Solitary Plasmacytomas: Current Status in 2025
Abstract
1. Introduction and Epidemiology
2. Diagnostic Evaluation
2.1. Clinical Features
2.2. Imaging
2.2.1. Plain Radiographs and Computed Tomography
2.2.2. MRI
2.2.3. PET CT
3. Laboratory Studies
- CBC, differential, and platelet count;
- Peripheral blood smear;
- Serum BUN/creatinine, electrolytes, liver function tests, albumin, calcium, serum uric acid, serum LDH, and beta-2 microglobulin;
- Creatinine clearance (calculated or measured directly);
- Serum quantitative immunoglobulins, serum protein electrophoresis (SPEP), and serum immunofixation electrophoresis (SIFE);
- Twenty-four-hour urine for total protein, urine protein electrophoresis (UPEP), and urine immunofixation electrophoresis (UIFE);
- Serum free light chain (FLC) assay;
- Unilateral bone marrow aspirate and biopsy, including immunohistochemistry (IHC) and/or multiparameter flow cytometry;
- Plasma cell fluorescence in situ hybridization (FISH) panel on bone marrow [del(13), del (17p13), t(4;14), t(11;14), t(14;16), t(14:20), 1q21 gain/1q21 amplification, 1p deletion];
- NT-proBNP/BNP.
- SPs with 10% or more clonal plasma cells in bone marrow are defined as multiple myeloma.
- SPs with less than 10% clonal plasma cells in bone marrow are defined as solitary plasmacytoma with minimal marrow involvement.
- SPs with no clonal plasma cells in bone marrow are defined as solitary plasmacytoma. Plasmacytomas are divided into bone or extramedullary based on the origin site.
- For the multiple myeloma diagnosis, the clonality requirement for marrow plasma cells no longer exists in the NCCN v2.2025 guidelines if a plasmacytoma has been found [24].
3.1. Treatment and Response Evaluation
3.1.1. Radiation Therapy
- SBPs smaller than 5 cm: 35 Gy.
- SBPs 5 cm and greater: 40–50 Gy.
- EMPs: Doses lower than 40 Gy are not adequate; 40–50 Gy is recommended. Selected low tumor burden patients are set to receive 40 Gy. The ILROG recommends 1.8–2 Gy daily fractions.
- 30 Gy in 10–15 daily fractions, 5 fractions/week.
3.1.2. Surgery
3.1.3. Chemotherapy
3.2. Follow-Up, Response Assessment, and Prognosis
4. Conclusions and Future Directions
5. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gertz, M.; Rajkumar, V. Multiple Myeloma Diagnosis and Treatment, 1st ed.; Springer Nature: New York, NY, USA, 2014; pp. 195–210. [Google Scholar]
- Zhang, H.; Miao, Q.; Liu, J.; Li, X.; Deng, H. Complete resection of a mediastinal solitary extramedullary plasmacytoma and reconstruction of right pulmonary artery and superior vena cava. Ann. Thorac. Surg. 2011, 92, 2244–2246. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, K.; Yusuf, G.; Mulita, F.; Tsalikidis, C.; Mitsala, A.; Konstantelou, E.; Kotsopoulou, M.; Koletsis, E.; Pitiakoudis, M.; Dimopoulos, P. Extraosseous Plasmacytomas: A Radiologist’s Perspective—A Narrative Review of the Literature. Diagnostics 2024, 14, 1788. [Google Scholar] [CrossRef] [PubMed]
- Al-Handola, R.; Banerjee, U.; Navari, Y.; Ayad, S.; Marcus, H. Spinal Solitary Plasmacytoma With Minimal Marrow Involvement Presenting With Epidural Spinal Cord Compression. Cureus 2024, 16, e52460. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Liu, R.; Liu, Y.; Peng, N.; Wen, L.; Deng, D.; Cao, L.; Li, Q.; Wang, L.; Wang, F.; et al. Macrofocal multiple myeloma in the era of novel agents in China. Ther. Adv. Hematol. 2025, 16, 20406207251314696. [Google Scholar] [CrossRef]
- Brown, A.K. How to interpret plain radiographs in clinical practice. Best Pract. Res. Clin. Rheumatol. 2013, 27, 249–269. [Google Scholar] [CrossRef]
- Alongi, P.; Zanoni, L.; Incerti, E.; Fallanca, F.; Mapelli, P.; Papathanasiou, N.; Gianolli, L.; Picchio, M.; Bomanji, J. 18F-FDG PET/CT for early postradiotherapy assessment in solitary bone plasmacytoma. Clin. Nucl. Med. 2015, 40, e399–e404. [Google Scholar] [CrossRef]
- Grammatico, S.; Scalzulli, E.; Petrucci, M.T. Solitary Plasmacytoma. Mediterr. J. Hematol. Infect. Dis. 2017, 9, e2017052. [Google Scholar] [CrossRef]
