) | n = 40 | ||||
MIDAS | 1.4 (0.8) | n = 40 | ||||
Migraine screener | n = 40 | Cerebellar disorders | 1 | |||
Positive | 9 | |||||
Negative | 31 | Total | 40 |
# | Degree | Total | Male | Female | p-Value |
---|---|---|---|---|---|
cm | n = 53 | n = 47 | |||
1 | 0 | −0.001 (0.227) | 0.012 (0.207) | −0.016 (0.250) | 0.541 |
2 | 15 | −0.177 (0.290) | −0.177 (0.329) | −0.177 (0.241) | 1 |
3 | 30 | −0.318 (0.351) | −0.291 (0.376) | −0.349 (0.321) | 0.417 |
4 | 45 | −0.379 (0.312) | −0.360 (0.353) | −0.400 (0.260) | 0.52 |
5 | 60 | −0.325 (0.292) | −0.298 (0.326) | −0.356 (0.248) | 0.325 |
6 | 75 | −0.168 (0.194) | −0.169 (0.205) | −0.167 (0.183) | 0.968 |
7 | 105 | 0.215 (0.145) | 0.200 (0.163) | 0.232 (0.123) | 0.263 |
8 | 120 | 0.358 (0.232) | 0.355 (0.263) | 0.361 (0.194) | 0.893 |
9 | 135 | 0.351 (0.260) | 0.361 (0.283) | 0.339 (0.235) | 0.681 |
10 | 150 | 0.288 (0.285) | 0.287 (0.299) | 0.289 (0.272) | 0.97 |
11 | 165 | 0.140 (0.261) | 0.162 (0.277) | 0.116 (0.242) | 0.373 |
Task time (second) | 192.80 (101.75) | 191.05 (82.57) | 194.79 (120.70) | 0.855 |
Df | Pillai’s Trace | Approx F | Num Df | Den Df | p-Value | |
---|---|---|---|---|---|---|
vHIT (lateral) | 2 | 0.24721 | 1.1026 | 22 | 172 | 0.34811 |
Sex | 1 | 0.1312 | 1.1669 | 11 | 85 | 0.32222 |
Age | 1 | 0.2029 | 1.9669 | 11 | 85 | 0.04184 * |
Df | Pillai’s trace | approx F | num Df | den Df | p-value | |
vHIT (anterior) | 2 | 0.19028 | 0.82204 | 22 | 172 | 0.69549 |
Sex | 1 | 0.12865 | 1.14091 | 11 | 85 | 0.34074 |
Age | 1 | 0.20552 | 1.99897 | 11 | 85 | 0.03824 * |
Df | Pillai’s trace | approx F | num Df | den Df | p-value | |
vHIT (posterior) | 2 | 0.20995 | 0.91699 | 22 | 172 | 0.57289 |
Sex | 1 | 0.12565 | 1.11042 | 11 | 85 | 0.36341 |
Age | 1 | 0.20283 | 1.96606 | 11 | 85 | 0.04194 * |
# | Degree | vHIT (Lateral) | vHIT (Anterior) | vHIT (Posterior) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Normal | Abnormal | p-Value | Normal | Abnormal | p-Value | Normal | Abnormal | p-Value | ||
n = 30 | n = 10 | n = 28 | n = 7 | n = 30 | n = 5 | |||||
1 | 0 | 0.057 (0.236) | −0.152 (0.174) | 0.014 * | 0.041 (0.227) | 0.016 (0.274) | 0.804 | 0.025 (0.225) | 0.103 (0.295) | 0.495 |
2 | 15 | −0.100 (0.284) | −0.300 (0.159) | 0.042 * | −0.110 (0.278) | −0.142 (0.246) | 0.785 | −0.112 (0.264) | −0.141 (0.324) | 0.83 |
3 | 30 | −0.292 (0.297) | −0.369 (0.331) | 0.496 | −0.293 (0.306) | −0.235 (0.215) | 0.638 | −0.276 (0.297) | −0.317 (0.255) | 0.774 |
4 | 45 | −0.323 (0.310) | −0.420 (0.266) | 0.38 | −0.335 (0.304) | −0.234 (0.241) | 0.418 | −0.315 (0.286) | −0.317 (0.362) | 0.99 |
5 | 60 | −0.283 (0.271) | −0.379 (0.311) | 0.352 | −0.291 (0.265) | −0.203 (0.228) | 0.429 | −0.271 (0.252) | −0.284 (0.316) | 0.917 |
6 | 75 | −0.133 (0.160) | −0.154 (0.237) | 0.755 | −0.139 (0.163) | −0.101 (0.171) | 0.585 | −0.125 (0.155) | −0.169 (0.220) | 0.583 |
7 | 105 | 0.224 (0.117) | 0.209 (0.175) | 0.75 | 0.210 (0.123) | 0.212 (0.112) | 0.974 | 0.209 (0.122) | 0.216 (0.119) | 0.913 |
8 | 120 | 0.387 (0.219) | 0.329 (0.279) | 0.503 | 0.363 (0.234) | 0.362 (0.231) | 0.995 | 0.362 (0.226) | 0.365 (0.282) | 0.982 |
