Focused Update on Clinical Testing of Otolith Organs
Abstract
:1. Introduction
The Structure and Function of the Otolithic Receptors
2. Clinical Evaluation of the Otolith Organs
3. Comparisons of Clinical Tests of Otolith Function
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, P.F. The Growing Evidence for the Importance of the Otoliths in Spatial Memory. Front. Neural Circuits 2019, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S. The new vestibular stimuli: Sound and vibration-anatomical, physiological and clinical evidence. Exp. Brain Res. 2017, 235, 957–972. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; MacDougall, H.G.; Vidal, P.-P.; de Waele, C. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function. Front. Neurol. 2017, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Hegemann, S.C.A.; Weisstanner, C.; Ernst, A.; Basta, D.; Bockisch, C.J. Constant severe imbalance following traumatic otoconial loss: A new explanation of residual dizziness. Eur. Arch. Otorhinolaryngol. 2020, 277, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Hegemann, S.C.A.; Bockisch, C.J. Otoconial loss or lack of otoconia—An overlooked or ignored diagnosis of balance deficits. Med. Hypotheses 2019, 128, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Serrador, J.M.; Lipsitz, L.A.; Gopalakrishnan, G.S.; Black, F.O.; Wood, S.J. Loss of otolith function with age is associated with increased postural sway measures. Neurosci. Lett. 2009, 465, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, L.G. Degenerative changes and anomalies of the vestibular system in man. Laryngoscope 1971, 81, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.D.; Peacor, D.; Johnsson, L.G.; Allard, L.F. Observations on normal and degenerating human otoconia. Ann. Otol. Rhinol. Laryngol. 1976, 85, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, G. Imbalance and vertigo: The aging human vestibular periphery. Semin. Neurol. 2009, 29, 491–499. [Google Scholar] [CrossRef]
- Rauch, S.D.; Velazquez-Villaseñor, L.; Dimitri, P.S.; Merchant, S.N. Decreasing hair cell counts in aging humans. Ann. N. Y. Acad. Sci. 2001, 942, 220–227. [Google Scholar] [CrossRef]
- Gopen, Q.; Lopez, I.; Ishiyama, G.; Baloh, R.W.; Ishiyama, A. Unbiased stereologic type I and type II hair cell counts in human utricular macula. Laryngoscope 2003, 113, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Velázquez-Villaseñor, L.; Rauch, S.D.; Glynn, R.J.; Wall, C.; Merchant, S.N. Temporal bone studies of the human peripheral vestibular system. Meniere’s disease. Ann. Otol. Rhinol. Laryngol. Suppl. 2000, 181, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Winther, F.O. X-ray irradiation of the inner ear of the guinea pig. Early degenerative changes in the vestibular sensory epithelia. Acta Otolaryngol. 1969, 68, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Erway, L.; Hurley, L.S.; Fraser, A.S. Congenital ataxia and otolith defects due to manganese deficiency in mice. J. Nutr. 1970, 100, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Paffenholz, R.; Bergstrom, R.A.; Pasutto, F.; Wabnitz, P.; Munroe, R.J.; Jagla, W.; Heinzmann, U.; Marquardt, A.; Bareiss, A.; Laufs, J.; et al. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes. Dev. 2004, 18, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; Manzari, L. Otolithic disease: Clinical features and the role of vestibular evoked myogenic potentials. Semin. Neurol. 2013, 33, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, J.; Otero-Millan, J.; Kheradmand, A. Video ocular counter roll: A bedside test of otolith-ocular function, Annals of Clinical and Translational Neurology. Ann. Clin. Transl. Neurol. 2023, 10, 2426–2429. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J.; Roberts, D.C.; Lasker, A.; Zee, D.S.; Kheradmand, A. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion. J. Vis. 2015, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Kheradmand, A.; Winnick, A. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex. Front. Neurol. 2017, 8, 552. [Google Scholar] [CrossRef] [PubMed]