- Tsang, R.W.; Campbell, B.A.; Goda, J.S.; Kelsey, C.R.; Kirova, Y.M.; Parikh, R.R.; Ng, A.K.; Ricardi, U.; Suh, C.O.; Mauch, P.M. Radiation Therapy for Solitary Plasmacytoma and Multiple Myeloma: Guidelines From the International Lymphoma Radiation Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 794–808. [Google Scholar] [CrossRef]
- Saba, L.; Fu, C.-L.; Sarna, K.; Liang, H.; Dominguez, B.G.; Greskovich, J.; Chaulagain, C.P. Real-World Treatment Patterns and Outcomes of Solitary Plasmacytoma in the United States: A National Cancer Database (NCDB) Analysis of Years 2004–2020. Blood 2023, 142 (Suppl. S1), 2025. [Google Scholar] [CrossRef]
- Strojan, P.; Soba, E.; Lamovec, J.; Munda, A. Extramedullary plasmacytoma: Clinical and histopathologic study. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 692–701. [Google Scholar] [CrossRef]
- Mignot, F.; Schernberg, A.; Arsène-Henry, A.; Vignon, M.; Bouscary, D.; Kirova, Y. Solitary Plasmacytoma Treated by Lenalidomide-Dexamethasone in Combination with Radiation Therapy: Clinical Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Ozsahin, M.; Tsang, R.W.; Poortmans, P.; Belkacémi, Y.; Bolla, M.; Dinçbas, F.O.; Landmann, C.; Castelain, B.; Buijsen, J.; Curschmann, J.; et al. Outcomes and patterns of failure in solitary plasmacytoma: A multicenter Rare Cancer Network study of 258 patients. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Liebross, R.H.; Ha, C.S.; Cox, J.D.; Weber, D.; Delasalle, K.; Alexanian, R. Solitary bone plasmacytoma: Outcome and prognostic factors following radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1998, 41, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Jyotsnarani, Y.; Uppin, S.G.; Susarla, R. Imaging features of primary tumors of the spine: A pictorial essay. Indian J. Radiol. Imaging. 2016, 26, 279–289. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moulopoulos, L.A.; Maniatis, A.; Alexanian, R. Solitary plasmacytoma of bone and asymptomatic multiple myeloma. Blood 2000, 96, 2037–2044. [Google Scholar] [CrossRef]
- Rodallec, M.H.; Feydy, A.; Larousserie, F.; Anract, P.; Campagna, R.; Babinet, A.; Zins, M.; Drape, J.L. Diagnostic imaging of solitary tumors of the spine: What to do and say. Radiographics 2008, 28, 1019–1041. [Google Scholar] [CrossRef]
- Miralles, G.D.; O’Fallon, J.R.; Talley, N.J. Plasma-cell dyscrasia with polyneuropathy. The spectrum of POEMS syndrome. N. Engl. J. Med. 1992, 327, 1919–1923. [Google Scholar] [CrossRef]
- Huvos, A.G. (Ed.) Multiple myeloma including solitary osseous myeloma. In Bone Tumors: Diagnosis, Treatment, and Prognosis; WB Saunders Co.: Philadelphia, PA, USA, 1992; pp. 653–667. [Google Scholar]
- Caers, J.; Paiva, B.; Zamagni, E.; Leleu, X.; Bladé, J.; Kristinsson, S.Y.; Touzeau, C.; Abildgaard, A.; Terpos, E.; Heusschen, R.; et al. Diagnosis, treatment, and response assessment in solitary plasmacytoma: Updated recommendations from a European Expert Panel. J. Hematol. Oncol. 2018, 11, 10. [Google Scholar] [CrossRef]
- Hameed, M.; Sandhu, A.; Soneji, N.; Amiras, D.; Rockall, A.; Messiou, C.; Wallitt, K.; Barwick, T.D. Pictorial review of whole body MRI in myeloma: Emphasis on diffusion-weighted imaging. Br. J. Radiol. 2020, 93, 20200312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Messiou, C.; Hillengass, J.; Delorme, S.; Lecouvet, F.E.; Moulopoulos, L.A.; Collins, D.J.; Blackledge, M.D.; Abildgaard, N.; Østergaard, B.; Schlemmer, H.-P.; et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma response assessment and diagnosis system (MY-RADS). Radiology 2019, 291, 5–13. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Hillengass, J.; Usmani, S.; Zamagni, E.; Lentzsch, S.; Davies, F.E.; Raje, N.; Sezer, O.; Zweegman, S.; Shah, J.; et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: A consensus statement. J. Clin. Oncol. 2015, 33, 657–664. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Multiple Myeloma (NCCN Guideline Version 2.2025). 2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf (accessed on 16 April 2025).