9 | 135 | 0.436 (0.230) | 0.306 (0.273) | 0.148 | 0.415 (0.253) | 0.399 (0.247) | 0.879 | 0.410 (0.245) | 0.418 (0.296) | 0.948 |
10 | 150 | 0.329 (0.233) | 0.225 (0.335) | 0.282 | 0.330 (0.274) | 0.224 (0.268) | 0.367 | 0.315 (0.265) | 0.270 (0.346) | 0.735 |
11 | 165 | 0.220 (0.256) | 0.032 (0.162) | 0.037 * | 0.194 (0.239) | 0.169 (0.357) | 0.82 | 0.174 (0.238) | 0.280 (0.395) | 0.406 |
Task time (second) | 181.10 (111.96) | 210.97 (89.50) | 0.396 | 206.32 (96.13) | 234.14 (110.84) | 0.511 | 218.53 (104.09) | 172.00 (31.84) | 0.334 |
# | Degree | vHIT (Lateral) | |||
---|---|---|---|---|---|
Normal | Left Abnormal | Right Abnormal | Both Abnormal | ||
n = 30 | n = 4 | n = 3 | n = 3 | ||
1 | 0 | 0.057 (0.236) | −0.189 (0.047) | 0.002 (0.173) | −0.257 (0.219) |
2 | 15 | −0.100 (0.284) | −0.280 (0.170) | −0.206 (0.004) | −0.420 (0.185) |
11 | 165 | 0.220 (0.256) | 0.025 (0.083) | 0.154 (0.237) | −0.080 (0.101) |
# | Degree | cVEMP 500Hz | p-Value | cVEMP 1kHz | p-Value | oVEMP 500Hz | p-Value | oVEMP 1kHz | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Abnormal | Normal | Abnormal | Normal | Abnormal | Normal | Abnormal | ||||||
n = 42 | n = 56 | n = 54 | n = 45 | n = 36 | n = 63 | n = 44 | n = 54 | ||||||
1 | 0 | −0.029 (0.234) | 0.024 (0.223) | 0.261 | −0.021 (0.195) | 0.023 (0.263) | 0.349 | −0.051 (0.203) | 0.028 (0.238) | 0.098 | −0.024 (0.227) | 0.022 (0.229) | 0.314 |
2 | 15 | −0.227 (0.242) | −0.142 (0.322) | 0.155 | −0.192 (0.273) | −0.160 (0.314) | 0.591 | −0.217 (0.228) | −0.155 (0.321) | 0.304 | −0.230 (0.320) | −0.137 (0.263) | 0.115 |
3 | 30 | −0.328 (0.280) | −0.306 (0.402) | 0.755 | −0.296 (0.319) | −0.345 (0.391) | 0.487 | −0.308 (0.276) | −0.324 (0.392) | 0.83 | −0.331 (0.382) | −0.303 (0.331) | 0.695 |
4 | 45 | −0.421 (0.277) | −0.348 (0.340) | 0.257 | −0.374 (0.304) | −0.384 (0.327) | 0.871 | −0.373 (0.259) | −0.382 (0.343) | 0.891 | −0.395 (0.353) | −0.366 (0.283) | 0.663 |
5 | 60 | −0.374 (0.262) | −0.291 (0.315) | 0.17 | −0.324 (0.292) | −0.329 (0.298) | 0.929 | −0.301 (0.250) | −0.340 (0.316) | 0.525 | −0.337 (0.337) | −0.318 (0.258) | 0.758 |
6 | 75 | −0.195 (0.156) | −0.147 (0.221) | 0.233 | −0.160 (0.186) | −0.177 (0.208) | 0.67 | −0.157 (0.160) | −0.173 (0.213) | 0.687 | −0.197 (0.210) | −0.143 (0.182) | 0.176 |
7 | 105 | 0.232 (0.121) | 0.201 (0.158) | 0.288 | 0.214 (0.137) | 0.211 (0.154) | 0.901 | 0.191 (0.144) | 0.225 (0.144) | 0.254 | 0.213 (0.172) | 0.216 (0.117) | 0.933 |
8 | 120 | 0.382 (0.212) | 0.340 (0.236) | 0.37 | 0.347 (0.224) | 0.361 (0.237) | 0.761 | 0.314 (0.235) | 0.376 (0.224) | 0.196 | 0.354 (0.244) | 0.361 (0.213) | 0.882 |
9 | 135 | 0.352 (0.257) | 0.346 (0.254) | 0.915 | 0.317 (0.260) | 0.379 (0.248) | 0.228 | 0.286 (0.241) | 0.379 (0.259) | 0.08 | 0.334 (0.285) | 0.361 (0.227) | 0.605 |
10 | 150 | 0.329 (0.267) | 0.262 (0.296) | 0.25 | 0.242 (0.268) | 0.339 (0.300) | 0.094 | 0.224 (0.243) | 0.322 (0.304) | 0.104 | 0.243 (0.301) | 0.329 (0.267) | 0.136 |
11 | 165 | 0.153 (0.261) | 0.127 (0.258) | 0.631 | 0.119 (0.229) | 0.156 (0.291) | 0.479 | 0.104 (0.220) | 0.155 (0.277) | 0.346 | 0.105 (0.294) | 0.166 (0.225) | 0.251 |