- Furman, J.M.; Schor, R.H.; Schumann, T.L. Off-vertical axis rotation: A test of the otolith-ocular reflex. Ann. Otol. Rhinol. Laryngol. 1992, 101, 643–650. [Google Scholar] [CrossRef]
- Kingma, H. Clinical testing of the statolith-ocular reflex. ORL J. Otorhinolaryngol. Relat. Spec. 1997, 59, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Kessler, P.; Tomlinson, D.; Blakeman, A.; Rutka, J.; Ranalli, P.; Wong, A. The high-frequency/acceleration head heave test in detecting otolith diseases. Otol. Neurotol. 2007, 28, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; Vulovic, V.; Burgess, A.M.; Cornell, E.D.; Mezey, L.E.; Macdougall, H.G.; Manzari, L.; McGarvie, L.A. The basis for using bone-conducted vibration or air-conducted sound to test otolithic function. Ann. N. Y. Acad. Sci. 2011, 1233, 231–241. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, B.; Bos, J.E.; Groen, E. Saccular impact on ocular torsion. Brain Res. Bull. 1996, 40, 321–326, discussion 326–330. [Google Scholar] [CrossRef]
- Kheradmand, A.; Zee, D.S. The bedside examination of the vestibulo-ocular reflex (VOR): An update. Rev. Neurol. 2012, 168, 710–719. [Google Scholar] [CrossRef]
- Brodsky, M.C.; Donahue, S.P.; Vaphiades, M.; Brandt, T. Skew deviation revisited. Surv. Ophthalmol. 2006, 51, 105–128. [Google Scholar] [CrossRef] [PubMed]
- Halmagyi, G.M.; Curthoys, I.S.; Brandt, T.; Dieterich, M. Ocular tilt reaction: Clinical sign of vestibular lesion. Acta Otolaryngol. Suppl. 1991, 481, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Primiani, C.T.; Kheradmand, A.; Green, K.E. Pearls & Oy-sters: Vertical Diplopia and Ocular Torsion: Peripheral vs Central Localization. Neurology 2022, 99, 212–215. [Google Scholar] [CrossRef] [PubMed]
- De Waele, C.; Graf, W.; Josset, P.; Vidal, P.P. A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig. Exp. Brain Res. 1989, 77, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, J.; Otero-Millan, J.; Schubert, M.C.; Kheradmand, A. Video Ocular Counter-Roll (vOCR): Otolith-Ocular Function and Compensatory Effect of the Neck Following Vestibular Loss. Otolaryngol. Head. Neck Surg. 2023, 169, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, S.J.; Shin, H.J.; Lee, A.G. Measuring ocular torsion and its variations using different nonmydriatic fundus photographic methods. PLoS ONE 2020, 15, e0244230. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lim, K.H. The Range of Ocular Torsion in Mass Screening. J. Korean Ophthalmol. Soc. 2005, 46, 1684–1689. [Google Scholar]
- Zwergal, A.; Rettinger, N.; Frenzel, C.; Dieterich, M.; Brandt, T.; Strupp, M. A bucket of static vestibular function. Neurology 2009, 72, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Howard, I.P. Human Visual Orientation; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Van Beuzekom, A.D.; Van Gisbergen, J.A.M. Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. J. Neurophysiol. 2000, 84, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Brandt, T.; Dieterich, M. Vestibular syndromes in the roll plane: Topographic diagnosis from brainstem to cortex. Ann. Neurol. 1994, 36, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J.; Kheradmand, A. Upright Perception and Ocular Torsion Change Independently during Head Tilt. Front. Hum. Neurosci. 2016, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Barra, J.; Marquer, A.; Joassin, R.; Reymond, C.; Metge, L.; Chauvineau, V.; Pérennou, D. Humans use internal models to construct and update a sense of verticality. Brain 2010, 133, 3552–3563. [Google Scholar] [CrossRef]
- Choi, J.W.; Kang, S.I.; Rhee, J.H.; Choi, B.Y.; Kim, J.-S.; Koo, J.-W. Clinical implication of ocular torsion in peripheral vestibulopathy. Eur. Arch. Otorhinolaryngol. 2015, 272, 1613–1617. [Google Scholar] [CrossRef]
