Objective Detection of Auditory Steady-State Responses (ASSRs) Based on Mutual Information: Receiver Operating Characteristics and Performance Across Modulation Rates and Levels †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Electrophysiological Recordings
2.4. Mutual Information (MI) Detection Metric
2.5. Receiver Operating Characteristics (ROCs) for the MI Classifier
2.6. Comparison of MI to F-Test
3. Results
3.1. ASSR Responses
3.2. Performance and ROC Characteristics of MI Classifier
3.3. Acceptable Ranges of MI for ASSR Detection
3.4. MI as a Criterion for Terminating Signal Averaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- John, M.S.; Picton, T.W. MASTER: A Windows program for recording multiple auditory steady-state responses. Comput. Methods Programs Biomed. 2000, 61, 125–150. [Google Scholar] [CrossRef] [PubMed]
- Cone-Wesson, B.; Dowell, R.C.; Tomlin, D.; Rance, G.; Ming, W.J. The auditory steady-state response: Comparisons with the auditory brainstem response. J. Am. Acad. Audiol. 2002, 13, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Picton, T.W.; Durieux-Smith, A.; Champagne, S.C.; Whittingham, J.; Moran, L.M.; Giguere, C.; Beauregard, Y. Objective evaluation of aided thresholds using auditory steady-state responses. J. Am. Acad. Audiol. 1998, 9, 315–331. [Google Scholar]
- Dobie, R.A.; Wilson, M.J. A comparison of t test, F test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. J. Acoust. Soc. Am. 1996, 100, 2236–2246. [Google Scholar] [CrossRef]
- Sturzebecher, E.; Cebulla, M. Automated auditory response detection: Improvement of the statistical test strategy. Int. J. Audiol. 2013, 52, 861–864. [Google Scholar] [CrossRef]
- Vidler, M.; Parker, D. Auditory brainstem response threshold estimation: Subjective threshold estimation by experienced clinicians in a computer simulation of a clinical test. Int. J. Audiol. 2004, 43, 417–429. [Google Scholar] [CrossRef]
- Bogaerts, S.; Clements, J.D.; Sullivan, J.M.; Oleskevich, S. Automated threshold detection for auditory brainstem responses: Comparison with visual estimation in a stem cell transplantation study. BMC Neurosci. 2009, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Bidelman, G.M. Objective information-theoretic algorithm for detecting brainstem evoked responses to complex stimuli. J. Am. Acad. Audiol. 2014, 25, 711–722. [Google Scholar] [CrossRef]
- Champlin, C.A. Methods for detecting auditory steady-state potentials recorded from humans. Hear Res. 1992, 58, 63–69. [Google Scholar] [CrossRef]
- Victor, J.D.; Mast, J. A new statistic for steady-state evoked potentials. Electroencephalogr. Clin. Neurophysiol. 1991, 78, 378–388. [Google Scholar] [CrossRef]
- Norouzpour, A.; Roberts, T.L. Fcirc statistic for steady-state evoked potentials; a generalized version of Tcirc2 statistic. Biomed. Signal Process. Control 2024, 87, 105549. [Google Scholar] [CrossRef]
- Rocha-Muniz, C.N.; Befi-Lopes, D.M.; Schochat, E. Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response. Hear Res. 2012, 294, 143–152. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Lowther, J.E.; Tak, S.H.; Alain, C. Mild cognitive impairment is characterized by deficient hierarchical speech coding between auditory brainstem and cortex. J. Neurosci. 2017, 37, 3610–3620. [Google Scholar] [CrossRef]
- Johnson, K.L.; Nicol, T.G.; Kraus, N. Brain stem response to speech: A biological marker of auditory processing. Ear Hear 2005, 26, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Purcell, D.W.; John, S.M.; Schneider, B.A.; Picton, T.W. Human temporal auditory acuity as assessed by envelope following responses. J. Acoust. Soc. Am. 2004, 116, 3581–3593. [Google Scholar] [CrossRef]
- Pluim, J.P.; Maintz, J.B.; Viergever, M.A. Mutual-information-based registration of medical images: A survey. IEEE Trans. Med. Imaging 2003, 22, 986–1004. [Google Scholar] [CrossRef]