Task time (second) | 195.76 (86.07) | 193.25 (113.49) | 0.91 | 191.65 (85.57) | 195.29 (120.05) | 0.86 | 178.97 (94.98) | 201.49 (105.89) | 0.29 | 182.82 (74.57) | 203.70 (119.9) | 0.32 |
# | Degree | Total | Male | Female | p-Value |
---|---|---|---|---|---|
cm | n = 42 | n = 26 | |||
1 | 0 | −0.128 (0.178) | −0.118 (0.175) | −0.145 (0.186) | 0.548 |
2 | 15 | −0.333 (0.302) | −0.379 (0.307) | −0.259 (0.283) | 0.107 |
3 | 30 | −0.436 (0.383) | −0.482 (0.402) | −0.360 (0.346) | 0.191 |
4 | 45 | −0.511 (0.478) | −0.577 (0.455) | −0.404 (0.504) | 0.161 |
5 | 60 | −0.479 (0.423) | −0.515 (0.402) | −0.421 (0.459) | 0.394 |
6 | 75 | −0.287 (0.275) | −0.315 (0.277) | −0.242 (0.272) | 0.297 |
7 | 105 | 0.246 (0.241) | 0.249 (0.228) | 0.242 (0.266) | 0.911 |
8 | 120 | 0.357 (0.388) | 0.409 (0.357) | 0.272 (0.427) | 0.177 |
9 | 135 | 0.371 (0.428) | 0.419 (0.371) | 0.293 (0.505) | 0.277 |
10 | 150 | 0.248 (0.403) | 0.278 (0.377) | 0.200 (0.445) | 0.460 |
11 | 165 | 0.063 (0.318) | 0.088 (0.290) | 0.023 (0.362) | 0.443 |
Age | 20.2 (1.7) | 20.7 (1.5) | 19.4 (1.7) | - |
References
- Liepmann, H.; Kalmus, E. Über einer Augenmasstörung beu Hemianopikern. Berl. Klin. Wschr. 1900, 38, 838–842. [Google Scholar]
- Bowers, D.; Heilman, K.M. Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia 1980, 18, 491–498. [Google Scholar] [CrossRef]
- Jewell, G.; McCourt, M.E. Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 2000, 38, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.D.; Jung, D.S.; Jo, M.K.; Kim, M.J.; Kim, J.S.; Na, D.L.; Kim, E.J. Vestibular hemispatial neglect: Patterns and possible mechanism. Neurol. Sci. 2014, 35, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Conrad, J.; Habs, M.; Brandt, T.; Dieterich, M. Acute unilateral vestibular failure does not cause spatial hemineglect. PLoS ONE 2015, 10, e0135147. [Google Scholar] [CrossRef]
- Holé, J.; Reilly, K.T.; Nash, S.; Rode, G. Caloric vestibular stimulation reduces the directional bias in representational neglect. Brain Sci. 2020, 10, 323. [Google Scholar] [CrossRef]
- Karnath, H.O.; Dieterich, M. Spatial neglect—A vestibular disorder? Brain 2006, 129, 293–305. [Google Scholar] [CrossRef]
- Saj, A.; Bachelard-Serra, M.; Lavieille, J.P.; Honoré, J.; Borel, L. Signs of spatial neglect in unilateral peripheral vestibulopathy. Eur. J. Neurol. 2021, 28, 1779–1783. [Google Scholar] [CrossRef]
- Wheeler, C.; Smith, L.J.; Sakel, M.; Wilkinson, D. A systematic review of vestibular stimulation in post-stroke visual neglect. Neuropsychol. Rehabil. 2024, 35, 408–440. [Google Scholar] [CrossRef]
- Ferrè, E.R.; Arthur, K.; Haggard, P. Galvanic vestibular stimulation increases novelty in free selection of manual actions. Front. Integr. Neurosci. 2013, 7, 74. [Google Scholar] [CrossRef]
- Ferrè, E.R.; Longo, M.R.; Fiori, F.; Haggard, P. Vestibular modulation of spatial perception. Front. Hum. Neurosci. 2013, 7, 660. [Google Scholar] [CrossRef] [PubMed]