- Albano, D.; Tomasini, D.; Bonù, M.; Giubbini, R.; Bertagna, F. 18F-FDG PET or PET/CT role in plasmacytoma: A systematic review. Rev. Esp. Med. Nucl. Imagen. Mol. 2020, 39, 220–224, (In English and Spanish). [Google Scholar] [CrossRef] [PubMed]
- Nanni, C.; Rubello, D.; Zamagni, E.; Castellucci, P.; Ambrosini, V.; Montini, G.; Cavo, M.; Lodi, F.; Pettinato, C.; Grassetto, G.; et al. 18FFDG PET/CT in myeloma with presumed solitary plasmocytoma of bone. In Vivo 2008, 22, 513–517. [Google Scholar] [PubMed]
- Schirrmeister, H.; Buck, A.K.; Bergmann, L.; Reske, S.N.; Bommer, M. Positron emission tomography (PET) for staging of solitary plasmacytoma. Cancer Biother. Radiopharm. 2003, 18, 841–845. [Google Scholar] [CrossRef]
- Garrastachu Zumarán, P.; García Megías, I.; Mangas Losada, M.; Mendoza Melero, A.; Villanueva Torres, A.; Boulvard Chollet, X.; Romero Robles, L.; Hernández Pérez, P.M.; Ramírez Lasanta, R.; Delgado Bolton, R.C. Multitracer PET/CT with [18F]Fluorodeoxiglucose and [18F]Fluorocholine in the Initial Staging of Multiple Myeloma Patients Applying the IMPeTus Criteria: A Pilot Study. Diagnostics 2023, 13, 1570. [Google Scholar] [CrossRef]
- Albano, D.; Bosio, G.; Treglia, G.; Giubbini, R.; Bertagna, F. 18F-FDG PET/CT in solitary plasmacytoma: Metabolic behavior and progression to multiple myeloma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 77–84. [Google Scholar] [CrossRef]
- Dingli, D.; Kyle, R.A.; Rajkumar, S.V.; Nowakowski, G.S.; Larson, D.R.; Bida, J.P.; Gertz, M.A.; Therneau, T.M.; Dispenzieri, A.; Katzmann, J.A.; et al. Immunoglobulin free light chains and solitary plasmacytoma of bone. Blood 2006, 108, 1979–1983. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet. Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Tsang, R.W.; Gospodarowicz, M.K.; Pintilie, M.; Bezjak, A.; Wells, W.; Hodgson, D.C.; Stewart, A.K. Solitary plasmacytoma treated with radiotherapy: Impact of tumor size on outcome. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Reed, V.K.; Shah, J.J.; Medeiros, L.J.; Ha, C.S.; Mazloom, A.; Weber, D.M.; Arzu, I.Y.; Orlowski, R.Z.; Thomas, S.K.; Dabaja, B.S. Solitary plasmacytomas. Cancer 2011, 117, 4468–4474. [Google Scholar] [CrossRef]
- Zhu, Q.; Zou, X.; You, R.; Jiang, R.; Zhang, M.X.; Liu, Y.P.; Qian, C.N.; Mai, H.Q.; Hong, M.H.; Guo, L.; et al. Establishment of an innovative staging system for extramedullary plasmacytoma. BMC Cancer 2016, 16, 777. [Google Scholar] [CrossRef]
- Sasitharan, P.; Yusof, N.I.M.; Raju, K.V. Extramedullary plasmacytoma of the nasal cavity: A case report. Rom. J. Rhinol. 2018, 8, 233–234. [Google Scholar] [CrossRef]