- Herdman, A.T.; Lins, O.; van Roon, P.; Stapells, D.R.; Scherg, M.; Picton, T. Intracerebral sources of human auditory steady-state responses. Brain Topogr. 2002, 15, 69–86. [Google Scholar] [CrossRef]
- Johnson, T.A.; Brown, C.J. Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: A within-subject comparison. Ear Hear 2005, 26, 559–576. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Noordanus, E.; Van Opstal, A.J. Towards real-time detection of auditory steady-state responses: A comparative study. IEEE Access 2021, 9, 108975–108991. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Bhagat, S.P. Objective detection of auditory steady-state evoked potentials based on mutual information. Int. J. Audiol. 2016, 55, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Aiken, S.J.; Picton, T.W. Envelope and spectral frequency-following responses to vowel sounds. Hear Res. 2008, 245, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Oxenham, A.J.; Bernstein, J.G.W.; Penagos, H. Correct tonotopic representation is necessary for complex pitch perception. Proc. Natl. Acad. Sci. USA 2004, 101, 1421–1425. [Google Scholar] [CrossRef]
- Lins, O.G.; Picton, P.E.; Picton, T.W.; Champagn, S.C.; Durieux-Smith, A. Auditory steady-state responses to tones amplitude-modulated at 80-110 Hz. J. Acoust. Soc. Am. 1995, 97, 3051–3063. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- British Society of Audiology. Auditory Steady State Response (ASSR) Testing. 2023. Available online: https://www.thebsa.org.uk/wp-content/uploads/2023/10/OD104-115-Practice-Guidance-for-ASSR-Testing-1.pdf (accessed on 7 March 2025).
- Slugocki, C.; Bosnyak, D.; Trainor, L. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity. Hear Res. 2017, 345, 30–42. [Google Scholar] [CrossRef]
- Bidelman, G.M. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials. J. Neurosci. Methods 2015, 241, 94–100. [Google Scholar] [CrossRef]
- MacLean, J.; Drobny, E.; Rizzi, R.; Bidelman, G.M. Musicianship modulates cortical effects of attention on processing musical triads. Brain Sci. 2024, 14, 1079. [Google Scholar] [CrossRef]
- Lai, J.; Alain, C.; Bidelman, G.M. Cortical-brainstem interplay during speech perception in older adults with and without hearing loss. Front. Neurosci. 2023, 17, 1075368. [Google Scholar] [CrossRef]
- Sininger, Y.S.; Hunter, L.L.; Roush, P.A.; Windmill, S.; Hayes, D.; Uhler, K.M. Protocol for Rapid, Accurate, Electrophysiologic, Auditory Assessment of Infants and Toddlers. J. Am. Acad. Audiol. 2020, 31, 455–468. [Google Scholar] [CrossRef]
- Sugiyama, S.; Ohi, K.; Kuramitsu, A.; Takai, K.; Muto, Y.; Taniguchi, T.; Kinukawa, T.; Takeuchi, N.; Motomura, E.; Nishihara, M.; et al. The Auditory Steady-State Response: Electrophysiological Index for Sensory Processing Dysfunction in Psychiatric Disorders. Front. Psychiatry 2021, 12, 644541. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, S.; Guo, D.; Sheng, Y.; Ke, Y.; An, X.; He, F.; Ming, D. Enhanced Auditory Steady-State Response Using an Optimized Chirp Stimulus-Evoked Paradigm. Sensors 2019, 19, 748. [Google Scholar] [CrossRef]
- Sininger, Y.S.; Hunter, L.L.; Hayes, D.; Roush, P.A.; Uhler, K.M. Evaluation of speed and accuracy of next-generation auditory steady state response and auditory brainstem response audiometry in children with normal hearing and hearing loss. Ear Hear 2018, 39, 1207–1223. [Google Scholar] [CrossRef]
- Hamad, H.; Washnik, N.J.; Suresh, C.H. Next-generation auditory steady-state responses in normal-hearing adults: A pilot test–retest reliability study. J. Otorhinolaryngol. Hear. Balance Med. 2023, 4, 6. [Google Scholar] [CrossRef]