- Rorsman, I.; Magnusson, M.; Johansson, B.B. Reduction of visuo-spatial neglect with vestibular galvanic stimulation. Scand. J. Rehabil. Med. 1999, 31, 117–124. [Google Scholar] [CrossRef]
- Utz, K.S.; Keller, I.; Kardinal, M.; Kerkhoff, G. Galvanic vestibular stimulation reduces the pathological rightward line bisection error in neglect-A sham stimulation-controlled study. Neuropsychologia 2011, 49, 1219–1225. [Google Scholar] [CrossRef]
- Oppenländer, K.; Keller, I.; Karbach, J.; Schindler, I.; Kerkhoff, G.; Reinhart, S. Subliminal galvanic-vestibular stimulation influences ego—And object-centred components of visual neglect. Neuropsychologia 2015, 74, 170–177. [Google Scholar] [CrossRef]
- Wilkinson, D.; Zubko, O.; Sakel, M.; Coulton, S.; Higgins, T.; Pullicino, P. Galvanic vestibular stimulation in hemi-spatial neglect. Front. Integr. Neurosci. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Ruet, A.; Jokic, C.; Denise, P.; Leroy, F.; Azouvi, P. Does galvanic vestibular stimulation reduce spatial neglect? A negative study. Ann. Phys. Rehabil. Med. 2014, 57, 570–577. [Google Scholar] [CrossRef]
- Szpak, A.; Thomas, N.A.; Nicholls, M.E.R. Hemispheric asymmetries in perceived depth revealed through a radial line bisection task. Exp. Brain Res. 2016, 234, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Kállai, J.; Páll, T.; Topa, K.; Zsidó, A.N. Physically real and virtual reality exposed line bisection response patterns: Visuospatial attention allocation in virtual reality. Front. Psychol. 2023, 14, 1176379. [Google Scholar] [CrossRef]
- Sugihara, K.; Pinna, B. Rectangularity Is Stronger Than Symmetry in Interpreting 2D Pictures as 3D Objects. Front. Hum. Neurosci. 2022, 16, 849159. [Google Scholar] [CrossRef]
- Dvoeglazova, M.; Sawada, T. A role of rectangularity in perceiving a 3D shape of an object. Vision Res. 2024, 221, 108433. [Google Scholar] [CrossRef]
- Peirce, J.; Gray, J.R.; Simpson, S.; MacAskill, M.; Höchenberger, R.; Sogo, H.; Kastman, E.; Lindeløv, J.K. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 2019, 51, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Vater, C.; Wolfe, B.; Rosenholtz, R. Peripheral vision in real-world tasks: A systematic review. Psychon. Bull. Rev. 2022, 29, 1531–1557. [Google Scholar] [CrossRef] [PubMed]
- Zhaoping, L. Peripheral vision is mainly for looking rather than seeing. Neurosci. Res. 2024, 201, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, S.; Takai, Y.; Ozeki, H.; Ito, K.; Karino, S.; Murofushi, T. Extent of lesions in idiopathic sudden hearing loss with vertigo: Study using click and galvanic vestibular evoked myogenic potentials. Arch. Otolaryngol. Head Neck Surg. 2005, 131, 857–862. [Google Scholar] [CrossRef]
- Fujimoto, C.; Murofushi, T.; Chihara, Y.; Suzuki, M.; Yamasoba, T.; Iwasaki, S. Novel subtype of idiopathic bilateral vestibulopathy: Bilateral absence of vestibular evoked myogenic potentials in the presence of normal caloric responses. J. Neurol. 2009, 256, 1488–1492. [Google Scholar] [CrossRef]