- Represa, V.; González San-Segundo, C.; Pinos, V.D.; García, L.B.; Nieto, P.M.; Fornazari, F.; Rodríguez, C.E. Solitary plasmacytoma: Should new approaches in diagnosis and treatment be adopted? Rep. Pract. Oncol. Radiother. 2024, 29, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Thumallapally, N.; Meshref, A.; Mousa, M.; Terjanian, T. Solitary plasmacytoma: Population-based analysis of survival trends and effect of various treatment modalities in the USA. BMC Cancer 2017, 17, 13. [Google Scholar]
- Goyal, G.; Bartley, A.C.; Funni, S.; Inselman, J.; Shah, N.D.; Marshall, A.L.; Ashrani, A.A.; Kapoor, P.; Durani, U.; Hashmi, S.K.; et al. Treatment approaches and outcomes in plasmacytomas: Analysis using a national dataset. Leukemia 2018, 32, 1414–1420. [Google Scholar] [CrossRef]
- Vasudevan, S.S.; Sayed, S.B.H.; Kapartiwar, P.; Pang, J.; Asarkar, A.A.; Olinde, L.; Katz, S.; Beedupalli, K.; Nathan, C.O. Radiotherapy vs Surgery for Survival and Locoregional Control of Head and Neck Extramedullary Plasmacytoma: A Systematic Review and Meta-Analysis. JAMA Otolaryngol. Head Neck Surg. 2024, 150, 887–895. [Google Scholar] [CrossRef]
- Shen, X.; Liu, S.; Wu, C.; Wang, J.; Li, J.; Chen, L. Survival trends and prognostic factors in patients with solitary plasmacytoma of bone: A population-based study. Cancer Med. 2021, 10, 462–470. [Google Scholar] [CrossRef]
- Ascione, S.; Harel, S.; Besson, F.L.; Belkhir, R.; Henry, J.; Royer, B.; Arnulf, B.; Mariette, X.; Seror, R. Chemotherapy in solitary bone plasmacytoma to prevent evolution to multiple myeloma. Haematologica 2023, 108, 3160–3164. [Google Scholar] [CrossRef]
- Mheidly, K.; Lamy De La Chapelle, T.; Hunault, M.; Benboubker, L.; Benchalal, M.; Moreau, P.; Baugier de Materre, A.; Decaux, O.; Laribi, K. New insights in the treatment of patients with solitary bone plasmacytoma. Leuk. Lymphoma 2019, 60, 2810–2813. [Google Scholar] [CrossRef]
- Avilés, A.; Huerta-Guzmán, J.; Delgado, S.; Fernández, A.; Díaz-Maqueo, J.C. Improved outcome in solitary bone plasmacytomata with combined therapy. Hematol. Oncol. 1996, 14, 111–117. [Google Scholar] [CrossRef]
- Ediriwickrema, K.; Rabin, N.K.; D’Sa, S.; Jackson, G.; Hoskin, P.; Gallop-Evans, E.; Diez, P.; Parbutt, C.; Lopes, A.; Galani, S.; et al. Adjuvant Systemic Therapy in High Risk Solitary Bone Plasmacytoma: Results of the UK Randomised Phase III IDRIS Study (CR UK/14/032). Blood 2022, 140 (Suppl. S1), 12626–12627. [Google Scholar] [CrossRef]
- Urvi, A.S.; Kelly, W.; Elizabet, T.; Sean, D.; Sham, M.; Neha, K.; Malin, H.; Carlyn, T.; Sydney, X.; Lu, E.; et al. A Pilot Study Evaluating Lenalidomide and CC-486 in Combination with Radiotherapy for Patients with Plasmacytoma (LENAZART study). Blood 2020, 136 (Suppl. S1), 8–10. [Google Scholar]
- Solitary Plasmacytoma (Bone and Extramedullary). Available online: https://www.mdanderson.org/content/dam/mdanderson/documents/for-physicians/algorithms/cancer-treatment/ca-treatment-plasmacytoma-web-algorithm.pdf. (accessed on 20 April 2025).