- Ehrmann-Müller, D.; Shehata-Dieler, W.; Alzoubi, A.; Hagen, R.; Cebulla, M. Using ASSR with narrow-band chirps to evaluate hearing in children and adults. Eur. Arch. Otorhinolaryngol. 2021, 278, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kuwada, S.; Anderson, J.S.; Batra, R.; Fitzpatrick, D.C.; Teissier, N.; D’Angelo, W.R. Sources of the scalp-recorded amplitude-modulation following response. J. Am. Acad. Audiol. 2002, 13, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Van Maanen, A.; Stapells, D.R. Comparison of multiple auditory steady-state responses (80 versus 40 Hz) and slow cortical potentials for threshold estimation in hearing-impaired adults. Int. J. Audiol. 2005, 44, 613–624. [Google Scholar] [CrossRef]
- Galambos, R.; Makeig, S.; Talmachoff, P. A 40-Hz auditory potential recorded from the human scalp. Proc. Natl. Acad. Sci. USA 1981, 78, 2643–2647. [Google Scholar] [CrossRef]
- Korczak, P.; Smart, J.; Delgado, R.; Strobel, T.M.; Bradford, C. Auditory steady-state responses. J. Am. Acad. Audiol. 2012, 23, 146–170. [Google Scholar] [CrossRef]
- Pethe, J.; Muhler, R.; Siewert, K.; von Specht, H. Near-threshold recordings of amplitude modulation following responses (AMFR) in children of different ages. Int. J. Audiol. 2004, 43, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.T.; Rickards, F.W.; Clark, G.M. A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans. J. Acoust. Soc. Am. 1991, 90, 2467–2479. [Google Scholar] [CrossRef] [PubMed]
- Kuwada, S.; Batra, R.; Maher, V.L. Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res. 1986, 21, 179–192. [Google Scholar] [CrossRef]
- Picton, T.W.; Dimitrijevic, A.; Perez-Abalo, M.C.; Van Roon, P. Estimating audiometric thresholds using auditory steady-state responses. J. Am. Acad. Audiol. 2005, 16, 140–156. [Google Scholar] [CrossRef]
- Stroebel, D.; Swanepoel, W.; Groenewald, E. Aided auditory steady-state responses in infants. Int. J. Audiol. 2007, 46, 287–292. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Villafuerte, J.W.; Moreno, S.; Alain, C. Age-related changes in the subcortical-cortical encoding and categorical perception of speech. Neurobiol. Aging 2014, 35, 2526–2540. [Google Scholar] [CrossRef]
- Anderson, S.; Bieber, R.; Schloss, A. Peripheral deficits and phase-locking declines in aging adults. Hear Res. 2021, 403, 108188. [Google Scholar] [CrossRef] [PubMed]
- Reetzke, R.; Xie, Z.; Llanos, F.; Chandrasekaran, B. Tracing the trajectory of sensory plasticity across different stages of speech learning in adulthood. Curr. Biol. 2018, 28, 1419–1427.e1414. [Google Scholar] [CrossRef]
- MacLean, J.; Stirn, J.; Sisson, A.; Bidelman, G.M. Short- and long-term neuroplasticity interact during the perceptual learning of concurrent speech. Cereb. Cortex 2024, 34, bhad543. [Google Scholar] [CrossRef]
- Venail, F.; Artaud, J.P.; Blanchet, C.; Uziel, A.; Mondain, M. Refining the audiological assessment in children using narrow-band CE-Chirp-evoked auditory steady state responses. Int. J. Audiol. 2015, 54, 106–113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidelman, G.M.; Horn, C.M. Objective Detection of Auditory Steady-State Responses (ASSRs) Based on Mutual Information: Receiver Operating Characteristics and Performance Across Modulation Rates and Levels. Audiol. Res. 2025, 15, 60. https://doi.org/10.3390/audiolres15030060
Bidelman GM, Horn CM. Objective Detection of Auditory Steady-State Responses (ASSRs) Based on Mutual Information: Receiver Operating Characteristics and Performance Across Modulation Rates and Levels. Audiology Research. 2025; 15(3):60. https://doi.org/10.3390/audiolres15030060
Chicago/Turabian StyleBidelman, Gavin M., and Claire McElwain Horn. 2025. "Objective Detection of Auditory Steady-State Responses (ASSRs) Based on Mutual Information: Receiver Operating Characteristics and Performance Across Modulation Rates and Levels" Audiology Research 15, no. 3: 60. https://doi.org/10.3390/audiolres15030060
APA StyleBidelman, G. M., & Horn, C. M. (2025). Objective Detection of Auditory Steady-State Responses (ASSRs) Based on Mutual Information: Receiver Operating Characteristics and Performance Across Modulation Rates and Levels. Audiology Research, 15(3), 60. https://doi.org/10.3390/audiolres15030060