- Fujimoto, C.; Egami, N.; Kinoshita, M.; Sugasawa, K.; Yamasoba, T.; Iwasaki, S. Involvement of vestibular organs in idiopathic sudden hearing loss with vertigo: An analysis using oVEMP and cVEMP testing. Clin. Neurophysiol. 2015, 126, 1033–1038. [Google Scholar] [CrossRef]
- Jacobson, G.P.; Newman, C.W. The Development of the Dizziness Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 1990, 116, 424–427. [Google Scholar] [CrossRef]
- Zung, W.W.K. A Self-Rating Depression Scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef]
- Sheikh, J.I.; Yesavage, J.A. 9/geriatric depression scale (Gds) recent evidence and development of a shorter version. Clin. Gerontol. 1986, 5, 165–173. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Detsky, M.E.; McDonald, D.R.; Baerlocher, M.O.; Tomlinson, G.A.; McCrory, D.C.; Booth, C.M. Does this patient with headache have a migraine or need neuroimaging? JAMA 2006, 296, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.F.; Lipton, R.B.; Dowson, A.J.; Sawyer, J. Development and testing of the Migraine Disability Assessment (MIDAS) Questionnaire to assess headache-related disability. Neurology 2001, 56, S20–S28. [Google Scholar] [CrossRef]
- Takeshima, T.; Sakai, F.; Suzuki, N.; Shimizu, T.; Igarashi, H.; Araki, N.; Manaka, S.; Nakashima, K.; Hashimoto, Y.; Iwata, M.; et al. A simple migraine screening instrument; Validation study in Japan. Jpn. J. Headache 2015, 42, 134–143. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 1 March 2025).
- Stam, C.J.; Bakker, M. The prevalence of neglect: Superiority of neuropsychological over clinical methods of estimation. Clin. Neurol. Neurosurg. 1990, 92, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Fukatsu, R.; Yamadori, A.; Kimura, I. Effect of Age on the Line Bisection Test. J. Clin. Exp. Neuropsychol. 1995, 17, 941–944. [Google Scholar] [CrossRef]
- Manly, T.; Dobler, V.B.; Dodds, C.M.; George, M.A. Rightward shift in spatial awareness with declining alertness. Neuropsychologia 2005, 43, 1721–1728. [Google Scholar] [CrossRef]
- Matthias, E.; Bublak, P.; Costa, A.; Müller, H.J.; Schneider, W.X.; Finke, K. Attentional and sensory effects of lowered levels of intrinsic alertness. Neuropsychologia 2009, 47, 3255–3264. [Google Scholar] [CrossRef]
- Smaczny, S.; Bauder, D.; Sperber, C.; Karnath, H.O.; de Haan, B. Reducing alertness does not affect line bisection bias in neurotypical participants. Exp. Brain Res. 2024, 242, 195–204. [Google Scholar] [CrossRef]
- Pavlou, M.; Kanegaonkar, R.G.; Swapp, D.; Bamiou, D.E.; Slater, M.; Luxon, L.M. The effect of virtual reality on visual vertigo symptoms in patients with peripheral vestibular dysfunction: A pilot study. J. Vestib. Res. Equilib. Orientat. 2012, 22, 273–281. [Google Scholar] [CrossRef]
- Roberts, R.E.; Ahmad, H.; Patel, M.; Dima, D.; Ibitoye, R.; Sharif, M.; Leech, R.; Arshad, Q.; Bronstein, A.M. An fMRI study of visuo-vestibular interactions following vestibular neuritis. NeuroImage Clin. 2018, 20, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, M.; Bense, S.; Lutz, S.; Drzezga, A.; Stephan, T.; Bartenstein, P.; Brandt, T. Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb. Cortex 2003, 13, 994–1007. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.; Kumsta, R.; Moser, D.; Güntürkün, O.; Ocklenburg, S. DNA methylation of dopamine-related gene promoters is associated with line bisection deviation in healthy adults. Sci. Rep. 2019, 9, 5902. [Google Scholar] [CrossRef]