- Ghiassi-Nejad, Z.; Ru, M.; Moshier, E.; Chang, S.; Jagannath, S.; Dharmarajan, K. Overall Survival Trends and Clinical Characteristics of Plasmacytoma in the United States: A National Cancer Database Analysis. Clin. Lymphoma Myeloma Leuk. 2019, 19, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Yahalom, J. Radiotherapy in the management of plasma cell tumors. Oncology 2000, 14, 101–108. [Google Scholar]
- Bataille, R.; Sany, J. Solitary myeloma: Clinical and prognostic features of a review of 114 cases. Cancer 1981, 48, 845–851. [Google Scholar] [CrossRef]
- Holland, J.; Trenkner, D.A.; Wasserman, T.H.; Fineberg, B. Plasmacytoma. Treatment results and conversion to myeloma. Cancer 1992, 69, 1513–1517. [Google Scholar] [CrossRef]
- Yadav, U.; Kumar, S.K.; Baughn, L.B.; Dispenzieri, D.A.; Greipp, P.; Ketterling, R.; Jevremovic, D.; Buadi, F.K.; Dingli, D.; Lacy, M.Q.; et al. Impact of cytogenetic abnormalities on the risk of disease progression in solitary bone plasmacytomas. Blood 2023, 142, 1871–1878. [Google Scholar] [CrossRef]
- Frechette, K.M.; Day, C.N.; Lucido, J.; Zhang, H.; Thull, J.C.; Yadav, U.; Hoppe, B.S.; Peterson, J.L.; Rule, W.G.; Lester, S.C.; et al. Radiotherapy Outcomes in Solitary Plasmacytoma with High-Risk Cytogenetic Abnormalities. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, e623. [Google Scholar] [CrossRef]
- Fouquet, G.; Guidez, S.; Herbaux, C.; Van de Wyngaert, Z.; Bonnet, S.; Beauvais, D.; Demarquette, H.; Adib, S.; Hivert, B.; Wemeau, M.; et al. Impact of initial FDG-PET/CT and serum-free light chain on transformation of conventionally defined solitary plasmacytoma to multiple myeloma. Clin. Cancer Res. 2014, 20, 3254–3260. [Google Scholar] [CrossRef]
- Paiva, B.; Chandia, M.; Vidriales, M.B.; Colado, E.; Caballero-Velázquez, T.; Escalante, F.; Garcia de Coca, A.; Montes, M.C.; Garcia-Sanz, R.; Ocio, E.M.; et al. Multiparameter flow cytometry for staging of solitary bone plasmacytoma: New criteria for risk of progression to myeloma. Blood 2014, 124, 1300–1303. [Google Scholar] [CrossRef]
- Leo, R.; Niels, W. When a solitary plasmacytoma is just the beginning. Blood 2023, 142, 1849–1850. [Google Scholar]
Condition | Diagnostic Criteria |
---|---|
Solitary plasmacytoma |
|
Solitary plasmacytoma with minimal marrow involvement |
|
Diagnosis | Serum Monoclonal Protein | Bone Marrow Cytology | End-Organ Damage | Radiological Work-Up |
---|---|---|---|---|
Solitary plasmacytoma | Not required | Negative | Absent (locoregional manifestations are possible) | No other lesions |
Solitary plasmacytoma with minimal bone marrow involvement | Not required | Plasma cell infiltration < 10% | Absent (locoregional manifestations are possible) | No other lesions |
Macrofocal myeloma | Not required | Monoclonal plasma cell infiltration < 20% | Possible (mainly bone) | Multiple lesions |
Multiple myeloma | Present | Monoclonal plasma cell infiltration > 10% | Present | Other lesions may be present |
Response Class | Definition |
---|---|
Complete response (CR) | Complete disappearance of all previously observed abnormalities on radiographic imaging. For patients with a secretory plasmacytoma, a disappearance of monoclonal protein from serum and/or urine. For SBP, the initial radiological abnormalities on MRI or CT should regress or stabilize during an observation time of at least 12 months to fulfill the requirements for a CR. For EMP, the disappearance of soft tissue mass is required for the definition of CR |
Very good partial response (VGPR) | A CR with regard to clinical and radiological signs, but with a positive immunofixation or ≥90% reduction in serum monoclonal protein plus urine monoclonal protein level <100 mg/24 h |