- Faralli, M.; Ricci, G.; Manzari, L.; Zambonini, G.; Lapenna, R.; Pettorossi, V.E. Different time course of compensation of subjective visual vertical and ocular torsion after acute unilateral vestibular lesion. Eur. Arch. Otorhinolaryngol. 2021, 278, 2269–2276. [Google Scholar] [CrossRef]
- Choi, K.-D.; Oh, S.-Y.; Kim, H.-J.; Koo, J.-W.; Cho, B.M.; Kim, J.S. Recovery of vestibular imbalances after vestibular neuritis. Laryngoscope 2007, 117, 1307–1312. [Google Scholar] [CrossRef]
- Böhmer, A. The subjective visual vertical as a clinical parameter for acute and chronic vestibular (otolith) disorders. Acta Otolaryngol. 1999, 119, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Hösli, S.; Straumann, D. Independent Measures of Utricular Function: Ocular Vestibular Evoked Myogenic Potentials Do Not Correlate With Subjective Visual Vertical or Fundus Photographic Binocular Cyclorotation. Front. Neurol. 2021, 12, 658419. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-A.; Hong, J.-H.; Lee, H.; Yi, H.-A.; Lee, S.-R.; Lee, S.-Y.; Jang, B.-C.; Ahn, B.-H.; Baloh, R.W. Otolith dysfunction in vestibular neuritis: Recovery pattern and a predictor of symptom recovery. Neurology 2008, 70, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, G.; Gagliardi, S.; Appiani, M.C.; Iannella, G.; Re, M. Vestibular Neurolabyrinthitis: A Follow-Up Study With Cervical and Ocular Vestibular Evoked Myogenic Potentials and the Video Head Impulse Test. Ann. Otol. Rhinol. Laryngol. 2014, 123, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.L.; McGarvie, L.A.; Reid, N.; Young, A.S.; Halmagyi, G.M.; Welgampola, M.S. Vestibular neuritis affects both superior and inferior vestibular nerves. Neurology 2016, 87, 1704–1712. [Google Scholar] [CrossRef]
- Curthoys, I.S.; Kim, J.; McPhedran, S.K.; Camp, A.J. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp. Brain Res. 2006, 175, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.L.; Wise, K.J.; Taylor, D.; Chaudhary, S.; Thorne, P.R. Patterns of vestibular dysfunction in chronic traumatic brain injury. Front. Neurol. 2022, 13, 942349. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J.; Treviño, C.; Winnick, A.; Zee, D.S.; Carey, J.P.; Kheradmand, A. The video ocular counter-roll (vOCR): A clinical test to detect loss of otolith-ocular function. Acta Otolaryngol. 2017, 137, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Sadeghpour, S.; Fornasari, F.; Otero-Millan, J.; Carey, J.P.; Zee, D.S.; Kheradmand, A. Evaluation of the Video Ocular Counter-Roll (vOCR) as a New Clinical Test of Otolith Function in Peripheral Vestibulopathy. JAMA Otolaryngol. Head. Neck Surg. 2021, 147, 518–525. [Google Scholar] [CrossRef]
Test | Method | Stimulus Pathway | Measurement | Interpretation |
---|---|---|---|---|
VEMP | Sound-/vibration-induced myogenic potential | Type 1 hair cells (transient system) | Biphasic wave (oVEMP/utricle and cVEMP/saccule) | Objective |
vOCR | VOG measure (30° lateral head tilt) | Type 2 hair cells (sustained system) | Ocular counter roll | Objective |
Fundus photograph | Ocular torsion alignment | N/A * | Disc foveal angle ** | Objective |
Maddox rod | Ocular torsion alignment | N/A * | Perceived line angle ** | Subjective |
SVV | Perceived vertical | N/A * | Perceived vertical angle | Subjective |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegemann, S.C.A.; Bery, A.K.; Kheradmand, A. Focused Update on Clinical Testing of Otolith Organs. Audiol. Res. 2024, 14, 602-610. https://doi.org/10.3390/audiolres14040051
Hegemann SCA, Bery AK, Kheradmand A. Focused Update on Clinical Testing of Otolith Organs. Audiology Research. 2024; 14(4):602-610. https://doi.org/10.3390/audiolres14040051
Chicago/Turabian StyleHegemann, Stefan C. A., Anand Kumar Bery, and Amir Kheradmand. 2024. "Focused Update on Clinical Testing of Otolith Organs" Audiology Research 14, no. 4: 602-610. https://doi.org/10.3390/audiolres14040051
APA StyleHegemann, S. C. A., Bery, A. K., & Kheradmand, A. (2024). Focused Update on Clinical Testing of Otolith Organs. Audiology Research, 14(4), 602-610. https://doi.org/10.3390/audiolres14040051