- Mezzalira, R.; Bittar, R.S.M.; Bilécki-Stipsky, M.M.D.C.; Brugnera, C.; Grasel, S.S. Sensitivity of caloric test and video head impulse as screening test for chronic vestibular complaints. Clinics 2017, 72, 469–473. [Google Scholar] [CrossRef]
- Vallim, M.G.B.; Gabriel, G.P.; Mezzalira, R.; Stoler, G.; Chone, C.T. Does the video head impulse test replace caloric testing in the assessment of patients with chronic dizziness? A systematic review and meta-analysis. Braz. J. Otorhinolaryngol. 2021, 87, 733–741. [Google Scholar] [CrossRef]
- Kwon, S.; Park, W.; Kim, M.Y.; Kim, J.M. Relationship between line bisection test time and hemispatial neglect prognosis in patients with stroke: A prospective pilot study. Ann. Rehabil. Med. 2020, 44, 292–300. [Google Scholar] [CrossRef]
- He, W.; Chai, H.; Zhang, Y.; Yu, S.; Chen, W.; Wang, W. Line bisection performance in patients with generalized anxiety disorder and treatment-resistant depression. Int. J. Med. Sci. 2010, 7, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Y.; Gu, J.; Drake, R.A.; Livesley, W.J.; Jang, K.L. Line bisection performance in patients with personality disorders. Cogn. Neuropsychiatry 2003, 8, 273–285. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Liu, X.; Shen, M.; Drake, R.; Wang, W. Line bisection performance in right-handed primary headache sufferers. Neurol. India 2007, 55, 333–337. [Google Scholar] [CrossRef]
- Nash, K.; McGregor, I.; Inzlicht, M. Line bisection as a neural marker of approach motivation. Psychophysiology 2010, 47, 979–983. [Google Scholar] [CrossRef]
- Roskes, M.; Sligte, D.; Shalvi, S.; de Dreu, C.K.W. The right side? under time pressure, approach motivation leads to right-oriented bias. Psychol. Sci. 2011, 22, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Leggett, N.C.; Thomas, N.A.; Nicholls, M.E.R. End of the line: Line bisection, an unreliable measure of approach and avoidance motivation. Cogn. Emot. 2016, 30, 1164–1179. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Diagnosis | Number of Cases | ||||
---|---|---|---|---|---|---|
Sex | n = 100 | Functional (psychogenic) dizziness | 22 | |||
Male | 53 | Vestibular migraine | 5 | |||
Female | 47 | Orthostatic dysregulation | 1 | |||
Age | 54.6 (16.3) | n = 100 | Benign paroxysmal positional vertigo (BPPV) | 24 | ||
Meniere’s disease | ||||||
DHI | 28.7 (22.0) | n = 99 | Definite | 11 | ||
HADS | -A | 6.7 (4.0) | n = 99 | Probable | 18 | |
-D | 6.8 (3.6) | n = 99 | Ramsay Hunt syndrome | 1 | ||
SDS | 42.0 (7.4) | n = 71 | Vestibular neuritis | 7 | ||
GDS | 5.7 (4.9) | n = 28 | Peripheral vestibular dysfunction | 6 | ||
Idiopathic bilateral vestibulopathy (IBV) | 1 | |||||
POUNDing | 1.1 (1.3) | n = 99 | Sensory ataxia | 1 | ||
MIDAS | 1.2 (0.6) | n = 99 | Cervical hernia | 1 | ||