Partial response (PR) | A ≥50% decrease in serum and/or urine monoclonal protein. For non-secretory SP, radiological features (MRI/CT) or local assessment is needed. In EMP patients, a 30% decrease in the diameter of target lesions should be observed |
Stable disease (SD) | Insufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD |
Progressive disease (PD) | The development of new lesions or an increase of at least 20% in the size of existing lesions, the appearance of a myeloma defining event, and finally an increase of >25% from the lowest response value in serum and/or urine monoclonal protein |
Publication | Proposed Management Strategy |
---|---|
NCCN Guidelines [24] | 40–50 Gy in 1.8–2.0 Gy fractions radiotherapy with possible dose reductions to 35–40 Gy for tumors < 5 cm, add surgery if the tumor structurally unstable or causes neurologic compromise due to mass effect. Response should be assessed at a minimum of 3 months after radiotherapy. Then, yearly imaging with the same technique that was used for diagnosis for at least 5 years. Head and neck plasmacytomas may be followed less frequently after 3-month assessment. Whole-body MRI is favored for SBPs; PET CT is favored for EMPs. Biochemical follow-up not mandated, only as needed. |
MD Anderson Cancer Center Algorithm [46] | 35–45 Gy radiotherapy, regardless of site, and 35 Gy dose is favored for tumor diameter < 5 cm. Response evaluation is to be done after 3 months of radiation and should include imaging and biochemical tests (beta-2 microglobulins, LDH, serum and urine immunofixation and protein electrophoresis, quantitative immunoglobulins). PET CT is favored, regardless of site, every 3 months until complete metabolic response. Complete response does not warrant disappearance of tumor, although disappearance of paraprotein and normalization of serum free light chain is mandated. Persistent positive imaging after 6 months of treatment and/or persistent paraprotein after 1 year of treatment requires a multidisciplinary evaluation with the disease site specialists. |
European Expert Panel Recommendations [20] | A total 40–50 Gy radiation dose is advocated. Surgery is reserved for neurological compromise due to mass effect and impending/existing pathological fractures. Adjuvant chemotherapy and antiresorptive therapy is not routine but may be considered on a case-by-case basis (for >5 cm tumors and patients with osteoporosis on dual energy X-ray absorptiometry). Response assessment should be performed by serum/urine parameters, and for soft tissue plasmacytomas, RECIST criteria are added to response definitions (Table 3). Time frames are not given for the follow-up schedule; preferentially the same imaging technique should be employed throughout the follow-up period. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatipoğlu, U.; Seyhan, M.; Ulas, T.; Dal, M.S.; Altuntaş, F. Solitary Plasmacytomas: Current Status in 2025. Hematol. Rep. 2025, 17, 32. https://doi.org/10.3390/hematolrep17040032
Hatipoğlu U, Seyhan M, Ulas T, Dal MS, Altuntaş F. Solitary Plasmacytomas: Current Status in 2025. Hematology Reports. 2025; 17(4):32. https://doi.org/10.3390/hematolrep17040032
Chicago/Turabian StyleHatipoğlu, Uğur, Mert Seyhan, Turgay Ulas, Mehmet Sinan Dal, and Fevzi Altuntaş. 2025. "Solitary Plasmacytomas: Current Status in 2025" Hematology Reports 17, no. 4: 32. https://doi.org/10.3390/hematolrep17040032
APA StyleHatipoğlu, U., Seyhan, M., Ulas, T., Dal, M. S., & Altuntaş, F. (2025). Solitary Plasmacytomas: Current Status in 2025. Hematology Reports, 17(4), 32. https://doi.org/10.3390/hematolrep17040032