Migraine screener | n = 99 | Cerebellar disorders | 1 | |||
Positive | 18 | Normal | 1 | |||
Negative | 81 | Total | 100 |
Df | Pillai’s Trace | Approx F | Num Df | Den Df | p-Value | |
---|---|---|---|---|---|---|
Caloric testing | 2 | 0.42349 | 2.1002 | 22 | 172 | 0.00442 ** |
Sex | 1 | 0.13891 | 1.2465 | 11 | 85 | 0.26993 |
Age | 1 | 0.20648 | 2.0107 | 11 | 85 | 0.03700 * |
# | Degree | Age | p-Value |
---|---|---|---|
1 | 0 | 0.3924 | 0.0001 * |
2 | 15 | 0.3114 | 0.0016 * |
3 | 30 | 0.1817 | 0.0704 |
4 | 45 | 0.2673 | 0.0072 * |
5 | 60 | 0.2219 | 0.0265 * |
6 | 75 | 0.2682 | 0.0070 * |
7 | 105 | −0.1087 | 0.2818 |
8 | 120 | −0.0626 | 0.5364 |
9 | 135 | −0.0259 | 0.798 |
10 | 150 | 0.0737 | 0.4661 |
11 | 165 | 0.187 | 0.0624 |
# | Degree | Caloric Testing | ||
---|---|---|---|---|
Without CP | With CP | p-Value | ||
n = 65 | n = 34 | |||
1 | 0 | 0.012 (0.215) | −0.036 (0.247) | 0.313 |
2 | 15 | −0.212 (0.257) | −0.117 (0.339) | 0.122 |
3 | 30 | −0.315 (0.284) | −0.340 (0.453) | 0.741 |
4 | 45 | −0.419 (0.288) | −0.308 (0.348) | 0.094 |
5 | 60 | −0.335 (0.269) | −0.310 (0.338) | 0.687 |
6 | 75 | −0.187 (0.185) | −0.138 (0.208) | 0.227 |
7 | 105 | 0.214 (0.144) | 0.213 (0.151) | 0.98 |
8 | 120 | 0.365 (0.229) | 0.344 (0.243) | 0.675 |
9 | 135 | 0.391 (0.235) | 0.273 (0.295) | 0.034 * |
10 | 150 | 0.309 (0.277) | 0.250 (0.305) | 0.335 |
11 | 165 | 0.135 (0.265) | 0.148 (0.259) | 0.81 |
Task time (second) | 189.48 (104.27) | 199.74 (99.46) | 0.64 |
# | Degree | Caloric Testing | |||
---|---|---|---|---|---|
Without CP | With Left CP | With Right CP | With Both CP | ||
n = 65 | n = 14 | n = 19 | n = 1 | ||
9 | 135 | 0.391 (0.235) | 0.254 (0.314) | 0.283 (0.297) | 0.362 (-) |
Degree | 0 | 15 | 30 | 45 | 60 | 75 | 105 | 120 | 135 | 150 | 165 | Task Time | DHI | HADS -A | HADS -D | SDS | GDS | POUN Ding | MIDAS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.00 | 0.60 | 0.42 | 0.35 | 0.39 | 0.34 | 0.00 | 0.13 | 0.17 | 0.40 | 0.61 | 0.28 | −0.14 | −0.18 | −0.24 | −0.12 | −0.46 | 0.02 | −0.08 |
15 | 0.60 | 1.00 | 0.68 | 0.76 | 0.72 | 0.69 | −0.39 | −0.23 | −0.26 | 0.00 | 0.34 | 0.22 | −0.16 | −0.19 | −0.32 | −0.23 | −0.38 | −0.02 | −0.11 |
30 | 0.42 | 0.68 | 1.00 | 0.77 | 0.76 | 0.66 | −0.40 | −0.41 | −0.31 | −0.14 | 0.08 | 0.20 | −0.11 | −0.07 | −0.28 | −0.32 | −0.05 | 0.08 | −0.07 |
45 | 0.35 | 0.76 | 0.77 | 1.00 | 0.91 | 0.79 | −0.59 | −0.55 | −0.45 | −0.31 | 0.01 | 0.13 | −0.10 | −0.09 | −0.34 | −0.31 | −0.25 | 0.05 | −0.16 |
60 | 0.39 | 0.72 | 0.76 | 0.91 | 1.00 | 0.82 | −0.59 | −0.53 | −0.41 | −0.34 | −0.03 | 0.09 | −0.11 | −0.10 | −0.31 | −0.33 | −0.26 | 0.05 | −0.20 |
75 | 0.34 | 0.69 | 0.66 | 0.79 | 0.82 | 1.00 | −0.53 | −0.49 | −0.44 | −0.28 | 0.00 | 0.25 | −0.05 | −0.19 | −0.32 | −0.34 | −0.33 | 0.12 | −0.15 |
105 | 0.00 | −0.39 | −0.40 | −0.59 | −0.59 | −0.53 | 1.00 | 0.83 | 0.65 | 0.59 | 0.43 | −0.06 | 0.01 | −0.01 | 0.19 | 0.22 | −0.13 | 0.09 | 0.09 |
120 | 0.13 | −0.23 | −0.41 | −0.55 | −0.53 | −0.49 | 0.83 | 1.00 | 0.79 | 0.69 | 0.55 | −0.04 | −0.02 | −0.03 | 0.12 | 0.17 | −0.15 | −0.02 | 0.12 |
135 | 0.17 | −0.26 | −0.31 | −0.45 | −0.41 | −0.44 | 0.65 | 0.79 | 1.00 | 0.68 | 0.53 | −0.05 | 0.00 | −0.04 | 0.14 | 0.11 | −0.12 | −0.05 | 0.18 |
150 | 0.40 | 0.00 | −0.14 | −0.31 | −0.34 | −0.28 | 0.59 | 0.69 | 0.68 | 1.00 | 0.78 | 0.09 | −0.04 | −0.18 | 0.03 | 0.09 | −0.33 | 0.01 | 0.16 |
165 | 0.61 | 0.34 | 0.08 | 0.01 | −0.03 | 0.00 | 0.43 | 0.55 | 0.53 | 0.78 | 1.00 | 0.12 | −0.16 | −0.20 | −0.04 | 0.02 | −0.48 | −0.02 | 0.05 |
Task time | 0.28 | 0.22 | 0.20 | 0.13 | 0.09 | 0.25 | −0.06 | −0.04 | −0.05 | 0.09 | 0.12 | 1.00 | 0.20 | −0.12 | −0.09 | −0.10 | −0.02 | 0.01 | −0.02 |
DHI | −0.14 | −0.16 | −0.11 | −0.10 | −0.11 | −0.05 | 0.01 | −0.02 | 0.00 | −0.04 | −0.16 | 0.20 | 1.00 | 0.37 | 0.23 | 0.30 | 0.33 | 0.05 | 0.26 |
HADS-A | −0.18 | −0.19 | −0.07 | −0.09 | −0.10 | −0.19 | −0.01 | −0.03 | −0.04 | −0.18 | −0.20 | −0.12 | 0.37 | 1.00 | 0.45 | 0.48 | 0.64 | 0.11 | 0.14 |
HADS-D | −0.24 | −0.32 | −0.28 | −0.34 | −0.31 | −0.32 | 0.19 | 0.12 | 0.14 | 0.03 | −0.04 | −0.09 | 0.23 | 0.45 | 1.00 | 0.50 | 0.66 | 0.10 | 0.25 |
SDS | −0.12 | −0.23 | −0.32 | −0.31 | −0.33 | −0.34 | 0.22 | 0.17 | 0.11 | 0.09 | 0.02 | −0.10 | 0.30 | 0.48 | 0.50 | 1.00 | NA | 0.40 | 0.44 |
GDS | −0.46 | −0.38 | −0.05 | −0.25 | −0.26 | −0.33 | −0.13 | −0.15 | −0.12 | −0.33 | −0.48 | −0.02 | 0.33 | 0.64 | 0.66 | NA | 1.00 | −0.19 | NA |
POUNDing | 0.02 | −0.02 | 0.08 | 0.05 | 0.05 | 0.12 | 0.09 | −0.02 | −0.05 | 0.01 | −0.02 | 0.01 | 0.05 | 0.11 | 0.10 | 0.40 | −0.19 | 1.00 | 0.34 |
MIDAS | −0.08 | −0.11 | −0.07 | −0.16 | −0.20 | −0.15 | 0.09 | 0.12 | 0.18 | 0.16 | 0.05 | −0.02 | 0.26 | 0.14 | 0.25 | 0.44 | NA | 0.34 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamogashira, T.; Asakura, S.; Funayama, H.; Ito, K.; Sunaga, N.; Shikanai, N.; Itagaki, F.; Kataoka, T.; Shoji, S.; Koizumi, M.; et al. Vestibular Dysfunction and the Leftward Deviation in the New Line Bisection Task Using Three-Dimensionally Transformed Rectangles. Audiol. Res. 2025, 15, 86. https://doi.org/10.3390/audiolres15040086
Kamogashira T, Asakura S, Funayama H, Ito K, Sunaga N, Shikanai N, Itagaki F, Kataoka T, Shoji S, Koizumi M, et al. Vestibular Dysfunction and the Leftward Deviation in the New Line Bisection Task Using Three-Dimensionally Transformed Rectangles. Audiology Research. 2025; 15(4):86. https://doi.org/10.3390/audiolres15040086
Chicago/Turabian StyleKamogashira, Teru, Shinnosuke Asakura, Hideaki Funayama, Kenji Ito, Noriaki Sunaga, Nao Shikanai, Fumihiko Itagaki, Toshitaka Kataoka, Shizuka Shoji, Megumi Koizumi, and et al. 2025. "Vestibular Dysfunction and the Leftward Deviation in the New Line Bisection Task Using Three-Dimensionally Transformed Rectangles" Audiology Research 15, no. 4: 86. https://doi.org/10.3390/audiolres15040086
APA StyleKamogashira, T., Asakura, S., Funayama, H., Ito, K., Sunaga, N., Shikanai, N., Itagaki, F., Kataoka, T., Shoji, S., Koizumi, M., & Ishimoto, S. (2025). Vestibular Dysfunction and the Leftward Deviation in the New Line Bisection Task Using Three-Dimensionally Transformed Rectangles. Audiology Research, 15(4), 86. https://doi.org/10.3390/audiolres15040086